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Alterations in mitochondrial oxidative phosphorylation
have long been documented in tumors. Other types of
mitochondrial dysfunction, including altered reactive
oxygen species (ROS) production and apoptosis, also
can contribute to tumorigenesis and cancer pheno-
types. Furthermore, mutation and altered amounts of
mitochondrial DNA (mtDNA) have been observed in
cancer cells. However, how mtDNA instability per se
contributes to cancer remains largely undetermined.
Mitochondrial transcription factor A (TFAM) is required
for expression and maintenance of mtDNA. Ifam
heterozygous knock-out (Zfam™ ™) mice show mild
mtDNA depletion, but have no overt phenotypes. We
show that Tfam™ =~ mouse cells and tissues not only
possess less mtDNA but also increased oxidative mtDNA
damage. Crossing Tfam™*’~ mice to the adenomatous
polyposis coli multiple intestinal neoplasia (APC™"™*)
mouse cancer model revealed that mtDNA instability
increases tumor number and growth in the small intes-
tine. This was not a result of enhancement of Wnt/3-
catenin signaling, but rather appears to involve a pro-
pensity for increased mitochondrial ROS production.
Direct involvement of mitochondrial ROS in intestinal
tumorigenesis was shown by crossing APC*"'* mice to
those that have catalase targeted to mitochondria,
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which resulted in a significant reduction in tumorigen-
esis in the colon. Thus, mitochondrial genome instabil-
ity and ROS enhance intestinal tumorigenesis and
Tfam™ ™ mice are a relevant model to address the role
of mtDNA instability in disease states in which mito-
chondrial dysfunction is implicated, such as cancer,
neurodegeneration, and aging. (4m J Pathol 2012, 180:
24-31; DOI: 10.1016/j.ajpath.2011.10.003)

Mitochondria are complex and essential organelles in-
volved in many important cellular processes including me-
tabolism, apoptosis, oxygen sensing, and signaling.'®
Thus, how mitochondrial dysfunction contributes to human
disease is multifaceted. For example, in addition to deficits
in energy metabolism and ATP production, mitochondrial
pathology can involve oxidative stress and aberrant cell
death responses.®~® Mammalian mitochondria contain mul-
tiple copies of the double-stranded, circular mitochondrial
DNA (mtDNA) molecule that encode 13 protein compo-
nents of the mitochondrial oxidative phosphorylation (OX-
PHOS) complexes required for electron transport and ATP
synthesis.® In addition, mtDNA harbors 2 ribosomal RNA
genes and 22 transfer RNA genes required for translation of
the mtDNA-encoded OXPHOS subunits in the matrix. The
remainder of the approximately 1500 proteins in mitochon-
dria is encoded in the nuclear genome and imported into
the organelles. In addition to structural components and
metabolic enzymes (including ~80 OXPHOS complex sub-
units), these include all of the factors required for expres-
sion, replication, and maintenance of mtDNA."®'" One im-
portant protein in this latter category is mitochondrial
transcription factor A (TFAM), a mitochondrial transcrip-
tional activator of the high-mobility-group box family''3
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involved in mtDNA packaging,
tion,'®'” and base-excision repair.'®

The essential nature of mammalian mtDNA was shown
by knock-out of the Tfam gene in mice, resulting in early
embryonic lethality caused by loss of mtDNA and respira-
tory insufficiency.'® Many homozygous, tissue-specific
knock-outs of Tfam subsequently have been examined,
providing informative yet coarse models of mitochondrial
dysfunction and disease.'®*° In most human disease states
involving mitochondria, including those caused by mater-
nally inherited mtDNA mutations and cancer, mtDNA is not
absent like it is in the Tfam™~ condition.?"?® Thus, addi-
tional mouse models are needed to assess the role of
mtDNA instability per se in human disease. In this study, we
have evaluated and tested the Tfam™~ genetic back-
ground as one such model. These animals are viable and
have no reported phenotypes despite having approxi-
mately 30% to 50% mtDNA depletion in tissues. They also
have essentially normal amounts of mtDNA transcripts,'®
thus any phenotypes observed in these animals can be
interpreted to be largely independent of effects on mito-
chondrial transcriptional output. Finally, lack of the yeast
ortholog of TFAM, Abf2p, results in mtDNA depletion as well
as increased mDNA mutagenesis,®>?* which led us to
hypothesize that the Tfam™~ condition in mice likewise
would result in increased mtDNA damage (in addition to
mtDNA depletion) and hence represent a sensitized ge-
netic background in mice with regard to mtDNA instability.

Defects in mitochondrial OXPHOS in cancer cells origi-
nally were documented by Warburg,?® who proposed that a
switch in metabolism away from respiration toward glycol-
ysis (ie, aerobic glycolysis) is beneficial for tumorigenesis.
In addition to metabolic alterations, mitochondria contribute
to tumorigenesis and other aspects of cancer development
through their direct involvement in apoptosis and the pro-
duction of reactive oxygen species (ROS).262° The latter
can promote oxidative stress, increase nuclear genome
instability, and affect signaling pathways involved in cellular
proliferation, differentiation, and adaptation to hypoxia.?”2°
Alterations in mtDNA also have been reported in a variety of
human cancers.®%3" For example, the majority of human
colon cancer cells harbor specific mtDNA point muta-
tions®*32 and mtDNA mutations associated with increased
ROS production enhance the metastatic potential of tumor
cells.®* Finally, changes in mtDNA abundance also have
been associated with tumorigenesis, with certain cancer
cells having a higher or lower mtDNA copy number.2537
Notably, complete loss of mtDNA (via homozygous knock-
out of Tfam) inhibits anchorage-dependent growth of cells in
vitro and Kras-mediated lung tumorigenesis in mice.2® How-
ever, in most tumor cells, mtDNA is not absent, suggesting
that, if mtDNA is involved in tumorigenesis, mtDNA instabil-
ity (ie, increased damage, mutation load, and/or altered
copy number) and its downstream consequences likely are
more relevant to cancer than complete loss of mDNA. In
this study, using a sensitized background for mtDNA insta-
bility (Tfam™’~), we have addressed the contribution of
mtDNA instability to tumorigenesis in the well-characterized
APCM™+ model of intestinal cancer.3%%°

copy number regula-
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Materials and Methods
Cell Culturing and mtDNA Damage Analysis

Mouse embryonic fibroblasts (MEFs) were cultured in
high-glucose Dulbecco’s modified Eagle’s medium
(DMEM; Sigma-Aldrich, St. Louis, MO) supplemented
with 10% fetal bovine serum and 5% penicillin/streptomy-
cin at 37°C in 5% CO, humidified incubators. Kinetics of
mtDNA repair was followed using gene-specific quanti-
tative PCR measuring restoration of amplification of the
target DNA after removal of H,0, as described.*° Briefly,
MEFs were seeded in 100-mm Petri dishes 15 to 18 hours
before the experiment, and immediately before treatment
cells were washed once with DMEM without any supple-
ments. A 30-mmol/L stock of H,O, (Sigma-Aldrich) was
prepared in PBS (Invitrogen, Carlsbad, CA) and used to
generate the 200-umol/L solution (in DMEM alone) with
which the cells were challenged.”® Cells were treated
with H,O, for 1 hour and were either harvested immedi-
ately (time 0) or were allowed to recover in conditioned
medium for 6 or 24 hours. Total genomic DNA then was
isolated and the integrity of the mtDNA was measured
with quantitative PCR using two sets of primers to the
mtDNA (10 kb and 117 bp). Total genomic DNA was
isolated using the Qiagen (Valencia, CA) genomic tip Kit,
and mtDNA integrity and copy number were determined
using a quantitative PCR method as described.*’ Spe-
cific primers were used to amplify a 10-kb fragment of
mouse MtDNA to determine mtDNA integrity and a small
117-bp fragment to monitor mtDNA copy number for nor-
malization of the data obtained with the 10-kb fragment.*’
Relative amplifications were calculated, comparing each
group with the average of wild-type controls, and used to
assess the damage frequency, assuming a Poisson dis-
tribution of damages on the template. The same genomic
DNA isolation kit and PCR-based assay was used to
assess basal mtDNA damage in snap-frozen small intes-
tine tissues.

SDS-PAGE, Immunoblot, and mtDNA Copy
Number Analyses

Lysates from MEFs or small intestine tissues (15 ng) were
resolved on 10% to 12% SDS-PAGE gels. After electro-
phoresis, proteins were transferred to a polyvinylidene
difluoride membrane (Millipore, Billerica, MA), immuno-
blotted with primary antibodies [anti-TFAM, a gift from Dr.
David Clayton; anti-voltage-dependent anion-selective
channel (anti-VDAC), Abcam (Cambridge, MA) #ab15895;
or anti-actin, Sigma-Aldrich #A5060], and detected with
peroxidase-linked antibodies and a Western Lightning
chemiluminescence detection kit (PerkinElmer, Waltham,
MA). For mtDNA copy number analysis, total cellular DNA
was extracted from MEFs or snap-frozen tissues. A quan-
titative, real-time PCR method was used to determine the
relative abundance of mtDNA versus nuclear 18S ribo-
somal RNA using mtDNA and nuclear primer sets in two
parallel PCR reactions as described previously.*? Rela-
tive mtDNA copy number was calculated as the ratio of
the amount of amplification obtained with mtDNA versus
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Figure 1. 7fam*’~ MEFs and intestinal tissues exhibit mtDNA instability. A: Western blot of TFAM protein in wild-type (wt) and 7fam
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nuclear 18S rDNA primer sets for each sample and plot-
ted normalized to the control group.

Flow Cytometry Analysis of Mitochondrial Mass
and Membrane Potential

MEF cells were cultured in DMEM 10% fetal bovine serum
and stained with 100 nmol/L of Mitotracker Green FM
(Invitrogen) or Mitotracker Red (Invitrogen) dissolved in
DMEM (incubated at 37°C for 20 minutes). Cells then
were washed three times with PBS containing 1% fetal
bovine serum and resuspended in 200 uL of 1X PBS
containing 1% fetal bovine serum. Stained cells (~10,000
cells per group) then were analyzed by flow cytometry
using a FACSCalibur (BD Biosciences, San Jose, CA).
Flow cytometry data were analyzed using FlowJo soft-
ware version 8.7.3 (Treestar, Ashland, OR) and all exper-
iments were performed in triplicate.

Mouse Strains and Tumorigenesis Analysis

All procedures were approved by the Yale University
Animal Care and Use Committee. To produce Tfam™'~
mice, we crossed Tfam double-floxed mice with those
containing a B-actin promoter-driven Cre recombinase
(obtained from Jackson Laboratory, Bar Harbor, ME). The
resulting global Tfam™*~ mice were back-crossed 10 times
to wild-type C57BL/6J (B6) mice to remove the Cre trans-
gene and purify the genetic background. The genotype of
Tfam™~ mice was determined by a multiplex PCR assay

(see Supplemental Figure S1 at http.//ajp.amjpathol.org). To
generate APCM™* Tfam™’~ we crossed male APCM™*
(obtained from Jackson Laboratory) and female Tram™/~
mice. To produce APCM™* MCAT, male APCM™* mice
were crossed to female MCAT (obtained from Dr. Peter S.
Rabinovitch). To score polyposis male APCM™+  APCMI*
Tfam™~, and APCM™* MCAT mice were sacrificed, and
the small and large intestines were removed immediately.
The small intestine was cut into thirds (proximal, middle,
and distal), and each segment was flushed gently with
PBS to remove fecal material, cut longitudinally, and
splayed flat. To visualize polyps more clearly, we ap-
plied Indigo amine dye to the mucosal surface of the
opened intestine and measured macroadenoma num-
bers and diameters. For histologic examination, 4%
formaldehyde/PBS-fixed intestines were prepared and
embedded in paraffin, and 5-um sections were pre-
pared for H&E staining and immunohistochemistry (an-
ti-B-catenin antibody from BD #610154).

Multiplex PCR for Tfam™~ Mouse Genotyping

Standard protocols were used for PCR. Genotyping
was performed by multiplex PCR for 35 cycles with
primers A, B, and C (see Supplemental Figure S1 at
http://ajp.amjpathol.org). The primer sequences were
as follows: primer A: 5’-CTCTAGCCCGGGTCCTATCT-
3’, primer B: 5’-GTAACAGCAGACAACTTGTG-3’, and
primer C: 5'-CAGTGGTGTGGTGGTTGAAG-3'.
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Real-Time Quantitative PCR APCM™*+ MCAT mice were performed as described

earlier. Immunoblot analysis for catalase in MCAT mice
Total RNA was isolated from polyps and neighboring was performed using anti-catalase antibody (Sigma-
normal intestine tissues using TRIzol (Invitrogen), and 1 Aldrich #C0979).

g RNA converted to cDNA using High Capacity cDNA
Reverse Transcription Kits (Applied Biosystems) follow-

ing the manufacturer’s instructions. One tenth of the Histologic Analysis and Immunohistochemistry

cDNA was subjected to a 25 pl PCR performed in an Mouse small intestine sections containing polyps from
iCycler thermal cycler (Bio-Rad) using iQ SYBR Green APCMIM+ and APCM™*+ Ttam™'~ (n = 5 per group) were
Supermix (Bio-Rad) with PCR primers [c-MYC (alias c- subjected to H&E staining and B-catenin immunohisto-
myc): forward: 5'-TGAGGAAACGACGAGAACAGTTG-3', chemistry. Stained sections were analyzed for tumor his-
and reverse: 5'-CAAGGTTGTGAGGTTAGGCTTTGAG- tology and Wnt/B-catenin signaling by a gastrointestinal
3'; cyclin D1: forward: 5’-CATCAAGTGTGACCCGGACTG- pathologist without their knowledge of the identity of the
3, and reverse: 5-CCTCCTCCTCAGTGGCCTTG-3' and samples. Anti-B-catenin antibody (BD Biosciences
B-actin primer sets (forward: 5-GGTCATCACTATTGG- #610154) was used for immunohistochemistry.

CAACG-3’, and reverse: 5-CCTCACCAAGCTAAGG-
ATGC-3'). Expression quantities were normalized to the B-ac- o .
tin transcript and the *2Ct method was used to calculate the Statistical Analysis

relative levels of expression. Error bars in all Figures represent the mean = SEM. The

Student’s two-tailed t-test was used for the determination
Mitochondrial ROS Production of statistical relevance between groups, and a P value
of <0.05 was considered significant.
Mitochondria were isolated from small intestine tissues
from APCM™* and APCM™™* Tfam™ ™~ mice by differ-
ential centrifugation as described.*® Mitochondrial pro- Results
tein concentration was determined by the Bradford ) Y
method. Mitochondrial H,O, production was measured Mice Heterozygous for Tfam (Tfam™'~) Have
using Amplex Red (Invitrogen) in the presence of Increased Oxidative mtDNA Damage

horseradish-peroxidase, respir_atiqn substrates (_gluta— Susceptibility in Addition to mtDNA Depletion
mate and malate), and, when indicated, a respiratory

inhibitor (antimycin A; Sigma-Aldrich) according to the We sought to determine whether mtDNA instability contrib-
manufacturer’s instructions. Data are expressed as utes to cancer development using the APCM™™* mouse
the change in arbitrary fluorescence units produced model of intestinal tumorigenesis.®® We reasoned that the
from equal amounts of mitochondria (based on total Tfam™~ background would be a salient for cancer studies
protein input) as a function of time. H,O, production in of this type because mtDNA would still be present, but

mitochondria isolated from Tfam™'~, APCM"™* and unstable, similar to the situation in tumors. Accordingly, we
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found that MEFs isolated from Tfam™'~ mice not only had
reduced amounts of TFAM (Figure 1A) and mtDNA (Figure
1B) as expected, but displayed a reduced ability to repair
oxidative mtDNA damage (Figure 1C) compared with those
isolated from the wild-type (Tfam™’*) background. A small
decrease in mitochondrial mass and membrane potential
also was observed in Tfam*’~ MEFs (see Supplemental
Figure S2 at http://ajo.amjpathol.org), however, no decrease in
VDAC (used as a mitochondrial housekeeping marker; com-

pared with actin) were observed in intestine tissue (Figure 1D).
Importantly, reduced amounts of TFAM and mtDNA also were
observed in intestinal tissue from Tfam™ ™~ mice (Figure 1, D
and E) and, consistent with an increased susceptibility to en-
dogenous oxidative insults, higher basal oxidative mtDNA
damage was observed in this tissue (Figure 1F). These phe-
notypes were maintained in the APCY"™™* Tfam™'~ genetic
background (Figure 1, D-F) and there was an obvious trend
toward even greater mtDNA damage, although this was not
statistically significant (Figure 1F). Altogether, these results led
us to conclude that the Tlam™/~ condition is indeed sensitized
for oxidative mtDNA damage, which, in combination with the
mtDNA depletion, makes it an appropriate background
in which to assess the contribution of mtDNA instability
to tumorigenesis.

Intestinal Tumorigenesis in APCM™™* Mice Is
Increased in the Tfam™/~ mtDNA-Instability
Background

To test directly the contribution of enhanced mtDNA in-
stability to tumorigenesis, we examined intestinal polyp
formation in APCM™™* Tfam™~ mice (ie, tumor-prone
mice in an mtDNA-instability background) compared with
APCM™* mice with wild-type levels of Tfam (ie, APCM"™*
Tfam™ ™). Compared with sex- and age-matched APCVM™*+
Tfam cohorts, we found a significant increase in the
number of macroadenomas in the small intestine of
APCM™* Tfam™~ mice (Figure 2A), whereas polyposis in
colon was comparable (Figure 2B). The polyps formed in
APCM™*+ Tfam™*~ mice are histopathologically similar to
those in APCM™*+ Tfam™ ™ mice, suggesting they are be-
nign adenomas (see Supplemental Figure S3A at http.//ajp.
amjpathol.org). In the distal part of the small intestine,
there was an increase in polyp number in APCV"/*
Tram™’~ mice (Figure 2C) and there was an increase in
medium-sized (1 to 3 mm in diameter) polyps through-
out the small intestine (Figure 2D). These results sug-
gest that tumor growth as well as initiation is enhanced
by loss of mtDNA stability in APCM™*+ Tfam™'~ mice.
A key event that initiates polyposis in APCM™*+ mice is
activation of the Wnt signaling pathway, resulting in
B-catenin-mediated target gene expression.** Thus, we ex-
amined the possibility that the increased tumorigenesis ob-
served in APCM™* Tfam™*’~ mice was caused by further
activation of this pathway. Although we observed increased
expression of two well-characterized Wnt target genes, cy-
clin D1 and ¢-MYC, in polyps from APCY™* mice, their
expression was not enhanced in the APCM™™ Tfam™~
background (Figure 3A). We also observed no exacerbation
of B-catenin nuclear localization in the APCM™™* Tiam™~
background (see Supplemental Figure S3B at http./ajp.
amjpathol.org). Altogether, these results indicate that the
increased intestinal tumorigenesis in APCM™™* Tfam™/~
mice is not attributable to additional activation of Wnt/B-
catenin signaling, but rather through a separate pathway.
Tfam™~ mice are viable and show no obvious pheno-
types on their own, suggesting that basal mitochondrial
function in tissues is not compromised to a significant ex-
tent.’® In addition, our own results show that Tfam ™'~ MEFs

+/+
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have only minor changes in mitochondrial mass and mem-
brane potential (see Supplemental Figure S2 at http://ajp.
amijpathol.org) and that mitochondrial biogenesis is not af-
fected markedly in Tfam ™~ tissues (Figure 1D). However, a
common manner in which mitochondria affect normal and
disease states is through the production of ROS.?”% In fact,
it has been suggested that mitochondrial ROS can act as
signaling molecules (eg, to promote cell division).>?® To
test the hypothesis that changes in mitochondrial ROS pro-
duction may underlie some of the enhanced tumorigenesis
in the APCM™™* Tram™'~ mice, we measured H,O, produc-
tion from isolated mitochondria from mouse intestine. Al-
though basal mitochondrial ROS generation was compara-
ble between APCM™™* Tfam*’~ and APCM™™* Tfam™*’*
mice, mitochondrial ROS production in response to antimy-
cin A (an inhibitor that affects complex I, a known source of
ROS) was significantly higher in mitochondria from APC-
M+ Tfam™ = mice (Figure 3B). There was no difference in
basal or induced ROS production from mitochondria iso-
lated from Tfam™* and Tfam™~ mouse intestine (ie, in the
absence of APCY™*; see Supplemental Figure S4A at
http.//ajp.amjpathol.org). These data indicate that, in the tu-
mor-prone APCM™* hackground, mtDNA instability caused
by the Tfam™~ circumstance could result in increased mito-
chondrial ROS production that contributes to tumorigenesis.

Reducing Mitochondrial ROS via Targeted
Expression of Catalase Decreases
Tumorigenesis in APCM™* Mice

To test the hypothesis that mitochondrial ROS production
is involved in intestinal tumorigenesis, we crossed
APCM™* mice to transgenic mice that target catalase to
mitochondria (MCAT), which have reduced mitochondrial
ROS and oxidative stress in a variety of tissues and

circumstances.*®~*8 Compared with control APCM™* mice,

0-1

1-3 >3

Diameter (mm)

APCM™*+ MCAT mice showed fewer polyps in the colon (Fig-
ure 4B) and in the proximal region of the small intestine (Figure
4C). In the small intestine, there was a trend toward fewer
larger polyps (>3 mm) (Figure 4D), perhaps indicating a late
effect on tumor growth. We confirmed that catalase was over-
expressed in the intestine of the MCAT mice used in this study
(see Supplemental Figure S4C at http://ajo.amjpathol.org), and
determined that the basal rate of hydrogen peroxide
production in mitochondria isolated from the intestine
of APCM™* MCAT mice was reduced significantly rel-
ative to APCM"™* without MCAT (see Supplemental
Figure S4B at http.//ajp.amjpathol.org).

Discussion

Nuclear genome instability is involved in cancer at many
levels.*® However, despite alterations in mtDNA being as-
sociated with a variety of tumors,®®3"-3° the contribution of
mMtDNA instability to the tumorigenesis process has not
been assessed directly. Here, we addressed this important
issue by crossing a Tfam™~ mouse strain, which shows
mtDNA depletion and increased susceptibility to oxidative
mtDNA damage (Figures 1 and 2), to the APCM™™* mouse
model of intestinal cancer. The main conclusion we draw
from our results is that mtDNA instability can contribute to
tumorigenesis in the APC"™* mouse model by a mecha-
nism that is independent of canonical Wnt/B-catenin signal-
ing and likely involves increased oxidative mtDNA damage
and mitochondrial ROS production (Figures 2 and 3).
Tfam homozygous knock-outs (Tfam™~) have been
performed in a variety of tissues to address the require-
ment of mtDNA in tissue function and disease in the
mouse. Although these models have been useful to a
significant degree, they result in fast and complete loss of
mtDNA and mitochondrial OXPHOS, limiting their use in
analyzing the effects of persistent mtDNA damage. Here,
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we have used Tfam™~ mice as a genetic background

that is sensitized to mtDNA instability owing to mtDNA
depletion and increased oxidative damage susceptibility
(Figure 1). Our logic for using this model is that, under
many pathogenic circumstances, including cancer,
mtDNA is not lost, but rather present in a depleted, dam-
aged, and/or mutated state. Our results show that this
premise is reasonable and provide the first direct in vivo
demonstration that mtDNA instability per se can contrib-
ute to tumorigenesis. This new mouse model may be
generally useful for assessing the role of mtDNA instabil-
ity in other disease states, especially those that involve
oxidative stress. It also may be instrumental in determin-
ing the role of oxidative mtDNA damage in aging.

Even though common in human colon cancers, spe-
cific mtDNA mutations do not result in major perturba-
tions of mitochondrial oxygen consumption or respiratory
chain enzymatic activities as one might predict.®® This
suggests that these are passenger mutations either do
not contribute to the tumorigenesis process or they work
in concert with other polymorphic variations in mtDNA or
nuclear DNA.22 Our results show clearly that mtDNA in-
stability can enhance tumorigenesis in vivo (Figure 2) and
are consistent with the idea that in certain nuclear genetic
backgrounds mitochondrial function is more prone to the
effects of mtDNA damage and mutation. In particular, we
find that mtDNA instability leads to an enhanced capacity
to generate mitochondrial ROS when superimposed on
the already tumor-prone APCM™* nuclear genetic back-
ground (Figure 3B). These results highlight that nuclear
and mitochondrial genome instability likely cross-talk and
cooperate in the tumorigenesis process. Similar complex
interactions between mtDNA and nuclear genetic back-
ground potentially hold significance under other cancer
scenarios in which mtDNA mutagenesis has been impli-
cated and in other human disease states.” Finally, that
increased ROS production in purified mitochondria from
APCM™* Tfam™~ intestine is observed only when com-
plex Il is inhibited (Figure 3B), suggests that the effects
of mitochondrial ROS in vivo might only be manifest after
tumorigenesis has begun and mitochondrial respiration is
down-regulated (eg, after initiation of the “Warburg Ef-
fect”29).

With regard to the role of mitochondrial ROS per se in
tumorigenesis, our results show that increasing mito-
chondrial hydrogen peroxide detoxification via mitochon-
dria-targeted expression of catalase has a positive effect
in the APCM™"* cancer model (Figure 4). At this point we
do not know the precise role of mitochondrial ROS in the
process, but promoting mitochondrial or cellular oxida-
tive stress and genome instability are likely possibilities.
For example, the increased ROS could promote nuclear
genome instability that leads to increased rates of APC
loss of heterozygosity or activation/inactivation of onco-
genes/tumor suppressors. Alternatively, mitochondrial
ROS may be acting as signaling molecules®2® that en-
hance tumor initiation and/or growth by affecting prolifer-
ation or differentiation of intestinal stem cells involved in
polyp formation.®® Our results show that ROS derived
from inhibition of mitochondrial complex Il are increased
in mitochondria from the APCM™™* Tfam™*’~ mouse intes-

tine. That complex lll-derived ROS are implicated in ox-
ygen sensing®' and in activating the mitogen-activated
protein kinases/extracellular-signal-regulated kinases
(MAPK/ERK) pathway to support K-ras-induced anchor-
age-dependent cell growth?® is consistent with mitochon-
drial ROS signaling being one component of the effects
we observe on tumorigenesis in APCM™™* mice.

Although dysregulation of Wnt/B-catenin signaling in
intestinal epithelial cells is a well-characterized event ini-
tiating intestinal polyposis,®® tumorigenesis in APCM™~*
mice is complex. In addition to the earlier-mentioned
potential effects of increased mitochondrial ROS produc-
tion on the tumor or initiating cells, oxidative stress can
influence innate immune responses and inflammation
that are involved in intestinal tumorigenesis in APCM™
mice.®?%3 Thus, it is a formal possibility that some of the
effects we observe with regard to mtDNA instability and
ROS on tumorigenesis are occurring via effects on im-
mune system-related cells acting extrinsically on tumor
or initiating cells.

Although our results with the MCAT model clearly im-
plicate mitochondrial ROS in intestinal tumorigenesis, we
emphasize that we have not unequivocally shown the
direct involvement of mitochondrial ROS in the increased
tumorigenesis observed in the APCM™* Tfam™'~ mouse
model. Given that Tfam is a multifunctional protein it is
expected that the effects of reduced Tfam levels on in-
testinal tumorigenesis in APCM™* may include those
other than, or in addition to, increased ROS production
and oxidative mtDNA damage. Nonetheless, the results
of this study open new avenues of investigation into the
precise role of mitochondrial dysfunction and ROS in
cancer development and provide a new experimental
paradigm to investigate the role of mtDNA instability in
other physiological and disease states in Tfam™'~ mice.
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