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a b s t r a c t

This paper reviews the environmental factors that influence biodiversity of freshwater mollusc com-
munities and conservation status of watercourses in two Mediterranean acid mine drainage-impacted
basins of the southern Iberian Peninsula. We found 17 mollusc species: 14 gastropods (10 native and 4
introduced) and 3 bivalves. We found five distribution patterns: native headwater (Arganiella wolfi, Stag-
nicola palustris, Unio delphinus, Pisidium casertanum and Pisidium personatum) and mouth (Hydrobia acuta,
Peringia ulvae and Myosotella myosotis) sensitive-stenochoric species, intermediate sensitive-widely dis-
tributed species (Planorbarius metidjensis and Radix balthica), insensitive-eurychoric species (Ancylus
fluviatilis), and erratic-distribution pattern species (Galba truncatula and Planorbis carinatus). The high-
est biodiversity indices have been found in non-impacted headwaters and, to a lesser extent, in tidal
streams. The biodiversity of the middle reaches, with varying degrees of impact by acid mine drainage
and high water deficit, was scarce and dominated by introduced species. Over 30% of the variation in
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ollusc conservation
ater Framework Directive

native and introduced species richness is explained by environmental gradients related to heterogeneity
(instream macrophytes cover and Fhi and Qbr indices) and acid runoffs (pH, conductivity, turbidity and
concentration of sulphides). Severely impacted sites have no mollusc species. The conservation status of
watercourses is also very remarkably influenced by the heterogeneity and contamination of the environ-
ment. Conservation values are higher in water bodies located in protected northern and southern sites
in both basins.
ntroduction

The composition and spatial relationships of aquatic com-
unities are related to the habitat structure and variation of

nvironmental factors along complex gradients from sources to
outh (Heino 2000; Lorenz et al. 2004). Freshwater biodiver-

ity patterns are closely related to local geographic features
nd physicochemical biotope structure, together with biological
nteractions and historical and random factors (Vannote et al.
980; Palmer 1999; Malm et al. 2005; Hoeinghaus et al. 2007).
uch ecological conditions are the primary factors controlling the
omposition and microdistribution of freshwater benthic macroin-
ertebrates, producing a river zonation based on changing local
ssemblage composition along longitudinal gradients (Vannote et
l. 1980; Usseglio-Polatera and Beisel 2002; Hoeinghaus et al.

007).

Freshwater ecosystems have been subjected to a wide range
f human impacts (Ricciardi and Rasmussen 1999; Lydeard et al.
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2004; Dudgeon et al. 2006). The anthropogenic global changes
in freshwater communities highlight the urgent need to under-
stand the degree of disturbance of these ecosystems and how these
changes affect freshwater iota. In this sense, the Water Framework
Directive (hereafter WFD) (Directive 2000/60/EC) requires that
water resources be subject to ecological assessment, to provide
a basis for the management and restoration of catchments. As
bioindicators of the integrity and/or degradation of inland waters,
the knowledge of distribution patterns, spatial relationships and
habitat use of the freshwater biota is of capital importance from a
conservationist perspective.

Biotic stress and resilience of Mediterranean freshwater
macroinvertebrates affected by acid mine drainage (hereafter
AMD) depends on two periodic phenomena linked to seasonality
of low discharge and summer drought (Resh et al. 1996; Pires et al.
2000; Everard and Powell 2002; Irvine 2004; Bonada et al. 2006)
and on local allochthonous inputs related to mine water discharges
and oxidation and hydrolysis of metal sulphide deposits (Nieto

et al. 2007; Sarmiento et al. 2009). These alterations originate a
highly restrictive environment characterised by increased concen-
trations of dissolved heavy metals, high conductivity and low pH
levels in affected zones (Olías et al. 2004; Cánovas et al. 2007; Nieto
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ig. 1. Location of the study area. The sampling sites are represented by circles, b
S2 sites), white (minimally impacted sites, Ni) (see Materials and methods and Fig
reshwater molluscs. In the right bottom is the map of the Natura 2000 Network (in

t al. 2007) that influence the distribution of aquatic biota by the
ppearance of barriers to migration (Cain et al. 2004; Gerhardt et
l. 2004). Decreased acid-neutralising capacity contributes to max-
mise the biotic stress of benthic macroinvertebrate communities
nhabiting those polluted Mediterranean streams (Driscoll et al.
003; Bowman et al. 2006; Tripole et al. 2006). As a consequence,
acroscopic flora and fauna do not exist in extremely polluted

nvironments (Amaral-Zettler et al. 2003) and invertebrate bio-
oenoses are confined to unpolluted, or less polluted, tributaries
r sub-basins.

In semi-arid Mediterranean freshwater environments affected
y AMD, the main threats to the conservation of communities come
rom the strong synergistic stress caused by the great variabil-

ty in water availability coupled with the presence of acid runoffs
Graça et al. 1989; De Nicola and Stapleton 2002; Trouve et al. 2003;
onada et al. 2006; Bowman et al. 2006; Mouthon and Daufresne
everely impacted sites, Si), dark grey (Ti sites), medium grey (S1 sites), pale grey
t each site appears the number of native species/number of introduced species of
in the vicinity of the basins of Odiel and Tinto.

2006). Furthermore, the presence of invasive species is another dis-
turbing pressure generating considerable conservation problems
(Ricciardi and Rasmussen 1999; Dudgeon et al. 2006). Introduced
species are widespread and expanding their ranges (Loo et al. 2007;
Ricciardi 2007) and compete with native species for food and space
(Ortiz and Puig 2007; Zaiko et al. 2007).

This work reviews the distribution of freshwater mollusc fauna
and conservation status of watercourses in Mediterranean AMD-
impacted basins of the southern Iberian Peninsula. Hence, the
study aims to: (1) analyse the distribution of species, native and
introduced; (2) search for patterns in the distribution of different
biodiversity indices (species richness, Shannon-Weiner’s diversity,
endemicity and faunistic originality); and (3) evaluate the impact

of environmental variables on the conservation value of the stud-
ied watercourses. The results could be a useful tool with regard
to future conservation and restoration strategies and can be inte-
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Table 1
Mean ± standard deviation and ranges of the environmental features used to charac-
terise the sampled sites (underlined: in situ measures). 1: Worldwide Bio-Climatic
Classification System; 2: Strahler’s method (Gordon et al. 2004); 3: Pozuelo et al.
(2005); 4: 1, streams always dried during the drought period, 2, streams always
dried during the drought period but with isolated pools, 3, streams dried only dur-
ing severe droughts, 4, streams always with permanent flow; 5: Pardo et al. (2002);
6: Munné et al. (2003). *: effluent characteristics and climate and environment
variables potentially perturbed by humans.

Mean ± sd Range

Climatic
Air temperature* (At, 1) 17.2 ± 1.5 14.8–19.2
Precipitation* (Pr, 1) 839.9 ± 223.3 461.0–1126.0
Water surplus* (Ws, 1) 379.4 ± 200.9 66.0–627.0
Water deficit* (Wf, 1) 433.3 ± 83.4 312.0–555.0
Geomorphological
Altitude (Al, m) 367.4 ± 227.3 18.7–959.7
Order (Or, 2) 1.8 ± 0.9 1–5
Slope (Sl, 3) 2.0 ± 0.7 1–3
Distance to the mouth (Dm, Km) 49.3 ± 22.1 1.4–83.4
Hydrological
Permanency* (Pe, 4) 2.3 ± 1.2 1–4
Water depth (Wd, cm) 72.8 ± 20.5 25.0–130.0
Channel width (Cw, cm) 400.2 ± 176.5 150.0–1300.0
Heterogeneity
Boulder (Bo, %) 33.0 ± 16.9 0–55.0
Cobble (Co, %) 25.2 ± 8.7 1.0–40.0
Gravel (Gr, %) 19.9 ± 8.7 5.0–40.0
Sand and limes (Sl, %) 21.9 ± 15.5 5.0–79.0
Instream macrophytes cover* (Ic, %) 16.0 ± 13.0 0–50.0
Fluvial heterogeneity index* (Fhi,5) 38.6 ± 7.9 18.0–48.0
Quality of riparian habitat* (Qbr, 6) 16.2 ± 12.9 0–45.0
Physicochemical
pH* (pH units) 6.7 ± 1.4 2.7–8.5

−1
J.C. Pérez-Quintero / Lim

rated into monitoring and bioassessment programmes through
iotic indices, ensuring objective evaluations.

aterials and methods

tudy area

This study was conducted in the basins of the rivers Odiel and
into, both in the southwest of the Iberian Peninsula, in the bio-
eographic Ecoregion 1 (Illies 1978; Annex XI of the WFD). Both
atersheds flow south through the Iberian Pyrite Belt, the world’s

argest massive complex of sulphide mineral ores (Buckby et al.
003; Olías et al. 2004), and drain into the Atlantic Ocean (Fig. 1).

Both basins show different degrees of AMD impact along a
ead-mouth gradient (López-Archilla and Amils 1999; Olías et
l. 2004; Sainz et al. 2005). Middle stretches and mouth of the
diel River basin and the Tinto River basin as a whole have gra-
ients of heavy metals in solution and moderate to extremely

ow pH as a result of mining activities and the metabolism
f acidophilic-chemolithotrophic microorganisms (López-Archilla
nd Amils 1999; Amaral-Zettler et al. 2003; González-Toril et al.
003).

The climate is Mediterranean Pluviseasonal-Oceanic. Most rain-
all occurs between October and March and during summer months

ost streams and tributaries become intermittent or dry. Headwa-
er sites with high rainfall and relatively low temperatures belong
o the upper and low Mesomediterranean subhumid bioclimatic
elts. Mouth areas belong to the upper thermo-Mediterranean dry
ioclimatic belt (Worldwide Bio-Climatic Classification System).

haracterisation of freshwater mollusc community and habitat
eatures

The distribution of freshwater malacofauna and habitat features
as compiled from 101 watercourses (59 from the Odiel River basin

nd 42 from the Tinto River basin), during spring-summer in 2004
nd 2005 (for the analysis we used the average values of species
ichness in both years). The sampling points were selected for their
ccessibility and sampling was conducted at sites never deeper
han 150 cm. Along the embankments of each site, two quadrats
25 m2, according to the width of the stream) were randomly
ocated along a 20-m transect. Molluscs were sampled within each
uadrat using a 20 cm diameter dip-net (250-�m mesh size) for a
0-min period, covering all microhabitats visually detected. Mud
nd sand particles were also removed (upper 5 cm layer) and fil-
ered with sieves. In stony bottoms and in in-stream vegetation,
ampling was conducted by manually brushing molluscs from the
ock and plant surface into the net (the surface of the rocks was not
dded to the surface of the sampled area). The abundance of each
pecies was expressed as number of individuals per m2 and all mol-
uscs were identified to species level and then returned to the water.
ubious species were determined using specific keys and subse-
uently preserved in 70% ethanol and deposited in the collections
f the Department of Environmental Biology and Public Health, Uni-
ersity of Huelva, Spain. Number of native and introduced species
as recorded for each site.

To examine the effects of environmental factors on biodiver-
ity metrics, 22 habitat variables were measured or estimated
t each sampling point. Variables were grouped into five cat-
gories: climatic, geomorphological, hydrological, heterogeneity
nd physicochemical characteristics. Two approaches were used:

5 in situ measures (within each quadrat), which described micro
nd mesohabitat characteristics at each site, and 7 remote, ex situ,
easures from GIS and web information (Worldwide Bio-Climatic

lassification System) (Table 1).
Conductivity* (Cn, �S × cm ) 790.5 ± 1540.8 115.0–12380.0
Turbidity* (Tu, mg × l−1) 342.4 ± 185.8 80.0–850.0
SO4

2−* (Su, mg × l−1) 405.3 ± 1882.1 0.05–16818.0

Biodiversity metrics

Four different evaluations of native species biodiversity were
made: (1) Species richness (native and introduced species), (2)
Shannon-Weiner’s diversity index (H′) obtained using base-e log-
arithm, (3) Endemicity index (En), as the inverse of the number of
sites in which a species is present (Hessen and Walseng 2008), and
(4) Faunistic originality index (Ifo) (Boix et al. 2008).

The conservation value (Cv) of each watercourse, in relation to
the communities of freshwater molluscs, was calculated as the sum
of the values of species richness, diversity, endemicity and faunal
originality of each of them.

Statistical analyses

To summarise environmental complexity, a stream vs. environ-
mental data matrix was constructed and used to perform a Principal
Component Analysis (PCA) after elimination of auto-correlated
variables (R ≥ 0.80). Axial ecological gradients (PC1 and PC2) were
identified correlating each environmental variable to the first two
dimensions (Pearson’s correlation). The scores of this correlation
indicate how well each environmental variable explains the posi-
tion of the sampled points along the ordination axis. As a summary
of the environmental gradient along the studied zone, the habitat
conditions were assimilated into the dimension with the highest
explanatory power (PC1, approximately 37% of the explained vari-
ance, see Table 2). In the analysis of habitat condition have been
considered only variables with correlation >0.60 with the first two
dimensions of the PCA (Factor Loadings).
To perform a non-hierarchical classification of sites, PC1 was
split into five equivalent portions to define groups of sites with
similar environmental characteristics (hereafter habitat classes: Si,
Ti, S1 and S2 and Ni). To test for significant differences, so defined
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Table 2
Multivariate analysis used to define environmental and freshwater mollusc community gradients. In the PCA analysis only loadings >0.60 are shown. Variable codes given in
Table 1.

Technique Extracted gradients % explained variance (eigenvalue) Negative extreme Positive extreme Denomination

PCA PC1 36.8 (8.8) Cn (−0.79) Fhi (0.83) Natural-disturbed gradient
Tu (−0.75) Pr (0.77)
So4

2− (−0.70) Dm (0.77)
Wf (−0.68) Al (0.77)
At (−0.66) Ic (0.75)
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PC2 19.2 (4.6)
CA Dim. 1 53.2 (0.9)

abitat classes were compared, in terms of their environmental
eatures, biodiversity and conservation value, by one-way Analy-
is of variance (ANOVA), with post hoc Tukey’s HSD test for paired
omparisons.

As freshwater mollusc communities tend to vary along natural
ongitudinal gradients (Mouthon 1999; Pérez-Quintero 2007), their
patial location within these gradients must be accounted for by
pecies sensitivity-tolerance analyses. A correspondence analysis
CA) was performed in a species presence–absence × sites matrix
o identify the main patterns of variation in freshwater mollusc
ommunity composition within the study area.

The effect of the presence or absence of species in relation to
ariables directly related to acid drainage, with the aim of identify-
ng significant differences between occupied and unoccupied sites,

as tested using ANOVA analysis.
To model important environmental variables determining mol-

usc biodiversity, linear regressions were performed between each
ariable and all the biodiversity and conservation metrics.

Prior to all the statistical analyses, normal distributions were
nvestigated using the Kolmogorov-Smirnov test. If necessary,
ppropriate transformations ln(x + 1) (continuous variables) or arc-
ine (percentages) were used to improve normality and remove
eteroscedascity. Analyses were performed using SPSS, version
7.0.0.

esults

abitat characterisation

The first two dimensions of the PCA explained 56.0% of the orig-
nal variance of the environmental variables (Table 2). PC1 (36.8%
f the variance) is mainly related to variables describing natu-
al and disturbed gradients resulted for AMD and water deficit.
he negative end of the gradient is represented by physicochemi-
al (conductivity, turbidity, sulphides) and climatic (water deficit,
ir temperature) stress variables. The positive end of the gradient
s dominated by environmental features representing the habi-
at variability (fluvial heterogeneity, in-stream macrophytes cover,
uality of riparian habitat), geomorphology (distance to the mouth,
ltitude) and climate (precipitation). The gradient described by
C2 (19.2% of the variance) is basically related to the pH of the
ater courses. Thus, two independent gradients were identified: a
atural-disturbed gradient related to PC1 and an acidity gradient
elated to PC2 (Table 2). All the habitat classes into which PC1 was
ivided differ markedly in the environmental parameters (ANOVA
est F(4,96) between 30.8 and 115.4, P < 0.001 in all cases; Fig. 2).

pecies distribution and sensitivity to AMD-related features
Any species was found in the sampling sites severely impacted
y AMD (Si habitat class). In both basins 48 (Odiel) and 41 (Tinto)
ampling points were found with species richness ≥1, of which
5.7% of sites (Odiel basin) and 92.7% (Tinto basin) contain intro-
Qbr (0.74)
pH (−0.75) Acidity gradient

Species gradient

duced species. Altogether, 4663 individuals belonging to 17 species
(14 gastropods, 10 native and 4 introduced, and 3 bivalves) were
identified. The first dimension of the CA, which accounted for
53.2% of the freshwater mollusc community variance (Table 2), was
strongly correlated to both natural-perturbed and acidity gradi-
ents (Pearson’s R = −0.65 and −0.41, respectively, P < 0.001 in both
cases), showing a clear negative spatial distribution in mollusc com-
munity composition according to, mainly, acid drainage and water
deficit stressors.

The available-used analysis through the five equivalent por-
tions of the natural-perturbed gradient shows the sensitivity
of each species to this gradient (Fig. 3). Not considering the
severely impacted habitat class Si, the different species follow
five defined patterns: (1) sensitive stenochoric headwater species,
characterised by the overuse of the best preserved portions
(Ni) (native Arganiella wolfi, Stagnicola palustris, Unio delphinus,
Pisidium casertanum and Pisidium personatum, and introduced
Potamopyrgus antipodarum and Gyraulus chinensis); (2) sensitive
stenochoric mouth species, inhabiting environments with tidal
influence (Ti) (Hydrobia acuta, Peringia ulvae and Myosotella myoso-
tis); (3) intermediate sensitive-widely distributed species, present
in 3 portions and over 30 sites, using the best preserved portions
and under-using minimally impacted environments (native Planor-
barius metidjensis and Radix balthica); (4) insensitive-eurychoric
species, present in 4 portions and over 80 sites, characterised by
using the portions as available (native Ancylus fluviatilis and intro-
duced Physella acuta); and (5) erratic-distribution pattern species
(native Galba truncatula and Planorbis carinatus, and introduced
Ferrissia fragilis).

The ANOVA analysis divides the native species present in more
than 10 sites into two groups (Fig. 4): (1) species with a clear sen-
sitivity, over-using less contaminated environments (A. wolfi, P.
casertanum, G. truncatula and R. balthica), P < 0.05 in all cases; and
(2) intermediate sensitive (Planorbarius metidjensis) and insensitive
species (Ancylus fluviatilis) are the most tolerant group of species to
drastic decreases in pH and increased concentrations of sulphides.

Native freshwater mollusc biodiversity

Biodiversity indices were highly correlated among one another
(P < 0.001 in all cases, except for En-Fo, P < 0.05). Native species rich-
ness, diversity and faunistic originality were significantly related
to the 12 environmental gradients defined by PC1 and PC2 (see
Table 2). In contrast, endemicity was only related to climatic (air
temperature and water deficit) and physicochemical stressors (pH,
turbidity and concentration of sulphides) (Table 3). Ten to 62% of the
variation in native species richness, 12–38% in Shannon-Weiner’s
diversity, 5–16% in endemicity and 15–76% in faunistic originality
is explained by changes in the environmental features (see Table 3).
All the biodiversity measures varied strongly along environ-
mental gradients. According to their high pollution characteristics,
all sites of the Si habitat class are characterised by the absence
of macroscopic life. Slightly impacted S1 and S2 sites, composed
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Fig. 2. Differences in the environmental variables with PC1 and PC2 loadings >0.60 (Table 2) across all habitat classes. Ni, minimally impacted sites, S1 and S2, slightly impacted
s . *P < 0
a iskers

e
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t

ites, Si, severely impacted sites, Ti, tidal-influenced sites (see Materials and methods)
bove or below each box. Quadrates, medians, box, percentiles (coefficient = 25), wh

xclusively of ephemeral water courses, have poor to moderate
iodiversity indices. In contrast, no impacted sites, class Ni, mainly
emi-permanent or permanent water courses, have, in general, the
ighest biodiversity values (Fig. 5).

ntroduced species and conservation

The greatest number of introduced species is in non-impacted

ites (Fig. 5). The regression analysis using introduced species rich-
ess and conservation value as dependent variables shows that
hese indices are strongly influenced by the environmental fea-
ures (Table 4). More than 30% of the variation in Isr is explained
.001, no significant differences (Tukey’s HSD test for paired comparisons) are shown
, the highest and lowest values excluding outliers, circles, outliers (coefficient = 1.5).

by physicochemical (turbidity, conductivity, concentration of sul-
phides and pH) and heterogeneity features (quality of riparian
forest, fluvial heterogeneity and in-stream cover). Both native and
introduced species numbers increase and decrease along environ-
mental gradients, with significant statistical relationships between
both biodiversity indices (R = 0.46, P < 0.0001). So, abiotic factors
would be influential in the establishment of introduced species in
AMD-affected Mediterranean water courses. Cv is mainly condi-

tioned (R2 ≥ 0.30) by environmental stressors related to the acid
drainage (Su, pH, Tu and Cn) and environmental heterogeneity
(QBR, Ic and FHI) (Table 4). Cv is also correlated positively with
all the biodiversity indices (P < 0.01 in all cases). The higher values



206 J.C. Pérez-Quintero / Limnologica 41 (2011) 201–212

F it. The
i P-va
o ses, sp

o
s
s
i
s
P
r
i
s
S

b
S
t

ig. 3. Preference for the five equivalent portions in which the PC1 gradient was spl
n black columns (data are in percentage). The chi-square statistic and its associated
r under-use (down arrows). Introduced species are underlined. Between parenthe

f Cv (on average 6.8 ± 2.2 Sd) are located in well preserved source
treams, not impacted by AMD sites (Ni habitat class, average native
pecies richness: 5.3 ± 1.7 Sd) (Fig. 5), with species present only
n almost pristine sites at altitudes over 500 m (native sensitive
pecies such as A. wolfi, S. palustris, U. delphinus, P. casertanum and
. personatum). The lowest values of Cv (2.2 ± 1.2 Sd and 2.3 ± 0.8 Sd,
espectively), obviating the severely impacted sites (Si), are located
n streams with differing degrees of impact by AMD and water
tress (S1 and S2 sites, average native species richness: 1.8 ± 0.9
d and 1.9 ± 0.7 Sd, respectively).
Superposing the drainage surface of both Odiel and Tinto River
asins with the current Nature 2000 Network of Protected Natural
paces and Sites of Community Importance (EU Council Direc-
ive 92/43/EEC) (see Fig. 1), a high degree of overlap was detected
available number of sites is represented in white columns and the number of used
lue are also given. Significant differences were interpreted as over-use (up arrows)
ecie’s code and number of sites in which the species is present.

between the water courses with higher native species richness and
protected areas not impacted by AMD or water stress (Ni sites).
In the remaining sites of community importance (see Fig. 1), the
impacts of AMD, water deficit and/or tidal influence decrease the
species richness and therefore the conservation value of water-
courses.

Discussion
The Water Framework Directive urges the knowledge of the
ecological status of the European inland water bodies using
biological, physicochemical and hydromorphological indicators
(Directive 2000/60/EC, Annex V). Although the use of bioindica-
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he highest and lowest values excluding outliers, circles, outliers (coefficient, 1.5). *

ors is widespread, most studies focussing on freshwater animal
ommunities use fish and benthic arthropods as indicator species
e.g. Iliopoulou et al. 2003; Gerhardt et al. 2004; Hering et al. 2006;
renda et al. 2006) and little attention has been devoted to fresh-
ater molluscs. The empirical approach developed in this study
ims to objectively evaluate the sensitivity/tolerance of freshwa-
er molluscs to provide a useful tool for future conservation and

anagement programmes.

able 3
egression models for the relationships between native species richness (Nsr), diversity (H
C1 and PC2 loadings > 0.60 (see Table 2). R2: adjusted R2, ˇ: standardized regression coe

Nsr H′

F(1,99) R2 ˇ F(1,99) R2 ˇ

At 27.43 0.22 −0.47 48.73 0.33 −0.57
Pr 11.63 0.10 0.32 14.23 0.12 0.35
Wf 25.63 0.20 −0.45 47.23 0.32 −0.57
Al 19.43 0.16 0.40 30.73 0.24 0.49
Dm 10.12 0.10 0.30 15.03 0.13 0.36
Ic 68.73 0.41 0.64 29.53 0.23 0.48
Fhi 48.83 0.33 0.57 26.93 0.21 0.46
Qbr 161.63 0.62 0.79 52.03 0.34 0.59
pH 124.43 0.56 0.75 44.83 0.31 0.56
Cn 74.13 0.43 −0.65 29.73 0.23 −0.48
Tu 116.13 0.54 −0.73 34.73 0.26 −0.51
Su 148.83 0.60 −0.77 59.93 0.38 −0.61
onmental gradients related to AMD features (data of the severely stressed habitat
been considered. Quadrates, medians, box, percentiles (coefficient = 25), whiskers,
cant differences (P < 0.05) in the ANOVA analysis. Species code in Table 3.

For the implementation of the WFD, species-level data are
required at two different scales: presence–absence and abun-
dance data. Although abundance estimates of the studied species
are available (used for calculating the Shannon-Weiner’s diver-
sity index), to analyse their sensitivity we preferred to use

presence–absence data in order to provide a simple approxima-
tion regardless of the characterisation of species abundance, much
more laborious than the simple assessment of presence–absence.

′), endemicity (En) and faunistic originality (Fo) and environmental variables with
fficient, 1: P < 0.05, 2: P < 0.01, 3: P < 0.001, ns: no significant.

En Fo

F(1,99) R2 ˇ F(1,99) R2 ˇ

13.83 0.12 −0.35 17.73 0.15 −0.39
0.3ns 0.002 0.05 20.33 0.17 0.41

12.03 0.11 −0.33 17.43 0.15 −0.39
3.0ns 0.03 0.17 21.53 0.18 0.42
0.2ns 0.002 0.04 20.03 0.17 0.41
0.2ns 0.002 0.04 187.83 0.65 0.81
0.04ns 0.0004 0.02 183.53 0.65 0.81
3.8ns 0.04 0.19 312.83 0.76 0.87

18.53 0.16 0.40 87.23 0.47 0.68
0.9ns 0.008 −0.09 212.83 0.68 −0.83
5.01 0.05 −0.22 236.93 0.70 −0.84

12.33 0.11 −0.33 138.93 0.58 −0.76
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Fig. 5. Differences in the biodiversity indices and conservation value across all habitat classes. Si, severely impacted sites, I1–I3, gradient of sites with varying degrees of
i nifica
e st and

O
o
A
f
p
s
d

mpact, Ni, minimally impacted sites (see Materials and methods). *P < 0.0001; no sig
ach box. Quadrats, medians, box, percentiles (coefficient = 25), whiskers, the highe

n the other hand, presence–absence data are the basis of some
f the most used biotic indices around the world (RIVPACS and
USRIVAS; Hawkins et al. 2000; Chessman et al. 2008). There-

ore, according to its widespread use in biological indices, if the

resence–absence data allows a fine approximation of the “health
tatus” of the water bodies, studies of abundance can be, a priori,
iscarded.
nt differences (Tukey’s HSD test for paired comparisons) are shown above or below
lowest values, excluding outliers, circles, outliers (coefficient = 1.5).

Species distribution and sensitivity to AMD-related features

The parameters defining the variables potentially disturbed by
humans (see Table 1) are not homogeneously distributed along

the environmental gradients. Distribution of freshwater molluscs
along these gradients indicates that some species have developed
responses to water deficit and to changes in physical and chemical
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Table 4
Regression models for the relationships between introduced species richness (Isr)
and conservation value (Cv) and environmental variables with PC1 and PC2 loadings
>0.60 (see Table 2). R2: adjusted R2, ˇ: standardized regression coefficient, 1: P < 0.05,
2: P < 0.01, 3: P < 0.001.

Isr Cv

F(1,99) R2 ˇ F(1,99) R2 ˇ

At 21.22 0.18 −0.42 26.72 0.20 −0.46
Pr 23.82 0.19 0.44 9.51 0.08 0.29
Wf 20.52 0.17 −0.41 24.82 0.19 −0.45
Al 17.12 0.15 0.38 16.72 0.13 0.38
Dm 20.62 0.17 0.41 7.82 0.06 0.27
Ic 120.32 0.55 0.74 60.12 0.37 0.61
Fhi 133.72 0.57 0.76 41.52 0.30 0.54
Qbr 170.22 0.63 0.79 145.92 0.59 0.77
pH 68.92 0.41 0.64 130.52 0.56 0.75
Cn 156.32 0.61 −0.78 65.62 0.39 −0.63

e
a
i
r

(

(

(

Tu 158.82 0.61 −0.78 101.72 0.50 −0.71
Su 95.12 0.50 −0.70 141.12 0.58 −0.77

nvironment, and are distributed according to their intrinsic toler-
nce levels. Sensitivity-tolerance values of different species can be
nterpreted according to four models, as defined by the assemblages
elated to PC1 (Fig. 3):

1) Tolerant-eurychoric species widely distributed throughout
both basins (native Ancylus fluviatilis and introduced Physella
acuta) display an opportunistic behaviour according to their
greater adaptability to environmental stressors. Data from this
study are consistent with the results reported by other authors
in the sense that they are Palaearctic-widely distributed species
(Vidal-Abarca and Suárez 1985; Kerney 1999; Glöer 2002)
capable of living in highly stressful polluted (Godfrey 1978;
Chaisemartin 1981; Cheung and Lam 1998; Flessas et al. 2000;
Karouna-Reiner and Sparling 2001; Graça et al. 2004), eutroph-
icated (Domezain et al. 1987; Camargo et al. 2005; Leitao
et al. 2007), dry (Boulton et al. 1992; Bonada et al. 2006;
Sheldon and Thoms 2006) or AMD-impacted environments
(Gerhardt et al. 2004; Lewin and Smolinski 2006). Therefore,
these species appear homogeneously distributed throughout
both basins in almost pristine and moderately impacted envi-
ronments, always avoiding sites with tidal influence.

2) Sensitive headwater species (native A. wolfi, S. palustris, U.
delphinus, P. casertanum and P. personatum, and introduced
Potamopyrgus antipodarum and Gyraulus chinensis) are adapted
to well-preserved environments, with stable water supply and
high spatial complexity. The evaluation of these species implies
more difficulty in the sense that it is possible that the values of
sensitivity-tolerance of different species can be misinterpreted
and confounded with their specific habitat preference. On the
other hand, available references related to their habitat use
are very scarce and in most cases referred to genera or fami-
lies (Gerhardt 1992; Gallardo et al. 1994; Karouna-Reiner and
Sparling 2001; Lewin and Smolinski 2006; Niggebrugge et al.
2007; Petrin et al. 2007). The case of A. wolfi is especially prob-
lematic because it is a newly described species (Arconada and
Ramos 2007; Arconada et al. 2007) and there are no references
to their ecology. A more detailed study of these headwater-
species would therefore be necessary to redefine the results of
this study.

3) Sensitive mouth species (H. acuta, Peringia ulvae and M. myoso-
tis). Salt-marsh halophilous habitats are more stressful and
represent an interface between freshwater habitats and marine

conditions. Species occurring there, regardless of their degree
of sensitivity to contaminants, develop adaptive mechanisms
to minimise the effects of changes in salinity and conductiv-
ity according to the tidal rhythms (Blandford and Little 1983;
ica 41 (2011) 201–212 209

Graham 1988; Hoeksema 1998; Barnes 1999; Bruyndoncx et al.
2002).

(4) Moderately sensitive species (natives R. balthica, G. truncatula,
Planorbarius metidjensis and Planorbis carinatus and introduced
F. fragilis). These species develop intermediate adaptive pat-
terns to stressors and show sensitivity to the environmental
gradients at different intensities, preferably occupying environ-
ments with low natural or anthropogenic impact and avoiding
heavily polluted environments (see Fig. 3).

The presence–absence ANOVA analysis identified significant
differences in the response of each native species to single gradi-
ents of disturbance (see Fig. 4) and provided information that helps
to refine the nature of sensitive-tolerant species to AMD stressors.
Ancylus fluviatilis and Planorbarius metidjensis, species previously
defined as tolerant and moderately sensitive, respectively, actively
select environments with high hydrological stress in relation to low
pH and moderately high concentration of sulphides. A. wolfi, G. trun-
catula, R. balthica and P. casertanum appear as the paradigm of the
sensitive species, having been found only in unpolluted environ-
ments. The low frequency of occurrence of the remaining native
species (less than 10 sites) prevents an accurate diagnosis of their
sensitivity to stressors.

This study confirms, without any doubt, the tolerant nature of
Physella acuta, Ancylus fluviatilis and, to a lesser extent, Planorbarius
metidjensis to natural and anthropogenic stressors. Nevertheless,
we suggest a conservative analysis of the role of freshwater mol-
luscs as bioindicators of environmental stress, in the sense that it is
difficult to distinguish the tolerant nature of eurychorous species
from their natural phenotypic plasticity and, on the other hand, it is
equally difficult to select the criteria to distinguish sensitive species
from others with specific habitat preferences. Although much infor-
mation is available (e.g. Pynnonen 1990; Gundacker 2000; Bonneris
et al. 2005; Campanella et al. 2005), further research and more
precise analysis on their physiology and ecology are needed to
establish the status of freshwater molluscs as bioindicators of envi-
ronmental stress.

Native freshwater mollusc biodiversity

The combined effects of a changing environment related to
heterogeneity, seasonality and mine discharges on freshwater bio-
diversity have been amply demonstrated (e.g. Braukmann 2001;
Cain et al. 2004; Heino et al. 2007). The results of this study show
that freshwater mollusc biodiversity indices are mainly associated
with patterns of changing environmental features. Water deficit,
heterogeneity (Fhi, Qbr) and chemical features (AMD pollution and
conductivity gradients) are the main factors influencing changes in
native freshwater mollusc biodiversity. High concentrations of sul-
phides and elevated turbidity and conductivity, coupled with a low
pH, seem to be the main causes of the decline in native freshwater
mollusc biodiversity.

The greater water supply, buffer effects from summer droughts,
heterogeneity and absence of mine contamination contributes to
creating suitable and multifaceted habitat conditions of headwater
non-polluted environments. Lowland streams, strongly impacted
by summer drought and, to a greater or lesser extent, acid drainage,
are subjected to a high variability in flow conditions and thus to a
greater or lesser dilution of pollutants. Estuarine communities are
partially independent of freshwater supply and are deeply influ-
enced by tidal conditions.

On account of a more stable water supply, scarcity of droughts

and high habitat complexity, biodiversity of upper sites are higher
than those in middle reaches in which, as the dry season progress,
streams are reduced to isolated pools with incremented hypoxia,
hyperthermia, eutrophic conditions and contaminant concentra-
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ions that increase the stress of biological communities (Gasith and
esh 1999; Bonada et al. 2006; Bonada et al. 2007). The highest
iodiversity indices in headwater habitats may be related to three
ypes of requirements: (1) physiological: maximisation of the input
f available environmental calcium results in low energetic costs
o build their shells (Wäreborn 1970; Wiederholm and Eriksson
977; Horsák and Hákek 2003); (2) trophic: high pH results in
ajor presence of in-stream vegetation and epilithic algal flora
hich may allow consumers to invest less energy in searching for

ood and thus increase their feed efficiency (Lewin and Smolinski
006; Ortiz and Puig 2007); and (3) structural complexity: high
abitat heterogeneity increases the possibility of finding refuge

rom predators (Turner et al. 1999; Rundle and Brönmark 2001;
alesman et al. 2007). Similarly, the high degree of biodiversity
f mouth assemblages is related to euryhaline species adapted to
ermanent tide-dependent streams with elevated water conduc-
ivity levels (Blandford and Little 1983). In contrast, freshwater

ollusc assemblages in unstable middle reaches depend mostly
n colonisation/extinction dynamics and biodiversity is regulated
ainly by their tolerance to local water pollution and the cyclic

ncrease or decrease in water availability (Øakland 1983; Harvey
nd McArdle 1986; Winterbourn and McDiffett 1996; Lewin and
molinski 2006).

ntroduced species and conservation

One of the main threats to the integrity of the freshwater mol-
usc fauna is the introduction of alien species (Prenda et al. 2006;
arcía-Berthou et al. 2007). The presence of introduced species
f freshwater molluscs is widespread in the water bodies of the
outh-western Iberian Peninsula: 16.1% of the mollusc species
re introduced, having been found in the 1–100% of the studied
atercourses (Pérez-Quintero et al. 2004; Pérez-Quintero 2007;

érez-Quintero 2009) and in most of the basins in the Iberian Penin-
ula (Vidal-Abarca and Suárez 1985; Pérez-Quintero 2008; Sousa et
l. 2008a; Sousa et al. 2008b).

Many studies have demonstrated the relationship between
olonisation by alien species and local extinction events (e.g.
icciardi and Rasmussen 1999; Burlakova et al. 2000; Hakenkamp
t al. 2001; Lydeard et al. 2004; Clavero and García-Berthou 2005;
udgeon et al. 2006). The results of this study show that the
ajor environmental constraints for the introduced species rich-

ess are similar to those observed for native species richness (see
ables 3 and 4), but, nevertheless, introduced species are more sen-
itive to environmental heterogeneity (Fluvial heterogeneity index,
n-stream cover). We can assume, a priori, that this strong compe-
ition for environmental resources between native and introduced
pecies, joint to other biotic interactions (mainly trophic and repro-
uctives, not addressed in this work) and the impact of human
ctivities, may result, in a not too distant future, in local extinc-
ion events of native freshwater mollusc fauna (Strayer et al. 2004;
udgeon et al. 2006; Régnier et al. 2009).

The statutory protection is highly developed in the study area.
oth basins are among the Natural Park “Sierra de Aracena y Picos
e Aroche” and the Natural Landscape “Sierra Pelada” (both in the
orth), the Natural Reserve “Marismas del Odiel” and the Site of
ommunity Importance “Estuario del Río Tinto” (both in the south,
ordering the Atlantic Ocean), the Site of Community Importance
Andévalo Occidental” (west) and the Ecological Corridors “Río
uadiamar” and “Rio Tinto”, the Sites of Community Importance

Doñana” and “Marismas y Riberas del Río Tinto” and the Protected
andscape “Rio Tinto” (all in the east) (see Fig. 1).
The water courses located in protected environments have
nequal conservation value depending on their location: (1) the
igh species richness and conservation value of sites within the
atural Park “Sierra de Aracena and Picos de Aroche” are those of an
ica 41 (2011) 201–212

environment with reduced water deficit, high spatial heterogeneity
and absence of widespread contamination, which allows mainte-
nance of stable populations of stenochoric headwater species; (2)
in contrast, the low conservation value of the middle reaches, as
well as those located in protected environments, is highly related
to the strong seasonality of streams and the greater or lesser AMD
impact they support; (3) the conservation value is somewhat higher
in tidal environments than in the previous ones due to the lower
number of introduced species and the stability of their populations.

Although there are many institutional protection figures in
the study area, the territorial protection may not be sufficient to
ensure the integrity of watercourses, because water management
in Spain is almost independent from the administration of pro-
tected areas. So, from a conservationist point of view, plans for
the management of freshwater mollusc communities in strongly
stressed Mediterranean environments should involve coordination
between territorial protection and water management.

In conclusion, restoration programs that integrate physico-
chemical and biological characteristics of both basins should
be the primary targets for future management strategies. From
a physicochemical point of view, the Regional Administration
should propose programmes to: (1) determine how AMD pollu-
tion alters the normal functioning of Mediterranean watercourses
and becomes a barrier to dispersal of freshwater biocoenosis; (2)
remediate the rivers affected by AMD; (3) propose preventive
mechanisms to avoid more degradation of habitats; and (4) connect
the degraded river stretches with non-polluted ones by means of
fluvial corridors, creating buffer zones between habitats and, conse-
quently, increasing the biodiversity of the zones (Bonn and Gaston
2005; Mancini et al. 2005).

From a biological point of view, it is necessary: (1) to increase
the understanding of biological and ecological requirements of
Mediterranean freshwater mollusc species, especially those poorly
known Iberian species (e.g. A. wolfi, S. palustris) and (2) the detec-
tion and control of the dispersal of exotic species like Potamopyrgus
antipodarum, Physella acuta, F. fragilis, Gyraulus chinensis or Cor-
bicula fluminea (the latter present in the adjacent Guadiana and
Guadalquivir River basins, Pérez-Quintero 2007; Pérez-Quintero
2008) to avoid the main biological threat facing native freshwater
mollusc species.
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