-~

metadata, citation and similar papers at_core.ac.uk brought to you by 4. CQ
provided by Elsevier - Publisher Conni
= ) Sy SCIENCE ((J)DPIRECT®
@ C PHYSICS LETTERS B
ELSEVIER Physics Letters B 584 (2004) 315-322

www.elsevier.com/locate/physletb

The symmetry algebras of Euclideafrtheory

Jerzy Lukierski®, Francesco Toppan

2 |nstitute for Theoretical Physics, University of Wroctaw, pl. Maxa Borna 9, 50-204 Wroctaw, Poland
b CBPF, CCP, Rua Dr. Xavier Sigaud 150, cep 22290-180 Rio de Janeiro, RJ, Brazil

Received 10 December 2003; accepted 22 January 2004
Editor: M. Cvett

Abstract

We study the Euclidean supersymmetfic= 11 M-algebras. We consider two suéh= 11 superalgebras: the first one is
N = (1,1) self-conjugate complex-Hermitean, with 32 complex supercharges and 1024 real bosonic charges, the second is
N = (1, 0) complex-holomorphic, with 32 complex supercharges and 528 bosonic charges, which can be obtained by analytic
continuation of known MinkowskiM -algebra. Due to the Bott’s periodicity, we study at first the genérie- 3 Euclidean
supersymmetry case. The role of complex and quaternionic structurd3 fo8 and D= 11 Euclidean supersymmetry is
elucidated. We show that the additional 102828 = 496 Euclidean tensorial central charges are related with the quaternionic
structure of Euclidea® = 11 supercharges, which in complex notation sat&if§2) pseudo-Majorana condition. We consider
also the corresponding Osterwalder—Schrader conjugations as implying $o¢1, 0) case the reality of Euclidean bosonic
charges. Finally, we outline some consequences of our results, in particulae=fdrl Euclidean supergravity.
0 2004 Elsevier B.VOpen access under CC BY license.

1. Introduction (i) The generating functional of an Euclidean field
theory can be related to the description of statis-

The physical spacetime is Minkowskian, but there tical and stochastic systems ([5,6]).

are several reasons justifying the interest in Euclidean

; At present theD = 11 M-theory has been consid-
theories. We can recall here that P y

ered as the most recent proposal for a “theory of every-
thing” (see, e.g., [7,8]). We still do not know the dy-
namical content of theé/-theory, however, it seems
that the algebraic description of its symmetries is well
embraced by the so-called-algebra [9,10]

(i) The functional integrals acquire a precise mathe-
matical meaning only in the context of Euclidean
quantum theory (see, e.g., [1,2]).

(i) The topologically nontrivial field configurations
(such as instantons) are solutions of Euclidean

field theories (see, e.g., [3,4]). {Qa. OB} = Pas
E-mail addressedukier@ift.uni.wroc.pl (J. Lukierski), Lin fact it is a superalgebra, also sometimes calletd
toppan@chbpf.br (F. Toppan). superalgebra.
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=(CTy)ap P* 4+ (C L) ap 2 scribe the Euclideamf-algebra using Hermitean prod-
+ (CTipyn ])ABZ[’”"'“S] (1.1) ucts of complex Hermitea® = 11 Euclidean gamma-
I , .

matrices satisfying the Euclidean counterpart of alge-
where the 04 (A =12..., 32) are 32D =11 braic relations (]_2)

real Minkowskian superchargeB,, describe the 11-

momenta, while the remaining 517 bosonic genera- {fﬂ, I} =284y, wn,v=(1,...,11). (1.3)
tors describe the tensorial central charges’! and . -
7lna-psl If we introduce 32 complex superchargés, we

It should be stressed that théf-algebra (1.1) get the following formula for the Euclideab = 11
is the generalizedd = 11 Poincaré algebra with SuPeralgebra
maximal number of additional bosonic generators.  ~ ~,
These additional generators indicate the presence of{QA’ QBE 3 3
D =11 M2 andM5 branes. Indeed, ithas beenshown — =8a5Z + (I') a8 Py + (Mg ua) AB Zipg-114]
(see, e.g., [11,12]) thad = 11 supergravity contains
the super-2-brane (supermembrane) and super-5-brane B -
solutions. + (Ipq 1) AB Zljug--ug]

Our aim here is to study the Euclidean counter- 2 7
part of theM-algebra, described by the relation (1.1).  (Tsao) 4B 2wl (1.4
The problem of Euclidean continuation of superal- Where on r.h.s. of (1.4) all linearly independent Her-
gebras is not trivial, because the dimensionality of Mitean antisymmetric products éf-matrices appear.
Minkowski and Euclidean spinors may differ, asitis ~ Since in D = 11 Euclidean space we get the
well known from D = 4 case (see, e.g., [13-16]). In relation
a four-dimensional world the Minkowski spinors are  _ 1 . .
C? (two-dimensional Weyl spinors) which can be de- 112= 77y€us-un Ly Ly =1 (1.5)
scribed aR* Majorana spinors, but the fundamental - ) .
D = 4 Euclidean spinors are describedthpH = H2 we obtain the identity
(due to the relatio (4) = O (3) x 0(3) we deal with . i .
a pair of D = 3 Euclidean spinors) o€ ® C2 = C*, Ty = meul"'ullp[ﬂk+l"'ﬂll]' (1.6)
i.e., the number of spinor components is doubled. Fur- '
ther, one can describe the = 4 Minkowski Dirac ~ Applying (1.6) fork = 2 and 3 one can write the
matrices as real four-dimensional ones (the so-called relation (1.4) as follows
Majorana representation), but the four-dimensional . ..
D = 4 Euclidean Dirac matrices are necessarily com- {Qa. O}
_plet>r<]. The Idc:_ublingt_of sEinor comgonents(;str:eflectlt_atd =8a8Z + (5) a8 Py + T Ziyo) + Thivp) Ziwp)
in the analytic continuation procedure, and the reality ~ ~ ~ ~
condition in D = 4 Minkowski space is replaced by a2 na) F Tt Zisns)s (17)
the so-called Osterwalder—Schrader reality condition where
[16,17]).

In D = 11 Minkowski case the fundamental spinors Z[
areR32, and the corresponding fundamental represen-

. . . . - i N
tation of the MinkowskiarD = 11 Clifford algebra Ziuvp) = gewmluvgzmmvg]_ (1.8)

+ (Fpq-pus) AB Z{py s

i ~
uv] = Eelwwmvgz[wmvg]’

s I} = 20w, o =(=1.1,..., D), 1.2) We see that in (1.7) we have two sets of Abelian
is R32 x R32, which allows writing theM-algebra  bosonic charges, also called tensorial central charges
(1.1) as areal algebra. In tHe2 = 11 Euclidean case o

the fundamental spinors até®, while the funda- (i) the 528=11+ 55+ 462 charge®,,, Z{,.,) and
mental Hermitean Clifford algebra representation in Z{uy-us) COrresponding to the tensorial central
D = 11 Euclidean space 832 x C32. We shall de- charges occurring in (1.1);
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(i) the 496= 1+ 165+ 330 additional Euclideanten-  which carry the representations 8{(3) = Sp(1) =

sorial central charge&, Zi,,... .51 and Z,,. 4l U(1; H), described by unit quaternions
which describe the maximal complex Hermitean > o
extension of the set of real bosonic charges oc- & =0 + &rer, agtar=1 (2.2)

curring in the Mi”kOWSKi_ case. We shall _ShOW! The quaternionic spinor (2.1) is modified un®u(1)
however, that one can find a holomorphic sub- ansformation law as follows

algebra of (1.4) defining holomorphic Euclidean
M-algebra with 32 complex supercharges and 528 ¢’ = agq. (2.3)

ni nerators. . .
bosonic generators One can describe the real quaternipi H(1) by a

pair of complex variable&1, z2). Further, introducing
the 2x 2 complex matrix representatian = —io,,
one can represent unit quaternions (2.2) ag 2
unitary matricesa:

In our Letter, in order to be more transparent, we
study at first in Section 2 the lower-dimensional case
of D = 3 Euclidean superalgebra.

It appears that to 528 bosonic charges of Minkowski
M-algebra (1.2) cpr.respondih =3justthreeboson- & A—gol—iao0,. (2.4)
ic charges describind = 3 three-momenta (there
are no Minkowski central charges i = 3), and to ~ i-€.,Sp(1) >~ SU(2).
the extension inD = 11 from 528 Minkowskian to We should assume tha? = 3 Euclidean super-
1024 Euclidean bosonic charges correspondd i charges are thBQ(3) spinors. Unfortunately, since the
3 the extension of three momentum generators by Clifford algebra
one additional central charge. We see therefore that, . .
when passing fronD = 3 to D= 11, instead of one . s} =285, 1r,s=12.3 (2.5)
D =3 Euclidean central charge we obtain 496 central has the fundamentaC? x C? representation, one
chargesinD = 11. cannot employ single quaternionic supercharges as

In Section 3 we study in more detail the = 11 describing the Hermitea® = 3, N = 1 Euclidean
case and in particular th® = 11 tensorial structure of  superalgebra. In fact, if we introduce the quaternionic
496 Euclidean central charges. We introduc®ig- 3 Hermitean superalgebra with supercharges described
and D = 11 the Osterwalder—Schrader conjugation by fundamentaSQ(3) spinor
which is required if we wish to obtain the holomor-  _
phic EuclideanM-theory with real bosonic charges. {R.R}=Z, (2.6)

In Section 4 we present an outlook, considering in par- whereR = Ro + ¢,R, — R = Ry — ¢, R, describes

ticular the possible applications # = 11 Euclidean 5 qjaternionic conjugation, it will contain onbye
superbrane scan as well as the Euclidean version of they ¢ o nic charg€ e H (Z=Z — Z = Zo) and can be

generalized AdS, dS and conformal superalgebras. Wesuccessfully used rather for the descriptionlb& 1,

would also like to recall here that recently Euclidean ,, _ 4 supersymmetric quantum mechanics [18]. In

symmetry and Euclidean superspace was consideredorder to obtain the “supersymmetric roots” bf= 3

as a basis for noncommutative supersymmetric field Euclidean momenta one should introduce, however,

theory [18-20]. in agreement with the representation theoryo& 3
Euclidean Clifford algebra (2.5), two complex super-
charges(Q1, 0»). One can write theD = 3 Euclid-

2. The D =3 Euclidean superalgebra and therole ean superalgebra in the following familiar complex-

of quaternionic and complex structure Hermitean form(e, 8 =1, 2)

The D = 3 Euclidean spinors are described by real {Qa’ ?*"} - (Gf)"‘ﬁf)r +oapZ,
quaternionsqo, g, € R; r =1, 2, 3) {Qua, 08} =1{Q. 05} =0. (2.7)

We see that among the bosonic generators besides
q =4qo+erqr, eres = —8rs + Erstey, (2.1) the three momenta we obtain a fourth real central
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chargeZ. In fact (2.7) can be obtained by dimensional where{y,,, .} = 21, (7,0 = diag(—1, 1, 1), C = yy,

reduction from standar®h = 4 N = 1 super-algebra. Yu € R? x R?) and one can choose, e.g.,
In order to find the quaternionic structure in the )

superalgebra (2.7) one should introduce the following Y0 = —!92 y1=o1, Y2 =03 (2.13)

pair of two-component spinoi®,, R/ The analytic continuation of the Minkowski superal-
1 . _ gebra (2.12) to the Euclidean one, given by (2.11a),

Ry = —(Qa + €ap ng), is obtained by complexification of the red = 3
\/? Minkowski spinors and Wick rotation of Minkowski

1 ~ ~ . .
RE =~ (Qy —e450%), (2.8) vectors into Euclidean ones. We repla@e € R by
o T g AP 0, € C and
satisfying the relation PO = Py=iPO,
Rl = —ieqp R}, (29) A=~ (*k=12),

. . . . . 0 ~ .
The formula (2.9) implies quaternionic reality con- ¥~ = ¥3=1y0=02,

dition in complex framework [21-23] described by j, =y =0; (k=1,2), (2.14)
SU(2)-Majorana condition. Indeed, introducirﬂ@ =
Ry, R§ = Rf one can rewrite (2.9) in the following
way [21]

where C = ¢ = iy; and Cy, = —77C, i.e., we
keep the samé® = 3 charge conjugation matrices in
Euclidean and Minkowski case. One géts=1, 2, 3)
a - ab b\*

Ro =ieTeap(Ry)"- @20 Ry, Ry = T B, (2.15)
i.e., one can identify after putting?f = R, the
superalgebras (2.15) and (2.11a).
(R, R} = (€0,)ap P, (2.11a) In order to justify the real values @, in (2.15) one

H ) should introduce the Osterwalder—Schrader (OS) con-
{Ra, RY } =icapZ. (2.11b) jugationA — A*, which is defined in any dimension
{RY.RY'} = (e01)ap Pr. (2.11c) D with complex Euclidean spinors replacing real Ma-
jorana spinors as complex conjugation supplemented
by time reversal transformation, i.e.,

The self-conjugate super-algebra (2.7) can be written
as follows:

and describes th& = (1, 1) D = 3 Euclidean super-
symmetry.

It is easy to check that Egs. (2.11a)—(2.11c) are Rﬁ =TagR3%, (2.16)
consistent with the relation (2.9), i.e., tH&U(2)-
Majorana reality condition (2.10) can be imposed.

The real superalgebra (2.11a)—(2.11c) contains as
subsuperalgebras the holomorphic= (1, 0) super-
algebra (2.11a) as well as the antiholomorpNie= ThH, T =13, TrpT Y= Trp. (2.17)

(0, 1) superalgebra (2.11c). In particular we can con- ] o

sider separately (2.11a) as describing the baAlsie 1 The relation (2.17) implies that

D=3 Euclio_le_an non-self-cqnjugate superalgebra, su- ~f — B ﬁg —_Pp. (2.18)
persymmetrizing three Euclidean momem®a If the

superalgebras (2.11a) or (2.11c) are considered as in-It appears that inD = 3 the OS conjugation of
dependent algebraic structures, the Euclidean three-supercharges can be identified with the conjugation

where (O is the Euclidean time direction; following
(2.14) we choosé,, (k=1,...,D — 1) real andl'p
purely imaginary)

momentumP, can be complex. (2.9), i.e.,Typ = —iegp, It = (01, 03) andI'p = o2.

The superalgebra (2.11a) can be obtained by ana- The real values ofP, in (2.15) are required if
Iytic continuation of the reab = 3 N = 1 Minkowski we assume the invariance of the superalgebra (2.15)
superalgebrégu =0,1,2; Q, € R) under OS conjugation, i.e., the conjugation (2.9). This

reality requirement is satisfied inside the superalgebra
{Qa» O} = (Cyulap P", (212)  (2.11a)—(2.11c) and is equivalent to the consistency
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of (2.11a)—(2.11c) with subsidiary condition (2.10).

319

skian Clifford algebra (1.2) occurring in thés-

Indeed performing such a conjugation one obtains algebra (1.1). If we introduce the antisymmetric prod-

from the N = (1, 0) superalgebra (2.11a) the identical
in its form N = (0, 1) superalgebra (2.11c).

One can therefore say that

(i) our D =3, N = (0, 1) Euclidean superalgebra

(2.11c) is OS-conjugate to the superalgebra (2.11a) (or j7

equivalently (2.15)).
(ii) It is not possible to impose the OS reality
conditions on single pair of supercharggs

(R)*=Ry & Ry=icap(Ra)", (2.19)

because such a condition is not consistent, i.e., the

superalgebrél, 0) cannot be made selfconjugate.

3. TheEuclidean M-algebra and therole of
guaternionic and complex structure

In this section we shall translate the Euclidean
superalgebra structures from= 3 to D= 11. Due
to the Bott's periodicity conditions these algebraic
structures should be analogous.

The D = 11 Euclidean spinors are described by
16 quaternionsR,, € H® (m = 1,...,16) and the
fundamental representation of tiie= 11 Euclidean
Clifford algebra (1.3) i<C32 x C32, The quaternionic
D = 11 Hermitean superalgebra, generalizing relation
(2.6), is given by the relation

{F_zm, Rn} = Zmn, Zmn = an~ (31)

The 16x 16 Hermitean-quaternionic matrix,,, is
described by 496 real bosonic Abelian generators.

In order to describe the complex-Hermitean Euclid-
ean M-algebra we should introduce 32 complex su-
perchargesQ, € C32. The most general complex-
HermiteanD = 11 Euclidean algebra is given by the
relation
{0}, OB} =Zas,

Zap =2}, (3.2

containing 1024 real bosonic charges. We introduce {Ra.

D =11 Euclidean gamma-matrices by putting
=1,
Ni=ily,

n=12..,10,
(3.3)

where the matrices),, I'y describe the real 32-dimen-
sional Majorana representation of the= 11 Minkow-

UCtSf[Ml“'Mp] = (1/p') Z(ul...ﬂp)(_l)permﬁul et Fup
we can check that

F[Jl;l"'/tp] = F[P«l"'ﬂ«p] forp=0,1,4,5,8,9,
=Ty, forp=236,7,10,11.

(3.4)

Following the symmetry properties (3.4) one can
presentthe superalgebra (3.2) in the form (1.4) or (1.7).

In order to write down the Euclideai/-algebra
with only 528 bosonic charges, the ones correspond-
ing to the bosonic charges of the-algebra (1.1),
one should exhibit inD = 11 the quaternionic or
SU(2)-Majorana structure in analogous way as in Egs.
(2.11a)—(2.11c) for thé = 3 case.

Let us introduce the following pair of 32-compon-
ent complex supercharges:

+
111ty

1 - -
Ry=— C ),
A ﬁ(QA +Cap0Q3p)
RY = é(QA —CapQ%), (3.5)

where theD = 11 charge conjugation matrix satisfies
the relations

cry=-rfc, c¢*=-1, c"=-C, (36)
and can be chosen the same in Minkowski and Euclid-
ean case.

One can show that
R = —iCapR}. (3.7)

Introducing 64-componentcomplex spinkf = (R4,
Rz’) one can rewrite (3.7) as ti8J(2)-Majorana con-
dition [13]
R =ie"Cap(RY)". (3.8)
The superalgebra (1.7) can be written in the following
form(C=1p, n=1,...,11)
Rp)=(CT)ap Py + (CHuw) aB Ziuw)

+ (CMpigs) Zijug- sl (3.9a)
{Ra. RE} =i{CaBZ + (CTiuypious)) AB Zisuons)

X (Clipgna) 4B Zpg )} (3.90)
{Rzl, Rg} = (C];/L)AB ISIL + (Cﬂ/LU])ABZMV
+ (Clipy - pus) ABZpuy---pis) - (3.9¢)
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We see that that the form of holomorphic and antiholomorphic
EuclideanM-algebras related by OS conjugation is
(i) the relation (3.9a)—(3.9¢) describe the selfcon- identical.
jugate (1,1) Euclidean M-algebra with 1024
bosonic Abelian charges which can be written

also in the form (1.4); 4. Conclusions

(i) the relation (3.9a) describes the holomorphic
(1,0) EuclideanM-algebra, with 528 Abelian In relation with EuclideanM-theories and their
bosonic charges. The antiholomorpikc 1) Eu- algebraic description presented in this Letter we would

clideanM-algebra obtained by conjugation (3.7), like to make the following comments:
which contains also 528 Abelian bosonic charges,

Wi . (i) It is well known [9] that the presence of tensorial
is given by the relation (3.9¢);

o - . central charges in generalizdatdimensional super-

(i) the subsidiary condition (3.8) relates the bosonic symmetry algebra can be linked with the presence of
generators of thel, 0) and (0, 1) sectors of the  , j-ane solution ofp-dimensional supergravity. We
superalgebra (3.9a)—(3.9¢). It should be observed 5.6 twoD = 11 EuclideanM-theories described by
that the_49§ real bosonic generators occurring ?n (1, 1) self-dual (see (2.7)) and, 0) holomorphic (see
quaternionic superalgebra (3.1) can be found in (5 1134) or (2.15)) supersymmetry algebras. In Euclid-
the “cross anticommutator” (3.9b). ean theory the role gf-brane solutions will be played

by Euclidean instantons and space brarfebranes).

. ; It appears that in holomorphiy = (1, 0) Euclidean

the (1, 0) holomorphic Euclidean/-algebra (3.9a) as 1 theory the set of instanton solutions corresponds

analytic continuation of theD = 11 Minkowski M- to p-dimensional solutions in standard Minkowskian

algebra, given by (1.1). For such purpose one should j, _ 14 M-theory (2-branes and 5-branes supple-

in (1.1) complexify the supercharges and perform the enteq by six-dimensional Kaluza—Klein monopoles

Wick rotation of Minkowski 11-tensors, i.e., perform 5.4 nine-dimensional Horava—Witten boundaries). The
the changd’, — I, (see (3.3)) supplemented by the g\ ,clideanny = (1, 1) M-theory with symmetry alge-

By analogy with theD = 3 case one can treat

redefinitions(k, /, ..., =1,2,..., 10y bra (2.7) will have additional instanton solutions cor-

5 5 5 ding to 3-tensor and 4-tensor central charges
Py = Py, Zikn = Zika, Zijy--ks] = Zlky---ks)» respon . )

. = 2l ol = llashsl which do not have their Minkowski space counter-
P11=iPo, Zik11 =i Zkoy, parts.

Z(11ky-+-kg] = 1 Z[Oky-kg)» (3.10) (i) The superalgebras either with Hermitean self-

In such a way we shall obtain from (1.1) the Ccan be considered inany dimension with complex fun-

holomorphic Euclidean-algebra (3.9a). damental spinorsfy = 0,4 modulo 8 for Minkowski
The quaternionic conjugation (3.7) describes the MetricandD =2, 6 modulo 8 for Euclidean metric) or
D = 11 OS conjugation in Euclidean space. We fundamental quaternionic spinor® (= 5, 6,7 mod-
would like to point out that in holomorphic and ulo 8 for Minkowski metric and> = 3, 4,5 modulo 8
antiholomorphic EuclideanM-algebra (i.e., if we  for Eu.clldean metric). The physical .ch0|c_e of the al-
consider the relations (3.9a) and (3.9c) as separate) thed€braic structure of supersymmetry is indicated by the
bosonic generators, in particular the 11-momenta, can Presence in the bosonic sector of the vectorial momen-
be complex. tum generators. For example,fh= 4 one can choose
In order to obtain, e.g., in (3.9a) the real Abelian €ither the Hermitean algebra,(8 = 1,2)

bosonic generators
g {QF, 0} = Pag. (4.1)

or the pair of holomorphic/antiholomorphic algebras:

Pe=P,  Zun=Zyy  Zikyksl = Zikyoke)-

One should impose the invariance of the superalgebra _
(3.9a) under the OS conjugation (3.7), i.e., assume {Qa. Op} = Zup.
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(0F. 05V =245 =235 tion Sp(32) > 0(10,2), thatOS1|32; R) is the gen-

n eralizedD = 11 AdSsuperalgebra, an@Sp1/64;R)
{04, 0} =0. (4.2) describes the generalizeédl= 11 superconformal al-
Since the four-momentum generators are present onlygebra. If we consider the holomorphic version of
in the relation (4.1), these relations are the basie 4 Euclidean M-theory the corresponding generalized
supersymmetry relations. EuclideanAdS superalgebra and generalized Euclid-

In the quaternionid> = 3 andD = 11 Euclidean ean conformal superalgebra are obtained by holomor-
case the Hermitean algebras (2.11b) and (3.9b) do notPhic complexification and respectively given by the
contain the momentum generators; these generatorsOSA(1/32;C) andOSp(1|64;C) superalgebras.
occur in the superalgebras (2.11a), (2.11c) and (3.9a), (v) It appears that thé/-algebra (1.1) describes as
(3.9c). We see therefore that in these cases the holo-well the symmetries of nonstandatd*-theory with
morphic/antiholomorphic algebra is more physical. signature(9, 2), and M’-theory, with signaturg6, 5),

(|||) If the fundamental spinors are Comp|eX, from which are related with StandaM'theory by dualities
algebraic point of view one can consider the min- ([27,28]; see also [29]). Different choices of signature
imally extended supersymmetry algebra with either corresponds to different choices of holonomy groups
Hermitean or holomorphic complex structure. If we €mbedded irsl(32;R). If we pass to complex Her-
assume however that the Hermitean anticommutator Mitean holonomy structures, embeddedsi(82; C),
{0}, 05} as well as the holomorphic or@ 4, 05} we can describe 12 different versions Mftheories,
are saturated by Abelian bosonic generators (tensorialWith any signature (1% k,k) (k =0,1,...,11). In
central charges), we obtain the most general real su-Particular, for signatures8, 3) and (4, 7) we should
peralgebra. In such a way iP = 4 Minkowski case ~ Use the holonomy groups embeddedSi16;H) C
six tensorial central charges are generated by the re-Sk32;C).
lations (4.2), while the Hermitean superalgebra (4.1)
describes only the four-momentum generators.

In quaternionic case we have two levels of gener- Acknowledgement

alizations. Assuming that the fundamental spinors be- . .
long toH”, one can consider: The authors would like to thank D. Sorokin for
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