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Objectives This study was designed to assess the relationship of high-density-lipoprotein cholesterol (HDL-C), HDL particle
size, and apolipoprotein A-I (apoA-I) with the occurrence of coronary artery disease (CAD), with a focus on the
effect of very high values of these parameters.

Background High plasma levels of HDL-C and apoA-I are inversely related to the risk of CAD. However, recent data suggest
that this relationship does not hold true for very high HDL-C levels, particularly when a preponderance of large
HDL particles is observed.

Methods We conducted a post-hoc analysis of 2 prospective studies: the IDEAL (Incremental Decrease in End Points
through Aggressive Lipid Lowering; n � 8,888) trial comparing the efficacy of high-dose to usual-dose statin
treatment for the secondary prevention of cardiovascular events, and the EPIC (European Prospective Investiga-
tion into Cancer and Nutrition)-Norfolk case-control study, including apparently healthy individuals who did
(cases, n � 858) or did not (control patients, n � 1,491) develop CAD during follow-up. In IDEAL, only HDL-C and
apoA-I were available; in EPIC-Norfolk, nuclear magnetic resonance spectroscopy-determined HDL particle sizes
were also available.

Results In the IDEAL study, higher HDL-C proved a significant major cardiac event risk factor following adjustment for
age, gender, smoking, apoA-I, and apoB. A similar association was observed for HDL particle size in EPIC-
Norfolk. Increased risk estimates were particularly present in the high ends of the distributions. In contrast,
apoA-I remained negatively associated across the major part of its distribution in both studies.

Conclusions When apoA-I and apoB are kept constant, HDL-C and HDL particle size may confer risk at very high values. This
does not hold true for very high levels of apoA-I at fixed levels of HDL-C and apoB. These findings may have im-
portant consequences for assessment and treatment of CAD risk. (J Am Coll Cardiol 2008;51:634–42)
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pidemiological data have convincingly demonstrated (1,2)
n independent and inverse relationship between the con-
entration of cholesterol in high-density lipoproteins
HDL-C) and the risk of coronary artery disease (CAD).
tudies focusing on the biological mechanisms responsible
or this association suggest a major role for the main protein
onstituent of HDL, apolipoprotein A-I (apoA-I) (3).
hese observations have led to the development of novel

herapies that raise plasma levels of HDL-C or apoA-I to
ecrease the risk of CAD that remains in patients treated
ith statins. Among these novel therapies, elevation of
DL-C by inhibition of the cholesteryl ester transfer

rotein (CETP) has attracted the most attention to date.

See page 643

Recently, 2 clinical studies with the CETP inhibitor
orcetrapib were published (4,5) evaluating the effect of this
ovel compound on atherosclerosis progression in humans.
n both studies, considerable increases of plasma HDL-C
ere observed in patients receiving torcetrapib, with achieve-
ent of very high levels of this lipid fraction (72.1 and 81.5
g/dl, respectively). Nevertheless, torcetrapib did not in-

uce the expected regression of atherosclerosis. One possi-
le explanation for this unexpected outcome pertains to the
tructural changes of the HDL particle induced by CETP
nhibition. In fact, it has been hypothesised (6) that the very
arge HDL particles, which become predominant when

DL-C levels rise upon CETP inhibition, may be less
ffective in exerting anti-atherogenic functions. Although
everal in vitro experiments have addressed this specific issue
6–8), no robust epidemiological studies are available yet.

Therefore, the objective of the present study was to assess
he relationships of plasma HDL-C and HDL particle size
ith CAD risk, with a particular emphasis on very high
alues of these parameters. Similarly, we evaluated the
elationship for apoA-I. We used data from the large
DEAL (Incremental Decrease in End Points through Ag-
ressive Lipid Lowering) trial (n � 8,888) (9), which
ompared the efficacy of high-dose to usual-dose statin
reatment for the secondary prevention of cardiovascular
vents, and from a prospective case-control study (858 cases,
,491 control patients) nested in the EPIC (European
rospective Investigation into Cancer and Nutrition)-
orfolk cohort (10). The IDEAL dataset contained data on
DL-C and apoA-I, whereas the EPIC-Norfolk dataset

dditionally had values of HDL particle size as measured by
uclear magnetic resonance (NMR) spectroscopy. Here we
resent our results.

ethods

tudy cohorts. The IDEAL study has been published
reviously (9). In summary, IDEAL is a prospective ran-
omized trial comparing the efficacy of high- to usual-dose

tatin therapy for the secondary prevention of cardiovascular d
vents. A total of 8,888 patients
ith a history of myocardial in-

arction (MI) were enrolled and
andomized to either simvastatin
0 mg or atorvastatin 80 mg.
edian follow-up was 4.8 years.
ean on-treatment levels of

ow-density lipoprotein choles-
erol (LDL-C) were 104 mg/dl
2.7 mmol/l) in the simvastatin
roup and 81 mg/dl (2.1
mol/l) in the atorvastatin

roup. The intensive treatment
egime did not significantly re-
uce the occurrence of the pri-
ary outcome (major coronary

vent, MCE) but did reduce
he risk of other composite sec-
ndary end points and nonfatal
cute MI.

The EPIC-Norfolk study in-
luded 25,663 men and women ages 45 to 79 years resident
n Norfolk, United Kingdom (10). Participants were re-
ruited from general practices in Norfolk as part of the
0-country collaborative EPIC study, designed to investi-
ate dietary and other determinants of cancer. Additional
ata were obtained in EPIC-Norfolk to enable the assess-
ent of determinants of other diseases, including CAD. At

he baseline survey between 1993 and 1997, participants
ompleted a detailed health and lifestyle questionnaire. All
ndividuals were flagged for death certification at the United
ingdom Office of National Statistics, with vital status

scertained for the entire cohort. In addition, participants
dmitted to hospital were identified using their unique
ational Health Service number by data linkage with the
ast Norfolk Health Authority (ENCORE) database,
hich identifies all hospital contacts throughout England

nd Wales for Norfolk residents. Participants were identi-
ed as having CAD during follow-up if they had a hospital
dmission and/or died with CAD as underlying cause.
oronary artery disease was defined as codes 410-414

ccording to the International Classification of Diseases-9th
evision. The case-control dataset used for the present study
ncluded individuals who developed CAD during follow-up
ntil November 2003 (mean follow-up 6 years). Control
atients were study participants who remained free from
AD during this follow-up period. Cases and control
atients were matched by age (within 5 years), gender, and
ime of enrollment (within 3 months) on a 1:2 basis.
ndividuals who reported a history of heart attack/stroke or
se of lipid-lowering drugs at the baseline clinic visit were
ot included in the case-control study.
nd point definition. The occurrence of an MCE was

elected as outcome variable for this analysis. In the IDEAL
tudy, this was the primary end point, defined as coronary

Abbreviations
and Acronyms

ApoA-I � apolipoprotein A-I

ApoB � apolipoprotein B

CAD � coronary artery
disease

CETP � cholesteryl ester
transfer protein

HDL-C � high-density
lipoprotein cholesterol

LDL-C � low-density
lipoprotein cholesterol

MCE � major coronary
event

MI � myocardial infarction

NMR � nuclear magnetic
resonance

OR � odds ratio

RR � relative risk
eath, nonfatal MI, or resuscitation
 after cardiac arrest. In



E
d
C
S
t
a
o
a
u
b
p
l
a
p
L
m
t
N
e
b
p
e
w
C

s
B
d
l
a
t
t
S
s
a
r
w
i
(
i
p
m
w
N
a
l
m
i
n
w
p
H
v
N
t
a

H
m
a

p
c
t
t
f
t
e
u
d
c
s
e
a
s

R

S
3
m
e
d
p
f
t
2
o
r
t
c
c
N
p
c

a
(
p
t
c
a
L
i
p
N
R
a
a
N
W

636 van der Steeg et al. JACC Vol. 51, No. 6, 2008
HDL-C, HDL Particle Size, ApoA-I, and CAD Risk February 12, 2008:634–42
PIC-Norfolk, MCE included fatal or nonfatal CAD,
efined as codes 410-414 according to the International
lassification of Diseases-9th revision.
election of study participants. For the present analysis in

he IDEAL study, lipid and apolipoprotein values were
verages of the measurements performed at 3 and 6 months
n treatment. Only patients with a complete set of lipid and
polipoprotein measurements at these time points were
sed, and all patients who developed MCE in this study
efore 6 months of treatment were excluded from the
resent analysis. Similarly, only patients with complete

ipid, apolipoprotein, and HDL particle size measurements
t the baseline survey in EPIC-Norfolk were used for the
resent analysis.
aboratory measurements. Lipid and apolipoprotein
easurements were performed on fasting blood samples in

he IDEAL study and on nonfasting samples in EPIC-
orfolk. Levels of total cholesterol, HDL-C, and triglyc-

rides were quantified using standard methodologies. In
oth studies, plasma concentration of apoA-I and apoli-
oprotein B (apoB) were determined by immunonepholom-
try (Behring Nephelometer BNII, Marburg, Germany),
ith calibration traceable to the International Federation of
linical Chemistry primary standards (11).
In EPIC-Norfolk, mean HDL particle size was mea-

ured by NMR spectroscopy as previously described (12).
riefly, concentrations of HDL size subclasses were
erived from the measured amplitudes of the distinct

ipid methyl group NMR signals they emit. Weighted-
verage HDL particle sizes in nanometers (nm) were
hen calculated from the subclass levels, and the diame-
ers were assigned to each subclass.
tatistical analyses. In the IDEAL dataset, the relation-
hips of HDL-C and apoA-I with MCE were calculated by

Cox proportional hazards model, yielding values for
elative risk (RR) for a 1-SD increase of HDL-C or apoA-I
ith 95% confidence intervals. The basic regression model

ncluded covariates for age, gender, and smoking status
current, former, never) recorded at baseline. Body mass
ndex (BMI) was not taken into account because this
arameter did not significantly contribute to the regression
odels (data not shown). Data on alcohol consumption
ere not available in the IDEAL database. In EPIC-
orfolk, the relationships of HDL-C, HDL particle size,

nd apoA-I with MCE were determined by conditional
ogistic regression analysis that took into account the

atching for age, gender, and enrollment period and
ncluded the covariates smoking status (current, former,
ever), BMI, and alcohol consumption (number of units per
eek) (basic model). The MCE risk estimates were ex-
ressed as odds ratios (OR) for a 1-SD increase of HDL-C,
DL particle size, or apoA-I with 95% confidence inter-

als. The basic models for HDL-C (IDEAL and EPIC-
orfolk) and HDL particle size (EPIC-Norfolk only) were

hen adjusted for apoA-I, and those for apoA-I were

djusted for HDL-C (IDEAL and EPIC-Norfolk) or s
DL particle size (EPIC-Norfolk only). In addition, all
odels were adjusted for apoB to account for the pro-

therogenic lipoprotein fraction.
To assess the effect of very high values of HDL-C, HDL

article size, and apoA-I on the risk of MCE, patients were
ategorized into 6 subgroups for each of these parameters in
he 2 studies. These subgroups were defined on the basis of
he percentages of study participants that belonged to the
ollowing HDL-C subgroups in IDEAL: �40, 40 to 49, 50
o 59, 60 to 69, 70 to 79, and �80 mg/dl. The MCE risk
stimates were than calculated for patients in each subgroup
sing the lowest category as reference. Adjustment proce-
ures were identical as described earlier. A p value was
alculated for each subgroup indicating whether the corre-
ponding risk estimate significantly differed from the refer-
nce category. Also, statistical significance was assessed for
linear trend across the risk estimates connected to the 6

ubgroups.

esults

tudy populations. Of 8,888 IDEAL study participants,
24 patients (195 MCEs) were excluded because of
issing values at 3 or 6 months or both or because they

xperienced an MCE before the 6-month visit. Thus,
ata were analyzed from 8,564 IDEAL study partici-
ants, among whom 679 experienced an MCE during
ollow-up. The EPIC-Norfolk case-control study con-
ained 1,133 cases and 2,237 control patients. Of these,
39 cases and 324 control patients were excluded because
f missing values at the baseline survey. Among the
emaining study subjects, 36 cases were excluded because
hey had no matching control patients, as were 422
ontrol patients because they were without matching
ases. Consequently, the present analysis of EPIC-
orfolk used data from 858 cases and 1,491 control

atients (225 cases with 1 matching control patient, 633
ases with 2 control patients).

Table 1 reports baseline demographic and clinical char-
cteristics, as well as on-treatment (IDEAL) or baseline
EPIC-Norfolk) plasma levels of lipids and apolipoproteins
er study. Patients in IDEAL were somewhat younger than
hose included in EPIC-Norfolk, and the IDEAL dataset
ontained a higher percentage of men. Levels of HDL-C
nd apoA-I were comparable. Levels of total cholesterol,
DL-C, and apoB were substantially lower in IDEAL than

n EPIC-Norfolk, reflecting the fact that all IDEAL
atients received statin therapy, whereas none of the EPIC-
orfolk participants used lipid-lowering medication.
elationships among HDL-C, HDL particle size, or

poA-I and MCE. Table 2 displays the relationships
mong levels of HDL-C, HDL particle size (EPIC-
orfolk only) or apoA-I, and risk of MCE per study.
ithout adjustment for apoA-I and apoB, HDL-C was
ignificantly and inversely related with MCE risk in both



s
I
a
N
A
(
r
f
l
t
H
N

c
p

r
0
U
r
p
s
a
t
I
f
H
R
t
s
2
p
(
a
f
s
r
0
C
c
s
t
9
C
u

DCa

V
I
t

h

637JACC Vol. 51, No. 6, 2008 van der Steeg et al.
February 12, 2008:634–42 HDL-C, HDL Particle Size, ApoA-I, and CAD Risk
tudies, as was HDL particle size in EPIC-Norfolk. In
DEAL, a 1-SD increase in HDL-C (�11.9 mg/dl) was
ssociated with an RR of 0.92 (p � 0.04) and in EPIC-
orfolk (�15.2 mg/dl) with an OR of 0.78 (p � 0.0001).
similar increase of HDL particle size in EPIC-Norfolk

�0.48 nm) yielded an OR of 0.86 (p � 0.006). When
egression models were adjusted for apoA-I, risk estimates
or HDL-C and HDL particle size moved toward unity and
ost significance. Upon additional adjustment for apoB,
hese risk estimates moved further upward, such that

DL-C (in IDEAL) and HDL particle size (in EPIC-
orfolk) became significantly positively related to the oc-

emographic, Clinical, and Lipoproteinharacteristics of Study Subjects in IDEALnd EPIC-Norfolk

Table 1
Demographic, Clinical, and Lipoprotein
Characteristics of Study Subjects in IDEAL
and EPIC-Norfolk

IDEAL (n � 8,564) EPIC (n � 2,349)

Age (yrs) 61.7 � 9.4 65.0 � 7.9

Gender (% male) 80.9 62.7

Smoking (%)

Current 20.4 11.2

Former 58.5 50.5

Never 21.1 38.3

BMI (kg/m2) 27.3 � 3.8 26.6 � 3.6

Total cholesterol (mg/dl) 163.0 � 33.7 243.9 � 44.7

LDL-C (mg/dl) 91.7 � 27.6 160.4 � 39.8

HDL-C (mg/dl) 46.5 � 11.9 50.9 � 15.2

ApoB (g/l) 0.94 � 0.28 1.32 � 0.31

ApoA-I (g/l) 1.39 � 0.22 1.60 � 0.30

alues are presented as mean � SD or as percentage. Demographic and clinical characteristics for
DEAL study subjects presented here are recorded at baseline. Lipid and apolipoprotein values in
his study are the average from measurements at 3 and 6 months of treatment.

apoA-I � apolipoprotein A-I; apoB � apolipoprotein B; BMI � body mass index; HDL-C �

igh-density lipoprotein cholesterol; LDL-C � low-density lipoprotein cholesterol.

Risk Estimates for a Major Coronary Event PerHDL-C, HDL Particle Size, and ApoA-I in the IDE

Table 2 Risk Estimates for a Major Coronar
HDL-C, HDL Particle Size, and ApoA

IDEAL

RR* 95% CI

HDL-C

Basic model† 0.92 0.85–1.00

� ApoA-I 1.05 0.96–1.15

� ApoA-I � ApoB 1.21 1.01–1.46

HDL size‡

Basic model — —

� ApoA-I — —

� ApoA-I � ApoB — —

ApoA-I

Basic model 0.90 0.83–0.98

� HDL-C 0.86 0.71–1.03

� HDL-C � ApoB 0.74 0.61–0.90

� HDL size — —

� HDL size � ApoB — —

*Risk estimates for a 1-SD deviation increase of HDL-C (�11.9 mg/
EPIC-Norfolk) and apoA-I (�0.22 g/l in IDEAL; �0.30 g/l in EPIC-Nor
gender (matched variables), smoking, body mass index, and alcohol c
resonance (NMR) spectroscopy.
apoA-I � apolipoprotein A-I; apoB � apolipoprotein B; CI � confidence inter
� relative risk.
urrence of MCE (RR 1.21, p � 0.04 in IDEAL; OR 1.23,
� 0.005 in EPIC-Norfolk, respectively).
In the basic regression models, apoA-I was negatively

elated to MCE occurrence in both studies (RR 0.90, p �
.01 in IDEAL; OR 0.79, p � 0.0001 in EPIC-Norfolk).
pon adjustment for HDL-C, statistical significance of this

elation was lost (RR 0.86, p � 0.11 in IDEAL; OR 0.87,
� 0.09 in EPIC-Norfolk). Adjustment for HDL particle

ize (EPIC-Norfolk only) had no effect. Upon additional
djustment for apoB, the relationship for apoA-I returned
o a significant negative sign (RR 0.74, p � 0.002 in
DEAL; OR 0.74, p � 0.001 in EPIC-Norfolk, adjusted
or HDL-C and apoB or OR 0.69, p � 0.0001, adjusted for

DL particle size and apoB).
elationships among subgroups of HDL-C, HDL par-

icle size or apoA-I, and MCE. The predefined HDL-C
ubgroups in IDEAL contained 30.2%, 34.4%, 24.0%, 7.6%,
.5%, and 1.3% of the study participants. Tables 3 and 4
resent risk estimates for subcategories of HDL-C levels
Table 3), HDL particle size (Table 3) (EPIC-Norfolk only),
nd apoA-I (Table 4) calculated by the basic models and
ollowing full adjustment for lipoproteins. In the IDEAL
tudy, unadjusted analyses showed an inverse trend in MCE
isk up to an HDL-C level of 70 mg/dl (RR 0.91, 95% CI
.76 to 1.09; RR 0.77, 95% CI 0.62 to 0.95; RR 0.71, 95%
I 0.51 to 0.99 for the second, third, and fourth categories

ompared to the first, respectively) (Table 3). For the
ubcategories above 70 mg/dl, the relative risks lost statis-
ical significance (RR 1.03, 95% CI 0.65 to 1.63; RR 0.96,
5% CI 0.51 to 1.82). This appeared to be due to wider 95%
Is but also to regression of the point estimates toward
nity. No significant linear trend could be observed across

Increase ofd EPIC-Norfolk Studies

nt Per 1-SD Increase of
the IDEAL and EPIC-Norfolk Studies

EPIC-Norfolk

p Value OR* 95% CI p Value

0.04 0.78 0.70–0.87 �0.0001

0.59 0.87 0.74–1.03 0.10

0.04 1.07 0.89–1.28 0.49

— 0.86 0.78–0.96 0.006

— 0.98 0.87–1.11 0.74

— 1.23 1.07–1.42 0.005

0.01 0.79 0.71–0.87 �0.0001

0.11 0.87 0.74–1.02 0.09

0.002 0.74 0.62–0.88 0.001

— 0.79 0.70–0.90 �0.0001

— 0.69 0.61–0.79 �0.0001

EAL; �15.2 mg/dl in EPIC-Norfolk), HDL particle size (�0.48 nm in
Basic model includes age, gender, and smoking for IDEAL and age,
ption (units/week) for EPIC-Norfolk. ‡Measured by nuclear magnetic
1-SDAL an

y Eve
-I in

dl in ID
folk). †
onsum
val; HDL-C � high-density-lipoprotein cholesterol; OR � odds ratio; RR



t
a
l
c
r
1
T
f

w
�
a
o
A
s
m
w
f
f
s
c
(
t
T
f

t
H
a
s
s
i
r
s
o
o
t
a
c

p
M
l
m
o
i
o
p
p

RE

R
b

.

638 van der Steeg et al. JACC Vol. 51, No. 6, 2008
HDL-C, HDL Particle Size, ApoA-I, and CAD Risk February 12, 2008:634–42
he subgroups (p for linear trend 0.06). Upon adjustment for
poA-I and apoB, the lower HDL-C subcategories were no
onger associated with MCE risk. However, patients in the
ategories above 70 mg/dl were at significantly increased
isk (RR 2.19, 95% CI 1.12 to 4.28 and RR 2.49, 95% CI
.04 to 5.95 in the fifth and sixth categories, respectively;
able 3). Again, no significant linear trend was observed (p

or linear trend 0.08).
In EPIC-Norfolk, an inverse relationship for HDL-C

as present in the basic regression model (p for linear trend
0.0001). In line with the analyses presented in Table 2,

dditional adjustment for apoA-I and apoB resulted in loss
f significance for all subcategories (p for linear trend 0.40).

similar analysis for HDL particle size showed a
ignificant downward trend for the unadjusted risk esti-
ates (p for linear trend 0.03), although most subgroups
ere not statistically significantly related to MCE. Upon

ull adjustment for apoA-I and apoB, the risk estimates
or the fourth, fifth, and sixth subcategories indicated a
ignificantly increased MCE risk for people in those
ategories compared with those in the reference group
OR 1.99, 95% CI 1.25 to 3.16.; OR 2.32, 95% CI 1.12
o 4.77; OR 3.49, 95% CI 1.37 to 8.89, respectively;
able 3), with a statistically significant positive trend (p

isk Estimates for a Major Coronary Event by Categories of HDL-CPIC-Norfolk) or HDL Particle Size (EPIC-Norfolk), Unadjusted or Ad

Table 3 Risk Estimates for a Major Coronary Event by Categor
EPIC-Norfolk) or HDL Particle Size (EPIC-Norfolk), Unad

Bas

Subgroup MCE Risk Estimate

HDL-C (mg/dl)

IDEAL �40 222 1.00

40–49 238 0.91

50–59 145 0.77

60–69 44 0.71

70–79 20 1.03

�80 10 0.96

p trend 0.06

Bas

EPIC �42.5 390 1.00

42.5–54.1 259 0.73

54.1–69.6 141 0.60

69.6–81.2 35 0.52

81.2–96.7 26 0.60

�96.7 7 0.41

p trend �0.0001

HDL Particle Size (nm)

EPIC �8.60 293 1.00

8.60–9.05 319 0.98

9.05–9.53 165 0.64

9.53–9.85 56 0.83

9.85–10.07 16 0.78

�10.07 9 1.01

p trend 0.03

isk estimate indicates relative risk for IDEAL and odds ratio for EPIC-Norfolk. *Basic model includ
ody mass index, and alcohol consumption (U/week).
MCE � number of major coronary events in each subcategory; other abbreviations as in Table 2
or linear trend 0.003). s
Table 4 shows risk estimates for apoA-I, with addi-
ional adjustment for apoB and HDL-C, or apoB and

DL particle size (EPIC-Norfolk only). Across the
poA-I subcategories, unadjusted risk estimates were
ignificantly inversely associated with MCE risk in both
tudies (p for linear trend 0.03 in IDEAL and �0.0001
n EPIC-Norfolk). Following full adjustment, apoA-I
emained a significant protective MCE risk factor in
ome subgroups, whereas it lost statistical significance in
thers. Loss of statistical significance was particularly
bserved in the tails of the apoA-I distributions, probably
hrough loss of statistical power. Importantly, none of the
poA-I subcategories demonstrated a switch toward in-
reased MCE risk.

Collectively, upon adjustment for apoA-I and apoB, the
lasma concentration of HDL-C was positively related to
CE risk in the IDEAL study, although this effect was

imited to very high levels of this lipid parameter (�70
g/dl) (Fig. 1A). In EPIC-Norfolk, a similar pattern was

bserved for NMR-measured HDL particle size, with
ncreased risk estimates restricted to the highest categories
f this parameter (Fig. 1B). In contrast, apoA-I remained a
rotective factor in both studies when full adjustment was
erformed. The risk estimates lost statistical significance in

L andd for ApoA-I and B

HDL-C (IDEAL and
d or Adjusted for ApoA-I and B

el* � ApoA-I � ApoB

CI p Value Risk Estimate 95% CI p Value

1.00 —

–1.09 0.30 1.10 0.88–1.37 0.42

–0.95 0.02 1.12 0.81–1.55 0.50

–0.99 0.04 1.25 0.76–2.04 0.37

–1.63 0.91 2.19 1.12–4.28 0.02

–1.82 0.90 2.49 1.04–5.95 0.04

0.08

el†

1.00 —

–0.91 0.006 0.98 0.76–1.26 0.87

–0.78 �0.0001 1.00 0.70–1.43 0.99

–0.84 0.007 1.11 0.62–1.98 0.73

–1.03 0.07 1.47 0.75–2.89 0.26

–1.02 0.05 1.41 0.50–3.97 0.52

0.40

1.00 —

–1.23 0.84 1.34 1.05–1.72 0.02

–0.84 0.001 1.20 0.87–1.64 0.27

–1.22 0.33 1.99 1.25–3.16 0.004

–1.47 0.43 2.32 1.12–4.77 0.02

–2.34 0.98 3.49 1.37–8.89 0.009

0.003

, gender, and smoking; †Basic model includes age and gender as matching factors and smoking,
(IDEAjuste

ies of
juste

ic Mod

95%

—

0.76

0.62

0.51

0.65

0.51

ic Mod

—

0.59

0.46

0.33

0.35

0.16

—

0.78

0.49

0.60

0.41

0.44

es age
ome subgroups, probably because of limited power, but
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poA-I did not appear to turn into a significant risk factor
t the highest plasma levels (Figs. 2A to 2C).

iscussion

n the present analysis of the IDEAL and EPIC-Norfolk
tudies, we assessed the relationships of HDL-C, HDL
article size, and apoA-I with risk of MCE. After adjust-
ent for apoA-I and apoB, HDL-C (in IDEAL) and
DL particle size (in EPIC-Norfolk) became significantly

ositively related to MCE occurrence in the highest cate-
ories of the distribution. In contrast, apoA-I exhibited no
ositive relationship with MCE in any model, although
tatistical significance was lost in some subgroups, probably
ecause of limited statistical power.
omparison with other studies. Our observation that very
igh plasma HDL-C and very large HDL particles are
ssociated with increased CAD risk is remarkable. Unfor-
unately, the number of studies reporting associations for

DL-C following adjustment for apoA-I and for the
ro-atherogenic lipid fraction is rather modest. In fact, such
ata are available only from 2 post-hoc analyses, the first
erformed in the PRIME (Prospective Epidemiological
tudy of Myocardial Infarction) (13) and the second in the
RIC study (Atherosclerosis Risk in Communities) (14).

isk Estimates for a Major Coronary Event by Categories of ApoA-Ind EPIC-Norfolk, Unadjusted or Adjusted for HDL Cholesterol Cont

Table 4 Risk Estimates for a Major Coronary Event by Categor
and EPIC-Norfolk, Unadjusted or Adjusted for HDL Cho

B

Subgroup MCE Risk Estimate

ApoA-I (g/l)

IDEAL �1.25 239 1.00

1.25–1.45 247 0.85

1.45–1.65 133 0.77

1.65–1.80 37 0.75

1.80–1.95 13 0.77

�1.95 10 0.93

p trend 0.03

B

EPIC �1.43 314 1.00

1.43–1.67 280 0.65

1.67–1.96 187 0.64

1.96–2.21 57 0.68

2.21–2.43 11 0.30

�2.43 9 0.69

p trend �0.0001

� HDL Particle Size � ApoB

EPIC �1.43 314 1.00

1.43–1.67 280 0.65

1.67–1.96 187 0.64

1.96–2.21 57 0.68

2.21–2.43 11 0.30

�2.43 9 0.69

p trend �0.0001

isk estimate indicates relative risk for IDEAL and odds ratio for EPIC-Norfolk. *Basic model includ
ody mass index, and alcohol consumption (U/week).
Abbreviations as in Table 3.
he PRIME study reported loss of association for HDL-C o
n adjustment for apoA-I, LDL-C, and triglycerides; the
RIC study showed that HDL-C remained negatively

ssociated with CAD risk following adjustment for apoA-I
nd apoB. These results clearly differ from the observations
n the present study. The numerous differences, however,
mong the PRIME, ARIC, and IDEAL studies in terms of
tudy design, study size, patient eligibility, and laboratory
nd statistical methodology prevent any further insights or
omparisons. Of note, the PRIME and ARIC studies did
ot include HDL-C subgroup analysis, and therefore any
ositive relationship with MCE at high levels of HDL-C
ay remain undetected. No large studies are available that

rospectively investigated the relationship between NMR-
easured HDL particle size and risk of CAD. The prevail-

ng view is that an increased concentration of large HDL
articles confers lower CAD risk (15), but this conclusion
elies on the observation that larger HDL particles are
irtually absent in subjects with overt CAD (16). Taken
ogether, the current literature does not contain data as
rovided by the present analysis in the IDEAL and EPIC-
orfolk studies. Therefore, comparable analyses in other

atasets with robust statistical power are urgently needed to
alidate these remarkable findings. Of note, simple quartile
r even quintile analyses in our datasets did not detect the

EALnd Apolipoprotein B

ApoA-I in IDEAL
ol Content and Apolipoprotein B

odel* � HDL-C � ApoB

95%CI p Value Risk Estimate 95% CI p Value

— 1.00 —

71–1.02 0.07 0.79 0.63–0.98 0.03

62–0.95 0.02 0.67 0.48–0.94 0.02

53–1.07 0.12 0.63 0.38–1.05 0.08

44–1.36 0.37 0.64 0.31–1.34 0.24

49–1.75 0.81 0.71 0.29–1.75 0.46

0.05

odel†

— 1.00 —

52–0.82 �0.0001 0.68 0.53–0.88 0.003

49–0.82 0.001 0.71 0.51–1.00 0.05

46–1.00 0.052 0.78 0.47–1.31 0.35

15–0.62 0.001 0.40 0.17–0.92 0.03

30–1.61 0.40 0.83 0.30–2.25 0.71

0.10

— 1.00 —

52–0.82 �0.0001 0.62 0.49–0.78 �0.0001

49–0.82 0.001 0.56 0.42–0.76 �0.0001

46–1.00 0.052 0.56 0.36–0.88 0.01

15–0.62 0.001 0.26 0.12–0.55 �0.0001

30–1.61 0.40 0.50 0.20–1.27 0.15

�0.0001

gender, and smoking. †Basic model includes age and gender as matching factors, and smoking,
in IDent a

ies of
lester

asic M

0.
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0.

0.
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es age,
bserved increased risk at the ends of the distributions for
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DL-C and HDL particle size (data not shown), empha-
izing the need to focus on extreme values for these
arameters in future studies. Also, prospective epidemiolog-
cal data are required to delineate the exact nature of the
pparent nonlinear relationships for both parameters, as
hey could not be accurately deduced from our data.
iological considerations. Our data suggest that very high

alues of plasma HDL-C and HDL particle size can confer
ncreased risk of atherosclerotic disease. Although this
pidemiological observation parallels the findings of some
revious animal studies (17–19), there is no clear biological
xplanation of how HDL can become pro-atherogenic.
his permits only speculation. First, some of the exchange
f cholesterol esters between HDL and peripheral cells is
nown to be bidirectional, in part mediated by the scavenger
eceptor class B1 (SR-B1) (20). This observation gives rise
o the hypothesis that very large HDLs, which are choles-
erol enriched, may at some point become cholesterol
onors instead of acceptors. Second, although it has widely

Figure 1 Risk Estimates for Subgroups of HDL-C (IDEAL)
and NMR-Measured HDL Particle Size (EPIC-Norfolk)

All risk estimates were calculated taking into account a basic set of parame-
ters, including age, gender, smoking (IDEAL) (A), and body mass index and
alcohol consumption (U/week) (EPIC-Norfolk) (B). apo � apolipoprotein; HDL �

high-density lipoprotein; HDL-C � high-density lipoprotein cholesterol; MCE �

major coronary event; NMR � nuclear magnetic resonance.
een acknowledged that the anti-inflammatory capacity of
DL contributes to its anti-atherogenic potency, several
tudies have demonstrated that HDL also can turn into a
ro-inflammatory particle (21). Possibly, via these 2 latter
echanisms, a very high plasma concentration of large
DL particles might in fact induce a pro-atherogenic

ipoprotein profile. However, whether either of these mech-
nisms has any physiological relevance in humans needs to
e confirmed in further studies.
Although very high plasma HDL-C and very large HDL

articles are associated with increased risk in the present

Figure 2 Risk Estimates for Subgroups
of apoA-I in IDEAL and EPIC-Norfolk

All risk estimates were calculated taking into account a basic set of parame-
ters, including age, gender, smoking (IDEAL) (A), and body mass index and
alcohol consumption (U/week) (EPIC-Norfolk) (B and C). Abbreviations as in
Figure 1.



s
t
d
h
p
t
e
a
C
m
r
r
t
f
m
b
i
o
t
t
O
p
m
a
i
h
c
t
s
a
m
S
t
s
s
I
w
e
o
t
s
I
c
H
e
i
s
l
m
n
o
t
t
e
r
b

o
a
t
f
d
m

C

I
a
r
c
f
m
a

A

D
S
L
b
r
Z
m
l
S
a
P
s
A
f
r
r
M
S

A
T
H

R
A
R
N

R

641JACC Vol. 51, No. 6, 2008 van der Steeg et al.
February 12, 2008:634–42 HDL-C, HDL Particle Size, ApoA-I, and CAD Risk
tudy, our data showed apoA-I to remain protective across
he major part of its distribution. Most importantly, apoA-I
id not exhibit a switch toward a positive relationship at
igher levels. This may support apoA-I as an active com-
onent of HDL particles, possibly defining the atheropro-
ective capacity of this lipoprotein fraction. Indeed, several
xperimental studies have pointed to a crucial role for
poA-I in protection against atherosclerosis (22,23).
linical implications. The results from the present study
ay have several clinical implications. First, cardiovascular

isk management may be more accurate if risk assessment
elies on more precise measurements of HDL metabolism
han HDL-C. Given that high plasma apoA-I more uni-
ormly represents lower risk, this widely available parameter
ay be a valuable alternative marker. However, it might also

e useful to develop novel biomarkers that actually provide
nformation about HDL functionality. Second, the results
f the present study may have important consequences for
he development of pharmacological strategies that target
he HDL pathway to decrease risk of atherosclerotic disease.
n the basis of these data, interventions that primarily raise

lasma HDL-C but do not or hardly change apoA-I levels
ay not be expected to have potent beneficial effects on

therosclerosis. More importantly, such strategies may even
ncrease risk of atherosclerotic disease when achieving very
igh levels of HDL-C and hence HDL particle size. In
ontrast, given the present results, it can be hypothesized
hat strategies primarily raising plasma apoA-I levels with
mall molecular compounds, infusion of small lipid-poor
poA-I particles, or apoA-I gene therapy (24) will have a
ore pronounced effect on atherogenesis.

tudy limitations. The present study has several limita-
ions. First, the IDEAL and EPIC-Norfolk studies differ
ubstantially in terms of baseline characteristics, study de-
ign, methods, and outcome validation. Importantly, all
DEAL participants used statin therapy during follow-up,
hereas none of the EPIC-Norfolk participants did. How-

ver, statin treatment is known to have only limited effects
n plasma HDL-C and apoA-I concentrations (25), and
he relationship of HDL-C to CAD occurrence has been
hown to be unaffected by statin therapy (26). Second, the
DEAL dataset did not contain information on alcohol
onsumption, which is widely known to affect plasma
DL-C, apoA-I, and risk of cardiovascular disease. How-

ver, exclusion of this parameter from the statistical model
n EPIC-Norfolk hardly affected the results (data not
hown). Third, fasting samples were used in IDEAL for
aboratory measurements, whereas nonfasting measure-

ents were performed in EPIC-Norfolk. This difference is
ot expected to induce significant confounding of our
bservations, because time of fasting hardly, if at all, affects
he parameters used in the present study. Fourth, in contrast
o the EPIC-Norfolk study, the use of lipoprotein param-
ters measured at 3 and 6 months in the IDEAL study
esulted in the exclusion of some early events that occurred

efore these measurements. Finally, given the small number
f patients having very high HDL-C, HDL particle size, or
poA-I, the power to detect risk estimates at the far end of
heir distributions is limited. Despite these limitations, the
act that comparable findings were observed in substantially
ifferent study populations and different study designs
ight support the validity of our findings.

onclusions

n summary, our data suggest that very high plasma HDL-C
nd very large HDL particles may represent increased CAD
isk when levels of apoA-I and apoB remain unaffected. In
ontrast, apoA-I appears not to turn into a significant risk
actor at high plasma concentrations. These observations
ay have important consequences for future CAD risk

ssessment and novel treatment strategies.
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