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Abstract 

In his well-known paper “How computer should think” Belnap (1977) argues that four-valued 
semantics is a very suitable setting for computerized reasoning. In this paper we vindicate this thesis 
by showing that the logical role that the four-valued structure has among Ginsberg’s bilattices is 
similar to th’e role that the two-valued algebra has among Boolean algebras. Specifically, we provide 
several theorems that show that the most useful bilattice-valued logics can actually be characterized 
as four-valuled inference relations. In addition, we compare the use of three-valued logics with the 
use of four-valued logics, and show that at least for the task of handling inconsistent or uncertain 
information, the comparison is in favor of the latter. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introdulction 

In [8,9] Belnap introduced a logic intended to deal in a useful way with inconsistent 
and incomplete information. This logic is based on a structure called FOUR, which has 
four truth values: the classical ones, t and f, and two new ones: I that intuitively 
denotes lack of information (no knowledge), and T that indicates inconsistency (“over”- 
knowledge). Belnap gave quite convincing arguments why “the way a computer should 
think” should be based on these four values. In [26,27] Ginsberg proposed algebraic 
structures called bilattices that naturally generalize Belnap’s FOUR. The idea is to consider 
an arbitrary number of truth values, and to arrange them (as in FOUR) in two closely 
related partial orders, each forming a lattice. The original motivation of Ginsberg for 
introducing bilattices was to provide a uniform approach for a diversity of applications 
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in AI. Bilattices were further investigated by Fitting, who showed that they are useful also 

for providing semantics for logic programs [ 17,19-211. In [2,3] we presented bilattice- 

based logics and corresponding proof systems. These logics turned out to have many 

desirable properties (like paraconsistency). In the present paper we proceed with this 

logical approach. In particular, we consider bilattice-based logics that are preferential in 

the sense of Shoham [42,43], i.e., they are based on the idea that inferences should be taken 

not according to all models of a given theory, but only with respect to a subset of them, 

determined according to certain preference criteria. We use here two main guidelines for 

making such preferences among bilattice-based models: 

(1) Prefer models that assume as much consistency as possible. This approach reflects 

the intuition that contradictory data corresponds to inadequate information about the 

real world, and therefore should be minimized. 

(2) Prefer models that assume a minimal amount of knowledge; The idea this time is 

that we should not assume anything that is not really known. 

FOUR, the structure that corresponds to Belnap’s four-valued logic, is the minimal 

bilattice, exactly as the structure that is based on the classical two values is the minimal 

Boolean algebra. The main goal of this paper is to show that the logical role of FOUR 

among bilattices is also very similar to that the two-valued algebra has among Boolean 

algebras. Indeed, it turned out that all the natural bilattice-valued logics that we had 

introduced for various purposes can be characterized using only the four basic values! 

This does not mean, of course, that from now on bilattices have no value (exactly as the 

fact, that Boolean algebras can be characterized in {t, f}, does not mean that Boolean 

algebras have no value). It does demonstrate, however, the fundamental role of the four 

values. 

In an opposite direction to that taken by Ginsberg and Fitting, other authors tried to 

get along by using just three values for achieving the same (or similar) goals. We show, 

however, that the use of four values is preferable to the use of three even for tasks that can 

in principle be handled using only three values. 

Taken together, the main import of our results is a strong vindication (so we believe) 

of Belnap’s thesis concerning the fundamental importance of the four basic values for the 

goal of computerized reasoning. 

The rest of this paper is organized as follows: In Section 2 we introduce a propositional 

language with four-valued semantics. Our language is based on the basic bilattice operators 

together with an appropriate implication connective. In Section 3 we show the adequacy of 

this language by exploring its expressive power as well as those of its fragments. Section 4 

is devoted to introducing the most important consequence relations that are based on 

FOUR, and to an examination of their main properties. In Section 5 we compare four- 

valued formalisms with three-valued ones, and in Section 6 we generalize the four-valued 

logics of Section 4 to arbitrary bilattices. The main result of this section is that by doing 

so we do not get any new logic. Finally, in Section 7 we summarize the main results and 

conclusions of this work. 
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Fig. 1. FOUR. 

2. The language and its four-valued semantics 

2.1. The algebraic structure and its basic connectives 

The truth values of Belnap’s logic mentioned above have two natural orderings: First 
we have the standard logical partial order, &, which intuitively reflects differences in the 
“measure of truth” that every value represents. According to this order, f is the minimal 
element, t is the maximal one, and I, T are two intermediate values that are incomparable. 
((t, f, T, A-}, &) is a distributive lattice with an order reversing involution 1, for which 
-T = T and -I = 1. We shall denote the meet and the join of this lattice by A and v, 
respectively. 

The other partial order, <k, is understood (again, intuitively) as reflecting differences 

in the amount of knowledge or information that each truth value exhibits. Again, 
((t, f, T, A_}, <k) is a lattice where _L is its minimal element, T-the maximal element, 
and t, f are incomparable. Following Fitting [ 17,181 we shall denote the meet and the join 
of the <k-lattice by @ and @, respectively. 

The twcl lattice orderings are closely related. The knowledge operators @ and @ are 
monotone with respect to the truth ordering &, and the truth operators A, v, and 1 
(as well, of course, as @ and CT+) are monotone with respect to <k. Moreover, all the 12 
distributive laws hold, as well as De Morgan’s laws. The structure that consists of these four 
elements and the five basic operators (A, v, l,C3, @) is usually called FOUR. A double 
Hasse diagram of FOUR is given in Fig. 1. 

2.2. Designated elements and models 

The next step in using FOUR for reasoning is to choose its set of designated elements. 
The obvious choice is 2, = (t , T], since both values intuitively represent formulae known 
to be true. The set V has the property that a A b E D iff a @ b E ;I) iff both a and b 
are in V, while a v b E V iff a @ b E V iff either a or b is in ID. From this point 
the various semantic notions are defined on FOUR as natural generalizations of similar 
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classical notions: A valuation v is a function that assigns a truth value from FOUR to each 
atomic formula. Any valuation is extended to complex formulae in the obvious way. We 
will sometimes write + : b E v instead of v(e) = b. A valuation u satisjies @ iff u(e) E 27. 
A valuation that satisfies every formula in a given set r of formulae is a model of r. The 
set of all models of r is denoted mod(r). The structure FOUR together with 23 as the set 
of the designated elements will be denoted in the sequel by (FOUR). 

2.3. Implication connectives 

Unlike in the classical calculus, Belnap’s logic has no tautologies. Thus, excluded 
middle is not valid in it. This implies that the definition of the material implication + H $J 
as -$ v 4 is not adequate there for representing entailments. We introduce therefore 
instead the following implications and equivalence operation on (FOUR) : 

Definition 1 (Arieli and Avron [2,6]). 

a>b= 
b ifaED, 
t ifa$D, 

a-+b=(a>b)r\(-b>-a), 

attb=(a+b)r\(b-+a). 

Proposition 2. 
(a) v(+ -+ 4) is designated ifsu(@) Gt u(4). 

(b) v(+ t, 4) is designated iflu = v(4). 

Notes. 

(1) 

(2) 

(3) 

Unlike the connectives of the basic language, the new connectives are not monotone 
with respect to &. 
On [t, f} the material implication (H) and the two new implications are identical, 
so also the connectives of Definition 1 are generalizations of the classical 
implication. 
The sense in which III is a true implication will be clarified in Proposition 20 below. 

2.4. Canonical examples 

Example 3 (Tweety dilemma). Consider the following well-known puzzle: 

bird(Tweety) ~Jly(Tweety) 

penguin(Tweety) > bird(Tweety) 

penguin(Tweety) > -JEy(Tweety) 

bird(Tweety) 

penguin(Tweety) 

Denote this set by r. The first assertion of r is formulated by the material “implication” 
H (i.e., $I H ~5 = -@ ~4). This is an instance of a rule which is weaker than the other two 
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Model No. bird(Tweety) fly(Tweety) penguin(Tweety) 

Ml-M2 T T T,t 

M3-M4 T f T,t 

M5-M6 t T T, t 

Fig. 2. The models of r. 

quaker(Nixon) republican(Nixon) hawk(Nixon) dove(Nixon) 

T, t T,t T T 

T, t T f T,t 

T T,t T,t f 

Fig. 3. The models of A. 

rules, since it has exceptions. The rules without exceptions are formulated by a stronger 

implication, >, that is defined in Definition 1. The reason for choosing this connective 
(rather than +, say) will become clear in Section 4.1. It is shown there that 1 is the 
implication connective which corresponds to the basic consequence relation of the four- 

valued logrc. 
The six ,four-valued models of r are given in Fig. 2. 

Example 4 (Nixon diamond). This is another famous example: Nixon was a republican 
and a quaker. Quakers are considered to be doves (however, there might be exceptions), 

and republicans are generally hawks. Hawks and doves represent two different political 

views, and each person is (roughly) either a hawk or a dove. A formulation of this puzzle 
is as follows: 

quaker(iVixon) 

republican(Nixon) 

quaker(iVixon) I-+ dove(Nixon) 

repubZican(Nixon) ti hawk(Nixon) 

dove(Nixon) > -hawk(Nixon) 

hawk(Ni:xon) II -dove(Nixon) 

hawk(Nixon) v dove(Nixon). 

Denote this set of assertions by A. Again, we use “t-+” for denoting the material 
implication, and “1” denotes the stronger implication defined in Definition 1. The twelve 
four-valued models of A are given in Fig. 3. 
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3. The expressive power of the language 

In this section we examine the expressive power of the language we intoduced above. We 

do it from two different points of view (which happen to be equivalent in the two-valued 
case, but are not so in general). 

3.1. Characterization of subsets of FOUR” 

Notation 5. For a set of formulae r denote by d(r) the set of atomic formulae that 
appear in some formula of r, and by ,C(r) the set of literals that appear in some formula 

of r. 

Definition 6. Let @ be a formula so that A($) & {pl, . . . , pn). S$, the subset of FOUR” 

which is characterized by $, is: 

Sz=(h,a2,..., a,) E FOUR” 1 Vu[(Vl < i < n u(pi) = ai) =+ u(+) E D]}. 

Proposition 7. A subset S of FOUR” is characterizable by some formula in the language 

of (-3 11 (or (1, A, V, C?J, @, >, Tl) z@(T, T, . . , T) E S. 

Proof. If @ is any formula in the language of { 1, A, v, 8, @, 1, T1 s.t. A(@) c {PI, 
. . ..p.)andu(pl)=v(p2)=... = u(p,) = T, then u(e) = T. Hence the condition is 
necessary. For the converse we introduce the following connectives: 

PA4 = -(p 3 -q>, pvq = (p 3 q> 3 q, 

fn =plr\-p,Ap2Alp2A...Ap,A-p,. 

The following properties are easily verified: 
(1) il is associative. Moreover, 

u(@tAl+k$i.. ’ r\lJ&) = 1 f 31<i<n-lU(&)$!D, 
U(h) Vl<i<n-lU($!Ji)EV. 

(2) U(ll/l xe2i ...i;p!rn)E2) iff Vl<i<nU(Qi)ED. 
(3) V is associative. Moreover, 

U(@1Vl)2V~~~ VI/&) = I u(@~) Vl<i<n-l~(@~)$Doru(@~)=T, 

t otherwise. 

(4) d$l W2G.. .V$!fn)n)E iff 31<i<nU($i)ED. 
(5) fn has the following property: 

( 

T Vl<i<nU(pi)=T, 
u(fn) = f otherwise. 

Now, by (2) and (4) it follows that: 

(i>S~,K...;2ti~=S~, n-.-ns$m, (ii)S$,v,,,v+~=S~, U...USl;,. 
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Let zi = (a. , . . . , a,) E FOUR”. Define, for every 1 < i < n, 

L 

PiK-Pi ifa: =T 

+p =z PiK(_Pi 3 h> ifai =t 

-Pin(Pi 152) if& = f 

(-pi > fn)i\(pi 3 fn) if& = 1. 

Using the observations above, it is easy to see that @ AI++~A . . . A+: characterizes (7, ii}, 

where 7 = (T, T , . . . , T). This and (ii) above entail the proposition. q 

Note. Obviously, the characterizing formula is much simpler in the (1, A, I]-language, 
where we can use A instead of /\ and v instead of G. 

From Proposition 7 it follows that the language of {-,I) should be extended in order to 
get full characterization of subsets of FOUR*. One possibility is to add the propositional 
constant f : 

Theorem 8. Every subset of FOUR” is characterizable in the language of (-,I, f }. 

Proof. All we need to change in the proof of Proposition 7 is to use f instead of fn in the 
definition of r/r;. After this change the r\-conjunction of the new @s’s characterizes (2) 

and not (7, ii}. This suffices (using V) for the characterization of every nonempty set. The 
empty set itself is characterized by f. q 

Note. Since f = -(J- > I), the language of (1, >, I) also suffices for representing all 
subsets of FOUR”. 

Proposition 7 entails that one cannot delete f from the set (-,I), f) and retain the 
validity of ‘Theorem 8. We next show that - and I cannot be deleted either: 

Corollary 9. > is not definable in term of the other connectives we consider here. 

Proof. By Theorem 8 it is sufficient to show that (I} (for example) is not characterizable 

in the laqguage (1, A, V, C3, cB, t, f, I, T}. 2 This follows from the fact that these 
connectives are all &-monotone. It follows that if A($) & (pl} and ut (pl) <k uz(pl) 
for some valuations VI, v2, then VI($) <k v2 (@). In pZxhxlx if 1 E s$ then also f, t, 

TES;. 17 

Corollary 10. - is not de$nuble in terms of the other connectives. 

Proof. Again, we show that without - not all subsets of FOUR are characterizable. For 
this it is sufficient to show that if + is a formula in the language of (v, A, @, @, >, t, 
f, _I_, T} and A($) C (PI}, then I E S$, iff f E S$,. The proof of this fact is by an 
induction on the structure of $. 

* Note that [I] is not characterizable even though the use of the propositional constant I is allowed. 
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l Base step: S,’ = S+ = FOUR, S$ = Si = 0, Si, = {t, T). 
l Induction step: 

(1) I E S$,,.+ iff I E $, and _L E S$,, iff f E S$, and f E S$ (by the induction 

hypothesis), iff f E S$,@. 

(2) 1 E S$“@ iffIES$ or-LESi,iff ~ES$ orfcS$ (bytheinduction 

hypothesis), iff f E S$,,+. 

(3) I E S$,+ iff _L 6 S$ or I E Si, iff f 4 S$ or f E S$ (by the induction 

hypothesis), iff f E S$,,@. 
The cases of @ and CB are similar to the cases for A and V, respectively. q 

3.2. Representation of operations on FOUR” 

We turn now to the subject of functional completeness. 

Definition 11. An operation g : FOUR” -+ FOUR is represented by a formula J/J s.t. 

A(@) c IPI, . . .1 p,) if for every valuation u we have u($) = g(v(pl), . . . , u(pn)). 

The most important result of this section is the following: 

Theorem 12. The language L* = (1, A, >, I, T) is jknctionally complete for FOUR 

(i.e., every function from FOURn to FOUR is representable by some formula in L*). 

Proof. Let g : FOUR” + FOUR. Since f = -(I 1 I), by Theorem 8 every subset of 
FOUR” is characterizable in L*. Let, accordingly, I,$, @, and +f characterize g-l ({f }), 
s-‘(W), and g- ’ ({I]), respectively. Define: 

~“=(~4;>f)A(~~>T)A(1CI~>i). 

It is easy to verify that Pg represents g. q 

Notes. 
(1) If we follow the construction of !Pg step by step under the assumption that there are 

only two truth values (t and f ), we shall get (with the help of trivial modifications, 

like replacing p > f by -p and p A -1~ by p) the classical conjunctive normal 

form. Our construction is, therefore, a generalization of this normal form. It should 
be interesting to base four-valued logic programming on this type of clauses. In this 
paper, however, we still use the term “clause” in the usual sense. 

(2) The functional completeness property for operations is completely independent, of 
course, of the choice of the designated values. It is remarkable that our choice of 27 
has, nevertheless, a crucial role in its proof (through the notion of characterizability 

of subsets, which does depend on the choice of 27). 
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The ten connectives we use are not independent. Obviously, A and v are definable in 
term of each other (using -), and so are t and f. There are, however, other dependencies. 
The following identities are particularly important: 3 

(1) T = (a > a) ~3 -(a > a), 
(2) a @ b = (a A T) v (b A T) v (a A b), 
(3) I=f@-f, 
(4) f = -(J- 1 U, 
(5) u @ b = (a A 1) V (b A 1) V (a A b). 

These identities mean that relative to the basic cZussicuE language L = {-, A, V, 1) the 
connectives T and @ are interdefinable, while I is equivalent in expressive strength to the 
combination of @ and f. It follows, for example, that the set (1, A, 63, $, 3, f) is also 
functionally complete. This set is obtained from the full classical language ({ 7, A, V, >, 

t, f}) by adding to it the lattice operators of <k (8 and CD). 

Example 13 (Kleene’s three-valued Zogics and Fitting’s guard connective). The meet and 
the join in FOUR with respect to Gr correspond to the conjunction and disjunction of strong 
Kleene’s logic. In order to represent the connectives of the other Kleene’s three-valued 
logics (weak-Kleene4 and sequential-Kleene5), Fitting [21] introduces a new connective, 
called the guard connective. This connective is denoted p : q, and is evaluated as follows: 
if p is assigned a designated value (t or T) the value of p : q has the value of q, otherwise 
p : q has thle value 1. The guard connective has the following simple and natural definition 
in our language: 6 

p : 9 = (P 14) 63 ‘(P >‘4). 

We turn IIOW to investigate the expressive power of the various fragments of our language 
which include at least the basic classical language L = (-, A, V, x}. From the discussion 
before Exa:mple 13 it follows that there are at most eight such fragments, corresponding 
to extending L with some subset of (say) [@CL @, f}. Our next theorem provides exact 
characterizations of the expressive power of each of these fragments, implying that they 
are all different from each other. We show that there is a correspondence between these 
eight fragments and the various possible combinations of the following three conditions: 

(I) g(i’) = T. 
(II) g(i) = T =+ 31< i < n xi = T. 

(III) g(.;E) = I * 31 6 i < n xi = 1. 

Theorem 14. Let L = {-, A, I} and suppose that E is a subset of {c?J, 63, f}. A function 
g : FOURn + FOUR is representable in L U B iff it satisfies those conditions from (I)- 

(III) that uc!Z the (functions that directZy correspond to the) connectives in 3 satisfy. In 

other words: 

3 Definitionr, of v and A in terms of $, @J, t and f, which are dual to (2) and (5), have been given in [7]. 

4 Also known as Bochvar’s logic. 

5 Also known as McCarthy’s logic. 

6 Fitting [21] also provides a definition for the guard connective, which is somewhat less straightforward, but 

does not require implication: p : q = ((p 8 t) @ -(p @I t)) @ q. 
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l g is representable in {-, A, 1) zffit satisfies (I), (II), and (III). 
l g is representable in {-, A, >, f) (thefilE classical Zanguage) iff it satisfzes (II) and 

(III). 
l g is representable in (1, A, >, @} @it satisjies (I) and (III). 
l g is representable in (-, A, >, @} #it satisjies (I) and (II). 
l g is representable in (1, A, >, 8, f} ifSit satisjies (II). 
l g is representubze in (-, A, >, @, @J} ifSit satisjes (I). 

l g is representable in (7, A, 3, $, f) ifit satisfies (III). 
l g is representable in (7, A, >, @, @J, f). 

Proof. The proof closely follows that of Theorem 12. The following changes should be 
made: 

(1) If f is not available we use fn as a substitute (see the proof of Proposition 7). In 
addition, instead of II/!, @, and $rf (which are not available in this case) we use 

f+$ 4J:, and &-the formulae in the language of (1, A, I} which characterize 

(T) U g-‘((f)), (?) U g-‘(IT}) and (7) U g-‘((l)), respectively (such formulae 
exist by Proposition 7). 

(2) If T is not available (i.e., @ $ E) then we use the following sentence as a substitute: 

T, =(Pl 1 PI)A(Pz IP2)A.*.A(Pn 3 Pn). 

It is easy to verify that T, has the following property: 

1 
T 31<i<nu(pi)=T, 

v(T,)= t 
otherwise. 

(3) If I is not available (i.e., (8, f) g E) then if @ E E we use as a substitute for I 
the sentence 

J-n = Pl @ 'Pl 63 P2 @ ‘p2 @ ’ ’ . C% Pn @ -Pn. 

If @ $ 8 we use instead the following sentence: 

J-i = t (Pi A ((Pi V ‘Pi) 3 h>). 

i=l 

These sentences have the following properties: 

v(J-n) = 
( 

T Vl <i <n v(pi)=T, 
I otherwise, 

31 <i<n U(pi)=I++V(l~)=l. 

Following these guidelines, it is not difficult to prove the theorem. We show part (1) as 
an example, leaving the rest to the reader. Assume then that g : FOUR” + FOUR satisfies 
(I)-(III). Define: 

Qg = (4; 1 fn) A (4: 1 Tn) A (4: 1 J-A). 

@g is in the language of (1, A, I}. We show that @s represents g. Let .? E FOIJRn and 
assumethatu(pi)=xifori=l,...,n. 
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Case 1: g(i) = t. By condition (I), x’ # ?. Since g(x’) # f this implies that 

x’ 4 (i} u g-l (if)). 

Therefore, ~($7) $ {T,t) and so ~(47 > fn) = t. The facts that u(& 1 T,) = t and 

~(4: > IL,) = t follows similarly. Hence u(@g) = t = g(x’). 

Case 2: g(Z) = f. Again, by condition I x’ # 7, and so u(fn) = f. In addition, 
~(4;) E (t, T} in this case, and so ~(4; 1 fn) = f. It follows that u(@g) = f = g(x’). 

Case 3a: g(z) = T and x’ = ?. Since @g is in the language of (7, A, >), also u(@) = 

T = g(i). 
Case 3b: g(x’) = T and x’ # 7. By condition (II) there exists 1 6 i 6 n s.t. xi = T and 

so u(T,) =I T. It follows that ~(4; > T,) = T (since u(&) E {t, T} in this case). On the 
other hand, by the same arguments as in Case 1, 

v(#? 3 fn) = v(& 3 16) = t. 

Hence u(@g) = T = g(i). 
Case 4: g(i) = 1. By (III) there exists 1 6 i < n s.t. xi = -L and so u(J_A) = I and 

x’ # 7. Since in this case ~(4:) E (t, T}, it follows that 

u($$ > 1;) = u(IA) = 1. 

Since the value of the other components is again t (as in Case l), u(@g) = _L = g(2). q 

Corollary 15. The eightfragments above are differentfrom each other 

Proof. It i:s rather easy to construct for every subset of (I)-(III) a function from FOUR” 

to FOUR that satisfies the conditions in this subset but not the rest. This easily implies the 

corollary. 0 

We conclude this section with a short discussion on the minimality of the set of 
connective;? in each case. By Corollaries 9 and 10, neither - nor > can be deleted from 
any of the sets of connectives which we have provided in each case. Theorem 14 and 
Corollary 15 imply that none of the connectives in {@, @, f) can be deleted in case it is 
included in the set we construct. 7 This leaves only the question of the necessity of A. 
We shall content ourselves with an example in which this connective is necessary, and an 

example in which it is not. 

Proposition 16. Thefunctionally complete set (1, A, >, T, I} considered in Theorem 12 
is minimal in the sense that no connective can be deleted from it without losing the 

functional completeness. 

Proof. We have discussed already the necessity of -,I, T and I (again: I takes here the 
role of @ and f together). To show that A is also indispensable we prove, by induction on 
the structure of formulae, that no formula $(p, q) in the language of {-, 1, T, 1) defines 

7 Although <me can always replace @ by T, and the pair (63, f) by 1. 
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a function g such that g(t, I) = _L while g(T, t) = T. In particular A itself is not definable 
in this language. q 

The set {-, A, >, T, I} is not minimal in the sense of the number of connectives in it. 
The next proposition shows that there is a smaller set which is functionally complete. 

Proposition 17. The set { 1, $, >, I} is&nctionally complete for FOUR. 

Proof. T and f are definable from this set as shown in the discussion before Example 13. 

Now, define: 

P l-l 4 = (P&l) @ (C-P 3 -9h). 

The relevant properties of ll are the following: 

I 

t V(P) = t, v(q) = t, 

u(pnq)= 1 dp)=t, dq)=L 

T u(p) = T, u(q) = t. 

Now, given a function g : FOUR” + FOUR, define: 

Tg = (# > f)A((@ > T) n (+f > I)).’ 

It is easy now to check that rg characterizes g. 13 

Notes. 

(1) 

(2) 

Using Theorem 14, Corollaries 9, 10, and Proposition 7, it is easy to show that 

no subset of {-, A, v, 8, @, 1, t, f, T, I} with less than four connectives can be 
functionally complete. 
The fact that I = f 8 -f together with Proposition 17 imply that (-, 8, @, 3, f) 
is functionally complete. Hence A can be deleted from the set provided by the last 
part of Theorem 14 (in contrast to that given in Theorem 12!). 

4. Reasoning in (FOUR) 

4.1. The basic consequence relation 

We start with the simplest consequence relation which naturally corresponds to FOUR. 

Definition 18. Suppose that r and A are two sets of formulae. r b4 A if every model of 
r in (FOUR) is a model of some formula of A. 

Proposition 19 (see [3]). b4 is monotonic, compact, andparaconsistent. 

Proposition 20 (see [3]). 
(a) > is an internal implicationfor (FOUR), i.e.: r, @ b4 4, A i#r k4 $ > 4, A. 
(b) + is an equivalence operatorfor (FOUR), i.e.: +!J t, Q, b4 O(q) t, O(#). 

8 See the proof of Theorem 12 for the definition of +b;, @, and $f. 
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4.1.1. Canonical examples-revisited 

Example 2:l (Tweety dilemma-continued). Consider again the set r of Example 3. 
Although r is classically inconsistent, nontrivial conclusions about Tweety can be 
obtained by b4: Tweety is a penguin, a bird, and it cannot fly. The complementary 
conclusions cannot be obtained by b4, as expected. 

Example 2!2 (Nixon diamond-continued). By using b4 on the assertions of Example 4 
one cannot tell whether Nixon is a dove or a hawk (which seems reasonable given the 
conflicting defaults). One can still infer the explicit information about Nixon, i.e., that 

he is a republican and a quaker. However, unlike in the classical case, the negations of 

these assen:ions cannot be inferred, despite the inconsistency. What can be inferred is their 
disjunction: -hawk(Nixon) v -dove(Nixon). 

4.1.2. Proof system 

One of tihe biggest advantages of b4 is that it has a corresponding proof system, which 
is both nice and efficient. It was denoted GBL in [2,3]: 

Axioms. I’, + + A, @. 

Rules. Exchange, Contraction, and the following logical rules: 

I-- *I ,.“_“,“,“, 

[_Ajl r,-$+-A r?-4*A r+-a,-*,-4 

r,-(@A4>*A r=+A,-(@A4> 
E=+ -Al 

[v =>I 
r,+IA r,+*n r+-A,Ilr,4 

r,3v4+A r*A,qv+ 
[* VI 

[_vjl c-bk-4d r*A,-$ r*fla,-4 

r,-(+v4)*A r =k A, -(1cI v 4) 
I* -VI 

169 =+I 
r, $3 4 * A r=kA,$ r*A,# 

r,1CF@4*A r=k-A,lcr@$J 
[* @I 

[_~ ~] r, -+lr, -4 * A r*a,-q l-*A,-4 

r,-(@@4)*A r =+ A, -(!h @ 4) 
[=+ -@I 
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L-t =+I r, -t =k A r*a,t [+t] 

[f=+-1 r>.f- =+A 

[I=+] r,I=$A r=+A,T [=xTl 

[-I+-] r,-I=>A r+ A,-T [=x-T] 

It is easy to see that GBL is closed under weakening. We could, in fact, have taken 
weakening as a primitive rule. 

Definition 23. We say that A follows from r in GBL (r kGBL A) if there exist finite 
P c r, A’ s A s.t. P + A’ is provable in GBL. 

Theorem 24 (see [3]). 
(a) (Cut Elimination) Ifrl I-GEL Al, yk and r2, @ FGBL AT, then rl, L” EGBL Al, AZ. 

(b) (Soundness and Completeness) r b4 A iffr FGBL A. 

Corollary 25. The (A, V, >, t, f }-fragment of k4 is identical to the corresponding 
fragment of classical logic. 

Note. This means that like modal logic, b4 can also be viewed as an extension of classical 
logic by new connectives (for example 1). This is due to the fact that the classical negation 

of $ can be translated into @ 3 f. It is more useful, however, to view - as the real 
counterpart of classical negation. 

Corollary 26. 
(a) All the rules of GBL are reversible. 

(b) Given any sequent r =k A, one can construct ajinite set S of clauses such that 

FGBL r + A ifs +GBL S 

for every s 6 S. 9 

Proof. 
(a) This follows easily from Cut Elimination. For example, the rule [=+ -11 is 

reversible because both -($ > 4) =+ I,+ and -(+ 14) =+ -4 are easily derivable, 
using [-3 =+I. 

9 By a “clause” we mean here a sequent which contains only literals. 
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(b) This is immediate from (a). q 

Note. The last corollary together with the equivalence of ä GBL and b4 mean that we 
can develop a tableaux proof system for b4, which is almost identical to that of classical 
logic. lo Tlhe main difference is that unlike in classical logic, here a clause r + A is valid 
iff f O A 9: 0. One should note also that it is impossible here to translate a clause r + A in 
which r +: 0 into a sentence of the language without using the implication connective > ! 

As we have seen, b4 has a lot of nice properties. Still, it has some serious drawbacks 
as well: It is too restrictive and “overcautious”. Thus it is strictly weaker than classical 

logic even for consistent theories (a case in which one might prefer to use classical logic). 
Moreover, it totally rejects some very useful (and intuitively justified) inference rules, like 
the Disjunctive Syllogism: From -p and p v q one can never infer q by using b4. Under 

normal circumstances we would certainly like to be able to use this rule! 
In the next subsections we consider several possibilities of refining b4. The main theme 

is to restrict the set of models we take into account, using some preference criteria. This 
is the idea behind the notion of a preferential logic considered in [42,43]. This idea has 
recently received a considerable attention (see, e.g., [28,29,31,33,34,38,40]). 

4.2. Taking advantage of the other partial order 

A natural approach for reducing the set of models which are used for drawing 
conclusions is to consider only the k-minimal models. The idea behind this approach is that 
we should not assume anything that is not really known. Keeping the amount of knowledge 
as minimal as possible may also be captured, at least in (FOUR), as a kind of consistency 
preserving method: As long as one keeps the redundant information as minimal as possible 
the tendency of getting into conflicts decreases. 

Definition 27. Let VI, 19 be two four-valued valuations, and r-a set of formulae. 
(a) ut is k-smaller than v2 (~1 <k ~2) if for every atomic p, u1 (p) <k IQ(P); 
(b) v is a k-minimal model of r if v is a <k-minimal element of mod(r). 

Definition 28. r t=i A iff every k-minimal model of r in (FOUR) is a model of some 

6 E A. 

Note. Obvj.ously, if r b4 A then f bi A. 

Example 2!9 (Tweety dilemma-continued). Consider again Examples 3 and 21. Among 
the six models of r (see Fig. 2), two are k-minimal: 

M4 q = {bird(Tweety) : T, penguin(Tweety) : t, JEy(Tweety) : f}, 

M6 q = {bird(Tweety) : t, penguin(Tweety) : t, $y(Tweety) : T}. 

lo Such a system was introduced in [ 16,171, but only validity of signed formulae is considered there and not the 

consequence relation. Moreover, only k-monotonic operators are dealt with in those papers. 
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Using these models we reach the same conclusions as in /=‘: 

r bi bird(Tweety), 

r k: lbird(Tweety), 

I’ bi penguin(Tweety), 

r & -penguin( Tweety) , 

Example 30 (Nixon diamond-continued). Consider again Examples 4 and 22. Among 
the twelve models of A listed in Fig. 3, three are k-minimal: 

M4 = { quaker(Nixon) : t, republican(Nixon) : t, 

hawk(Nixon) : T, dove(Nixon) : T}, 

M8 = { quaker(Nixon) : t, repubZican(Nixon) : T, 

hawk(Nixon) : f, dove(Nixon) : t ) , 

Ml2 = {quaker(Nixon) : T, repubZican(Nixon) : t, 

hawk(Nixon) : t, dove(Nixon) : f}. 

Again, using these models we reach the same conclusions as in b4, among which: 

A bi quaker(Nixon), 

A t&i lquaker(Nixon), 

A bi republican(Nixon), 

A i#=; -republican(Nixon). 

The fact that in the last two examples we reached the same conclusions (at least with 
respect to the literals) as in b4 is not accidental. It is an instance of the following general 
proposition: 

Proposition 31. If A does not include 3, then r b4 A iff r +z A. 

Proof. For the proof we need the following lemma: 

Lemma. For every model M of r there exists a k-minimal model N of r s.t. N <k M. I1 

Proof. Suppose that M is some model of r, and let SM = { Mi 1 Mi E mod(r), Mi <k 
M}. Let C s SM be a descending chain with respect to <k. We shall show that C is 
bounded in SM, so by Zorn’s lemma SM has a minimal element, which is the required 
k-minimal model. Let N be the the following valuation: N(p) = mm<, { Mi (p) 1 Mi E C}. 

N is defined since C is a chain, and FOUR has a finite number of elements. Obviously 
N bounds C. It remains to show that N E SM. Assume that $ E r and let Jz($) = 

IPl, . . . , pn) (see Notation 5). Then: N(pl) = Mi, (PI), . . , N(p,) = Mi, (pn). Since C 
is a chain we may assume, without a loss of generality, that Mi, >k . . . >k Mi, , and so N 
is the same as Mi, on every atom in A(@). Since Mi, is a model of 1c/, so is N. This is true 
for every @ E r and so N E SM as required. 

” This lemma can be generalized for directed sets rather than sequences, but the above formulation is sufficient 

for our needs. 
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Now, back to the proof of the original proposition: The “only if” direction is trivial. For 
the other di.rection, suppose that I-’ bi A, and let M be some model of f. By the previous 
lemma there must exist a k-minimal model N of r s.t. M >k N. Thus there is a S E A s.t. 
N(S) E 2). Since all the operators that correspond to the connectives of A are monotone 
with respect to <k, M(6) >k N(6). But D is upward-closed with respect to <k, therefore 
M(6) E V <as well. q 

Corollary 32. In the monotonicfragment of the language (i.e., without I), the logics k4 

and ki are identical. 

Proposition 31 shows that as long as we are interested in inferring formulae that do 
not include 1, we can indeed limit ourselves to k-minimal models without any loss 
of generality. This in particular is the case when we are interested in inferring literals. 
Examples 29 and 30 show that this approach may lead to a considerable reduction in the 
number of models that should be checked. 

The situ,ation is completely different when we do allow the implication connective to 
appear on the right-hand side of +i: 

Example 3’3 (Tweety dilemma-continued). For r of Example 3 we have 

r ki: -penguin(Tweety) > f, 

although 

r Fz -penguin(Tweety) > f. ‘* 

It follows that in the full language bi # b4. This can be strengthened as follows: 

Proposition 34. b;t is nonmonotonic. 

Proof. q b=i lq > p, since (p : I, q : t} is the only k-minimal model of q. On the other 

hand, q, -q ki -q > p, since {p : I, q : T} is the only k-minimal model of (q, -q}. q 

Note. By Proposition 3 1, +i is monotonic with respect to conclusions that do not contain 

>: If r +I: A then r, + +i A, provided that > does not appear in the language of the 
formulae in A. 

Using the example of the last proof, one can easily see that q +i -q I p and also 

-4, -q > p b;f p, but -4, q &ti p. It follows that bi is not a consequence relation in the 
usual sense, since it is not closed under (multiplicative) cut. This is not surprising, since 
+i is not monotonic, and it is usual to require a nonmonotonic relation to be closed only 
under Cautious Cut (see [30] and Section 4.5 below). 

l2 The meaning of $ > f is that $ cannot be true. This, of course, is stronger than saying that $ is not a 
theorem, or even that -+ is a consequence of the assumptions. 
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Proposition 35. +i preserves Cautious Cut: If r, +I, . . . , pk,, +i A and r +i $i, A for 

i=l,..., n, then r +z A. 

Proof. Suppose that M is a k-minimal model of r, but M(S) 6 V for every 6 E A. Since 

r bi I&, A, then M(@i) E D for i = 1,. . . , n, and so M is a model of {r, @I, . . , en ). 
Moreover, M must be a k-minimal model of {r, +I, . . , @,,I, since any other model of 
this set which is strictly smaller than M with respect to <k must be a model of r, 

which is k-smaller than M. Now, r, @I, . . . , Ilr, +i A, thus M(6) E D for some S E A-a 

contradiction. q 

Despite the nice properties of bt (more of which will be shown in the sequel; see the 
note at the end of Section 4..5.2), we will see in what follows (see, e.g., Example 39 
below) that this consequence relation appears to be “too conservative”. In the following 
subsections we consider therefore more subtle consequence relations. 

4.3. A consequence relation for preferring consistency 

Recall that the basic idea in taking the k-minimal models was to avoid meaningless 
(or redundant) information. A “by-product” of this approach is a reduction in the level of 

inconsistency of our set of assumptions. When we assume less, the tendency of getting 
into conflicts decreases. In what follows we shall use a more direct approach of preserving 
consistency: Given a (possibly inconsistent) theory r, the idea is to give precedence to 
those models of r that minimize the amount of inconsistent belief in r. 

Notation 36. Let u be a four-valued valuation. Denote: 

(a) 11 = tT1. 
(b) Z(u,Zt) = {p 1 p is atomic and u(p) E 11). 

Intuitively, 21 is the set of inconsistent values of (FOUR) (which in this case consists 
only of a single element), and Z(u, 21) corresponds to the inconsistent assignments of u 

with respect to 11. 

Definition 37. Let r be a set of formulae, and M, N models of r. 
(a) M is more consistent than N with respect toZt (M >z, N) if Z(M, 11) c I(N, 11). 

(b) M is a most consistent model of r with respect to Zt (21 -mcm, in short), if there is 
no other model of r which is more consistent than M with respect to 11. The set of 
all the 21 -mcms of r is denoted mcm(r, 21). 

Definition 38. r +i, A if every It-mcm of r is a model of some formula of A 

Example 39 (Tweety dilemma-continued). Consider again Examples 3, 21, 29, and 33. 
Denote by r’ the knowledge base before Tweety is known to be a penguin, i.e.: 

bird(Tweety) t-+$y(Tweety) 

penguin(Tweety) > bird(Tweety) 
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penguin(Tweety) > -jly(Tweety) 

bird(Tweety) 

r’ has 18 models altogether. They are listed in Fig. 4. Here mcm(P, 11) = (M17, M18). 
Thus, using +;I one can infer that bird(Tweety) (but -bird(Tweety) is not true), and 
jly(Tweety) (while -jly(Tweety) is not true). Also, nothing is yet known about Tweety being 
a penguin. Note thatjy(Tweety) is not a consequence of +i (and so not a consequence of 

b4 as well), although it seems to be an intuitive conclusion of r’. Therefore, as we have 
noted before, +i might be considered as “overcautious”. 

Suppose now that a new datum arrives: penguin(Tweety). The models of the modified 
knowledge base, r, are listed in Fig. 2. The mcms of r with respect to Zl are denoted there 
by M4 and M6. Therefore, according to the new information one should alter his belief and 
infer the intuitive conclusions, that bird(Tweety), penguin(Tweety), and -$y(Tweety). The 
complements of these assertions cannot be inferred by +i,, as one expects. 

Proposition 40. /=$, is: (a) paruconsistent, (b) nonmonotonic. 

Proof. 
(a) For example, p, -p k$, q. A countermodel assigns T to p and f to q. 

(b) Consider, for instance, r = (p, -p v -q}. Then r bi, -q but r U {q} kg, 

-9. 0 

Proposition 41. 
(a) rfr b4 A then r bi, A. 

(b) Ifr bi A then r kI$ A, provided that the formulae of A do not contain 3. 

(c) I=$ # k4 and I=;, # ki. 

Proof. 
(a) Immediate from the definition of bi,. 
(b) Follows from part (a) and Proposition 3 1. 
(c) Follows from Proposition 40(b) and its proof, since both b4 and +! are monotonic . 

with respect to the language of (1, v}. q 

Model No. bird(Tweety) jly(Tweety) penguin(Tweety) 

Ml-M8 T T, f T, t, f, 1 

M9-Ml2 T t, 1 f3 1 
M13-Ml6 t T T, t, f, 1 

M17-Ml8 t t f3 1 

Fig. 4. The models of r’. 
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Proposition 42. Zf r, @ are in the language of {v, A, -, >, t, f } and r bi, @, then + 
classically follows from r. 

Proof. Let M be a classical model of r. M is, of course, also a valuation in FOUR, and for 

formulae in the classical language ({ -, v, A, 3, t, f )) there is really no difference between 
viewing M as a valuation in FOUR and viewing it as a valuation in {t , f } . l3 It follows that 

M is a model of r in FOUR, and since Z (M, 11) = 0, M must be an Zl-mcm of r. Thus 
M(Q) is designated. But we also know that M(+) E {t, f}, thus M(e) = t. It follows that 
M is a classical model of +, and so + classically follows from r. 0 

4.4. A consequence relation for preferring classical assignments 

The approach presented in this subsection is similar to that of the previous one. The 
difference is that this time we prefer definite knowledge to an uncertain one. In particular, 
the approach taken here prefers classical inferences whenever their use is possible. 

Notation 43. Let v be a four-valued valuation. Denote: 

(a) 12 = U, 11. 
(b) Z(u, 12) = {p 1 p is atomic and v(p) E I,}. 

This time Z2 is the set of the nonclassical values of FOUR, and Z(u, 12) corresponds to 
the nonclassical assignments of the valuation u. 

Definition 44. Let r be a set of formulae, and M, N models of r. 
(a) M is more consistent than N with respect to 12 (M >z2 N) if Z(M, 12) c Z(N, 12). 
(b) M is a most consistent model of r with respect to Z2 (Zz-mcm, in short), if there 

is no other model of r which is more consistent than M with respect to 12. The 
12-mcms of r are denoted by mcm (r, Z2). 

Definition 45. r b$ A if every Z2-mcm of r is a model of some formula of A. 

Example 46 (Tweety dilemma-continued). Consider again Example 39 and Fig. 4. When 
taking Zz as the set of the “inconsistent” values, M17-the only classical model-is also 
the only Z2-mcm of r’. It follows that according to +i2 one can infer that bird(Tweety), 

Jly(Tweety) (as in the case of +i,), and -penguin(Tweety) (which is not deducible when 

using b$, >. The inverse assertions are not true, as expected. 

Now, let r = r’U (penguin(Tweety)}. As in the case of +%, , mcm(r, X2) consists of the 
valuations denoted M4 and M6 in Fig. 2. The new conclusions are, therefore, bird(Tweety), 

penguin(Tweety), and -Jy(Tweety). Again, the complements of these assertions cannot be 
inferred by blz. These are the intuitive conclusions in this case as well. 

The following propositions are analogous to Propositions 40,41, and 42, respectively: 

I3 This is so because [t, f} is closed under the corresponding operators. 
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Proposition 47. +i2 is: (a) paraconsistent, (b) nonmonotonic. 

Proof. The proof is the same as that of Proposition 40, using /=& instead of b!&. q 

Proposition 48. 
(a) rfr b4 A then f t==%- A. 

(b) Ifr +: A then r b”z, A, provided that the formulae of A do not contain >. 

(c) t=i2#k4 and b&Z+:. 

Proof. The proof is the same as that of Proposition 41, using l=& instead of bil . q 

Proposition 49. Suppose that r, @ are in the language of {v, A, 1, >, t, f }. 
(a) Ifr b%z +, then I@ classically follows from I’. 

(b) Suppose that r is classically consistent. Then $ classically follows from r iff 

r kg* @. 

Proof. The proof of part (a) is the same as that Proposition 42. Part (b) follows from the 
fact that if r is classically consistent then the set of its classical models is the same of the 

set of the Zi-mcms of r in FOUR. q 

It follows that ,Li 

logic on consistent 3, 

is a nonmonotonic consequence relation that is equivalent to classical 
. comes, and is nontrivial with respect to inconsistent theories. 

4.5. General properties of +%I and +i2 

We begin with a comparison between b$, and j=$*. In general, neither of these 
consequence relations is stronger than the other. Consider, for instance, r = {p 1 

-p, -p > p). The only Zl-mcm of r assigns _L to p, while this valuation as well as 
the one in which p is assigned T are the Z2-mcms of r. Therefore, r bii p > q while 

r k& p 11 q. On the other hand, biz p v -p but F$, p v -p. 

Proposition 50. Suppose that d(I', $) = {pl, pz, . . .}. Then r, p1 v 1~1, p2 v -p2, . . . 

I=;, 14 iff 1”, PI v -PI, p2 V 1~2, . . . bi2 llr. 

Proof. Denote: L” = r U (~1 v -pl, p2 v -p2, . . .). Then 

mcm(l+, 11) = mcm(l+, 22), 

since each model of r’ assigns to the formulae in d(I', $r) values from {t, f, T]. q 

Next we consider some common properties of bi, and biz. In the rest of this section 

we shall write +$ whenever the results apply to both these relations. 
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4.5.1. bi and GBL-rules 
For future purposes we need the following obvious technical lemma: 

Lemma 51. Let rl, r2 be two sets of formulae s.t. mod(rl) S mod(r2). Then every Z- 
mcm of T2 which is also a model of rl must be an Z-mcm of rl. 

Proposition 52 (Weak Soundness). Ifr J-GEL A then r t=i A. 

Proof. Obvious from the fact that b4 is sound with respect to GBL and Propositions 41(a), 

48(a). 0 

Note that what the previous proposition claims is that GBL is sound for +: in the weak 
sense; once we add another rule to GBL there is no guarantee that the extended system 
would be sound for bi anymore, even if the new rule itself is sound for +$. Moreover, 

from Proposition 52 it does not follow that every single rule of GBL is sound for Ft. In 
fact, as part (b) of the following proposition shows, this is not the case. 

Proposition 53. 
(a) (Strong Soundness) All the rules of GBL except [I+-] are validfor +i. 

(b) [> =+] is not validfor kg, but its following weakened version is valid: 

Note. In every monotonic system with contraction, [> +-]w is equivalent to [> =+I: 
[II =k] w follows from [ 3 +] by using contraction, and [ > +-I is obtained from [ > =k] w 
by the addition of @ > 4 to the left-hand side of both premises. However, most of the 
consequence relations that we discuss are nonmonotonic, and so the nonweakened version 

of [I +] will not be sound for them. 

Proof of Proposition 53. The validity of Exchange and Contraction follows immediately 
from the definition of t=i. All the introduction rules on the right, except [+ 31 (i.e., 

[=+ AI, [=?- -AI, [+ VI, [* -VI, [=+ 81, [+ -@I, [+ @I, [+ -@I, [+ -11, and 
[a --I) remain valid since the same formulae appear in them on the left-hand side of the 
premises and on the left-hand side of the conclusion, hence the same Z-mcms are involved, 
and the arguments in the case of b4 can be repeated. Similarly, the rules [A +I, [-v =k], 

[@ +I, [-c3 =+I, [-CB =+I, [-I *I, and [ -- =+I remain valid since the left-hand side 
of the premise and conclusion of each one of them have the same set of models. The 

validity of [-A 31, [V =+I, and [@ =+] easily follows from Lemma 5 1. Finally, to show 
the validity of [=k 31, suppose that r +i @ 3 4, A. Then there is an 2-mcm M of r so 
that M(e) E D, M(4) 4 23, and M(S) 4 D for every 6 E A. In particular M is a model 
of r U (I@). By Lemma 51, M is an Z-mcm of r U {$}. Therefore, r, @ &“g 4, A-a 
contradiction. 

(b) A counter-example: Let p, q be atomic formulae. Then bi (p A -p) II f, q and 

q A -q t=i q, but ((p A -p) > f) > (q A -4) ki q (a counter Z-mcm assigns T to 



0. Arieli, A. Avron /Artijicial Intelligence 102 (1998) 97-141 119 

p and f to q). For showing the validity of [> =>]w, suppose that r, I,? > 4 et: A. 
Then there is an Z-mcm M of r U {Q > C#J} such that M(S) $2) for every 6 E A. Since 
r, @ 14 I=; $, A, necessarily M(e) E V. But M is a model of $ EI 4, so M(4) E 2) 
and M is a. model of r U {$ > 4, @}. M oreover, by Lemma 51 A4 must be an Z-mcm 
of r u {+ II c$, 4). Now, r, @ >@,4 bi A, hence there is a 6 E A s.t. M(6) E D-a 
contradiction. q 

Notes. 
(1) Unlike the case of GBL and b4, not all the rules of GBL that are valid with respect to 

+t are also reversible. [+- 11, for instance, is not (consider, e.g., r = I-p}, + = p, 
and I$ = q). This property for itself should not be considered as a drawback, and it 
is even desirable in nonmonotonic systems: Whenever r, 4 j I,? 2 4 holds (which 
is the case with +i), then the assumption that r + 4, together with (Cautious) Cut 

(which is also valid with respect to bi; see below) yield r + @ 14. This, and the 
inverse of [+ 11, imply that r, @ =+ 4. Therefore, had [+ 11 been reversible with 
respect to bi, this consequence relation would have been monotonic. 

(2) Proposition 53(a) implies that given some valid sequents, one can deduce others 
without checking all the models. Here is a simple example: Since for atomic formula 
p, q it holds that -p, p v q f=g q, then by [=% >] we have p v q +i -p I q. 

4.5.2. Comparison with general patterns of nonmonotonic reasoning 
Being nonmonotonic, +i, and kg1 do not respect weakening. Many rules for replacing 

weakening has been proposed in the study of general patterns of nonmonotonic reasoning 
(see, e.g., [23,24,29-31,33,34]). The logic proposed in most of these works is based 
on the two-valued propositional one. In particular, unlike in the present treatment, the 
consequence relations considered there are not paraconsistent. 

In what follows we consider some of the proposals for what nonmonotonic systems 
should look like, and adapt them to the four-valued case. In this way we would be able to 
give them paraconsistent capabilities. 

Definition .54 (Lehmann [30]). A plausibility logic in a language L is a relation =+ 
between finite sets of formulae in L that satisfies the the following conditions: 

Right Monotonic&y: If r =+ A, then r + @, A. 

Cautious Left Monotonicity: If r + @ and r + A, then r, $ =+ A. l4 

Cautious Cut: If r, $1, . . . , 1CI,jAandr+@i,Afori=l,..., n,thenr+A. 

Proposition 55. +i is a plausibility logic. l5 

Proof. Inclusion and Right Monotonicity follow immediately from the definition of +i. 
Cautious Cut is shown as in Proposition 35. It is left to show Cautious Left Monotonicity: 

I4 This rule vlas first proposed in [24]. 

I5 Recall that this means that the rules of Definition 54 are valid with respect to both bf$-, and +$2 
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Assume that r +$ I@, and r bi A. Let M be an Z-mcm of r U {I+}. In particular, M is a 
model of r. Moreover, it must be an Z-mcm of f as well, since otherwise there would be 
an N E mod(r), that is strictly more consistent than M. Since r bi +, this N would have 
been an Z-mcm r U { yk) and therefore N <z M with respect to r U ($}-a contradiction. 
Therefore, M is a Z-mcm of r . Now, since r +g A, M is a model of some S E A. Hence 

0&A. q 

The following definition is a generalization of the notion of preferential logics, which 
has been introduced in [29] : 

Definition 56. Let b be a consequence relation (in the usual monotonic sense). Suppose 
that 1 is a connective that is an internal implication with respect to b and ++ is a 
connective which is internal equivalence with respect to b (see Proposition 20). Then 
a b-preferential logic is a relation =+ that is closed under the following conditions: 

Reflexivity: If r fl A # 0, then r j A. 

Left Logical Equivalence: If r b @ * 4 and r, $ =+ A, then r, 4 =+ A. 

Right Weakening: If r b $ > 4, A and r =+ $r, A, then r =+ 4, A. 

0r:Ifr,IlrjAandr,~jA,thenr,1Crv~jA.16 

Cautious Left Monotonicity. 

Cautious Cut. 

Preferential logics form the central family of nonmonotonic logics among those 
considered in [29]. In their original definition [29] refer to the classical consequence 

relation together with the classical material implication and equivalence. Naturally, we 
prefer to use b4 instead: 

Definition 57. A four-valuedpreferential logic is a b4-preferential logic, where 1, t, are 

the connectives defined in Definition 1 (see also Proposition 20). 

Proposition 58. b$ is a four-valuedpreferential logic. 

Proof. By Proposition 20, 1 is indeed an internal implication and t, is an internal 
equivalence with respect to b4. It is left to show that the other conditions of Definition 56 
are met. Reflexivity, Cautious Left Monotonicity, Cautious Cut, and [V +] have already 
been proved in Propositions 53 and 55. It is left to show the validity of Left Logical 
Equivalence and Right Weakening. 

Lef Logical Equivalence: Let M be an Z-mcm of r U (@}, and suppose that M(6) +I 23 

for every 6 E A. M is in particular a model of r and thus it is a model of @ t, 4. By 
Proposition 2, r U {+I) and r U {@} have the same models. Hence it is easily verified, 
using Lemma 5 1, that M is an Z-mcm of r U { @). But this contradicts the assumption that 

r,ti /==;A. 

l6 This rule was denoted by [=$ v] in G&L 
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Right Wakening: Suppose that M is an Z-mcm of r and M(4), M(S) $ D for every 
6 E A. Since M E mod(P) then by assumption, M(I++ > 4) E V. But M(4) 4 D, and so 
M(q) $ D either-a contradiction to r bi @, A. q 

Note. Similar proofs to those of Propositions 55 and 58 can be used for showing that +i 
is also a plausibility logic as well as a four-valued preferential logic. 

4.5.3. Reducing the amount of the preferred models 

A we have already noted, one of the advantages of kg, and bi2 with respect to k4 
is that the set of models needed for drawing conclusions from the formers is never bigger 
than that of the latter. In this subsection we consider cases in which it is possible to reduce 
the amount of the relevant models even further, without changing the logic. The idea is to 
take the composition of <k and <z; Instead of considering every Zr- [X2-] mcm of r, we 
use only the k-minimal models in this set. I7 

Proposition59. Suppose that the formulae of A are in the language without >. Then 

r b;, A $ every k-minimal element of mcm(r, Zl) is a model of some 6 E A. l8 

Proof. If 1‘ +$ A then in particular every k-minimal element of mcm(r, Xl) is a model 

of some formula of A. For the converse, let M be an Zr-mcm of r. By the lemma in the 
proof of Proposition 3 1, there exists a k-minimal model N of r s.t. N <k M. It follows that 
for every atom p for which N(p) = T, M(p) = T as well. Thus Z(N,Zt) s Z(M,Zl). 

But M is an Zl-mcm of r, so Z(N,Zt) = Z(M,Zl), and N is also an Zr-mcm of r. In 
particular, N is k-minimal among the Zr-mcms of r, and so there is a 6 E A s.t. N(6) E D. 
Since all thle operators that correspond to the connectives of A are monotone with respect 
to <k, M(I;) >k N(6), and so M(6) E 2) as well. Therefore r +i, A. 0 

Note. Proposition 59 is no longer true when > occurs in the conclusions. For a counter- 
example consider, e.g., r = {p, p v q). The k-minimal element of mcm(r, Zl) assigns t 
to p and J- to q, therefore q > lq is true in it. However, p, p v q F:, q 3 74. 

4 Proposition 60. Proposition 59 is not true for bz,, . It is not sufficient to consider only the 

k-minimal elements of mcm( f, 12) for inferring r +$- A, even tf the formulae in A are 

all in the language without >. 

Proof. Consider the following infinite set: 

r = Ipi v -pi I pi+1 A -pi+1 I i 2 11. 

It is easy to verify that 

mcm(r,22) = {Mf, Mf, Mi, M,f, . . .), 

l7 See [5] for a practical usage of the k-minimal mcms of a theory. 

” This result is a generalization of Theorem 4.3 of [5] to the case that r is infinite and may contain implications. 
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where, for every j 3 1, Mj assigns I to {pi, . , pj_1 }, t to pi, and T to {pj+l , pj+2, 

_ _ .}. MS is the same valuation as MJ, except that pj is assigned f instead oft. Therefore 

r l&i2 ~1. On the other hand, mcm(r, 12) has no k-minimal element (since for every 

j 3 1, !$+, <k Mj and M;+l <k MJ’,, therefore everything would have followed from 

this set (m particular pl), had we used only the k-minimal Zz-mcms of r for drawing 
conclusions. 0 

Despite the previous proposition, we still have the following result: 

Proposition 61. Suppose that r is finite, and the formulae of A are in the language 
without >. Then r kg2 A iff every k-minimal element of mcm(r, Z2) is a model of some 

6 E A. 

Proof. Again, the “only if” direction is obvious. For the other direction, assume that the 
condition holds. Since r is finite, it has a finite number of (k-minimal models among the 
Z2-most consistent) models. Therefore, for every 12-mcm M of r there is a model N 
which is k-minimal among the Zz-mcms of r, and N <k M. By our assumption, there is 
a 6 E A s.t. N(6) E D. As in the proof of the Proposition 59, this implies that M(S) E 23 as 
well, and so r +& A. I? 

Note. As in Proposition 59, the condition about A is necessary in Proposition 61 as well: 
For giving a counter-example in this case note that r must be inconsistent (otherwise 
the Z2-mcms of r are its (t, f }-models, and so each Zz-mcm is k-minimal). Consider, 
therefore, r = (p > -p, -p I p}. The k-minimal element of mcm(r, 12) assigns _L to 
p, and so p 3 f is true in it. On the other hand, r k%2 p 3 f. 

4.6. The monotonic classical fragment 

We conclude this section with some results concerning the {v, A, -, t, f }-fragment 
of the language. This fragment may be called the monotonic classical language. It is 
extensively discussed in the literature, and although it has relatively weak expressive power 
in the multi-valued setting, the corresponding fragments of our logics have many nice 
properties. 

First, it is well known that with respect to the monotonic classical language, l=’ is 
identical to the set of “first degree entailments” in relevance logic (see [ 1,141). The exact 
connectionisthat~1,...,1Cr,~4~1,...,~miff~1A...AIlr,--t~1v...v~,isafirst 
degree entailment. 

A second important observation is that relative to this language, bi2 is really a three- 
evalued logic: 

Proposition 62. Suppose that the formulae of r are in the language of { v, A, -, t, f) and 

that M is an Z2-mcm of r. Then there is noformula + s.t. M(e) = 1. 

Proof. Since {t, f, T} is closed under 1, v and A, it is sufficient to show the proposition 
only for atomic formulae. Define a transformation g : FOUR --+ {t, f, T) as follows: 
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g(l) = t, g(b) = b otherwise. Obviously, for every atom p, g o M(p) >k M(p). Since 
every connective in the language of r is k-monotone, Vy E r g o M(y) >k &f(y). Now, 
23 is upward-closed with respect to <k, and so Vy E r g o M(y) E 27. Thus g o M is also 
a model of r. Since g o M >zz M, necessarily g o M = M. q 

Another important property of formulae in the monotonic classical language is that as 
in the classical case, every formula can be translated to an equivalent formula in standard 
conjunctive normal form (CNF) or standard disjunctive normal form (DNF): 

Proposition 63. Every formula @ in the monotonic classical language can be translated 

to a CNF&onnula @I and to a DNF-formula @I’ s.t. for every valuation v in FOUR, 

v($) = v($‘) = v(l+V’). 

Proof. The proof is similar to that of the classical case, using the fact that De Morgan’s 
laws, distributivity, commutativity, associativity, and the double negation rule (--4 z 4) 
remain valid in the four-valued case. q 

Another connection with classical logic is the following: 

Proposition 64. Let r be a classically consistent set in the monotonic classical language, 

and suppose that @ is a formula in CNR none of its conjuncts is a tautology. l9 Then $r 

classically.follows from r ifSr bi, *. 

Proof. (+) Assume first that I++ is a disjunction of literals, which is not a tautology. 
Suppose also that r kil @. Let M be an Zl-mcm of r s.t. M(e) q! 23. Since r is 
classically consistent, it has a classical model, N. Since Z(N, 11) = 0, Z(M, 11) = 0 as 
well. Now, define: 

M(p) = t, or (M(p) = I and lp E ,C($)), 
otherwise. 

All the connectives in r are k-monotonic. Therefore, since M’ >k M, and M is a model 
of r, M’ is a (classical) model of r as well. It is easy to see that M’(Q) = f, therefore @ 
does not classically follow from r. 

Suppose now that I++ is a formula in CNF, none of its conjuncts is a tautology, and 
r k;, I,!J. Then it must have a conjunct @I’ s.t. r k$-, I,//. We have shown that @’ cannot 
classically :follow from r, therefore + also does not classically follow from r. 

(+) Follows from Proposition 42. q 

The last two propositions together with Proposition 59 entail that for checking whether a 
formula classically follows from a consistent set r, it is sufficient to perform the following 
steps: 

(1) convert the formula to a conjunctive normal form, 
(2) drop all the conjuncts which are tautologies, and 

l9 Classically, every formulae which is not a tautology is equivalent to some formula of this form. 
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(3) check the remaining formula only with respect to the k-minimal Zt -mcms of r. 2o 
The next proposition should be compared with Proposition 60: 

Proposition 65. Suppose that the formulae of r are in the monotonic classical language. 

Then r /=z A iff every k-minimal element of mcm(r, 12) is a model of some 6 E A. 

Proof. By Proposition 62, in this case every Z2-mcm of r is also k-minimal in 
mcm(r, 23, and so the claim follows. q 

Next we compare kg1 and l=i in the monotonic classical language. At the beginning 
of Subsection 4.5 we have note d that in general, neither of these relations is stronger 

than the other. As Proposition 66 below shows, this is no longer true in the case of the 
{v, A, -, t, f }-fragment: 

Proposition 66. Let r, A, $I be in the monotonic classical language. 

(a) Zfr kg, A then r t=$, A. 

(b) If $ is a CNF-formula, none of its conjuncts is a tautology, then r kg, $ iff 

r kg2 6 

Proof. (a) This follows from the fact that in the classical monotonic language every 
Zz-mcm of r is also an Zl-mcm of r. Indeed, let M be an Z2-mcm of r, and suppose that 
N is another model of r s.t. N >J-, M. Define for every atom p a valuation M’ as follows: 
M’(p) = t if N(p) = I and M’(p) = N(p) otherwise. Since the language is k-monotonic 
and M’ >k N, M’ E mod(r). Now, 

Z(M’,Z2) =Z(M’,Z,) = Z(N,Zl) c Z(M,Z]). 

Moreover, by Proposition 62, Z(M,Zl) = Z(M,Zz), thus Z(M’,Z2) c Z(M,Zz), and so 
M’ >z2 M-a contradiction. 

(b) Obviously, it suffices to show the claim for a disjunction $ of literals that does not 
contain an atomic formula and its negation. So assume that r F$ @. Then there is an 

Zl-mcm M of r s.t. M(q) 6 23. Consider the valuation Ml, defined as follows: 

M’(P) = ; 
( 

if M(p) = I and p @ L(y?), 

if M(p) = I and p E L(e), 
M(p) otherwise. 

(1) M’ is a model of r, since Vy E r M’(y) >k M(y) and 27 is upward-closed with 
reSpeCt t0 <k . 

(2) M’ is an Zz-mcm of r, since if 3N E mod(r) s.t. N >z2 M’ then 

I(N,Zl) C I(N,Zz) c I(M’,Z2) = I(M’,G) = I(M,Zl), 

so N >T, M-a contradiction. 

2o This process might be useful in case f is a jixed theory, but the check should be made for many different 

potential conclusions. Note that if f is consistent then the number of k-minimal 371 -mcms is never greater than 

the number of classical models and is frequently smaller. We shall return to this point in Section 5. 
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(3) M’(I,~) 4 2): This follows from the structure of $ and from the fact that for every 
I E l(+), M’(Z) E V iff M(Z) E D. 

By (l)-(3) it follows that r l&g2 @. q 

Note. The converse of part (a) of Proposition 66 is not true in general. For instance, 

b!& p v -p while ki, p v -p. 

5. Four values are better than three 

5.1. The three-valued logics in the context of FOUR 

Three-valued logics might be roughly divided into two families according to the decision 
whether the middle element is taken to be designated or not. Logics of the first class are, in 

fact, logics that are based on the subset (t, f, I) of FOUR, while logics of the other class 
are based on the subset {t , f, T}. In both cases the languages of the corresponding standard 
logics are based on some fragment of the language of {-, v, A, G9, @, >, t, f, T, I) (see 

[6]). The interpretations of these connectives are the reductions of the corresponding 
operators of’ FOUR (providedthat the three values are closed under the operations, which is 
the case for the classical connectives. Note that {t, f, I} is closed under @ while {t, f, T} 

is closed under @). The functional completeness theorem concerning FOUR induces a 
corresponding theorem for the three-valued subsets: 

Theorem 6’7. 
(a) The language of (1, A, 3, @, f) isfinctionally completefor (t, f, I}. 

(b) The language of {-, A, 3, @, f } isfinctionally completefor (t, f, T}. 

Proof. This easily follows from the fifth and the seventh items, respectively, of Theorem 

14. 0 

Note. The connective > of FOUR induces two different three-valued implications, 
depending on the interpretation of the third value as either I or T. Parts (a) and (b) of 
Theorem 67 refer, in fact, to these two different meanings of >. On the other hand, the 
three-valued truth tables of @ in {t, f, I) and of @ in (t, f, T} are identical. The two parts 
of Theorem 67 do provide, therefore, two different functionally complete sets of three- 
valued connectives, but this is due to the different meanings of >. 

5.2. Comparison with four-valued systems 

The main advantage of using FOUR rather than three-valued systems is, of course, that 
it allows us to deal with both types of abnormal propositions in one system. This makes 

it possible t,o construct a system like +gl, which is quite strong on one hand, but allows 
also the use of constructive as well as relevant paradigms of reasonings on the other hand. 
In this section we show, moreover, that one can in any case do with FOUR everything 
one can do using only three values, sometimes even more efficiently. We start by showing 
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that it is possible to simulate the basic three-valued logics in the context of FOUR. Denote 
by bit the consequence relation that corresponds to Kleene’s logic (i.e., f bit A iff 

every (t, f, l-)-model of r is a {t, f, I}-model of some formula in A), and by ktp the 

consequence relation of the logic LP *l (i.e., r t=& A iff every {t, f, T)-model of f is a 
{t, f, T)-model of some formula in A). Then: 

proposition 68. Let r, A be two sets of assertions with d(f, A) = (p, , p2, . . .}_ 

(a) r kil A ifSr, PI A -PI 3 f, p2 A -172 > f, . . b4 A. 

(b) r l=tP A iff r, pi v 1~1, p2 v 1~2, . . . k4 A. 

Proof. Part (a) follows from the fact that the {t, f, _L}-models of r are the same as the 

four-valued models of r U {pl A -PI > f, p2 A -p2 > f, . . .}. Similarly, in case (b) the 
{t, f, T}-models of r are the same as the four-valued models of r U (~1 v -pl , p2 v 

-p2,...}. 0 

A basic drawback of standard three-valued logics in which the nonclassical value in not 
designated is that they are not paraconsistent [lo]; {p, -p) has in them no model, and so 
everything follows from this set. Since we consider paraconsistency as one of the major 
reasons for switching to multi-valued semantics, we shall concentrate in what follows on 
the other family of three-valued logics, in which the third value is designated. 

We have already mentioned LP as the basic logic among the three-valued log- 
its with middle element designated. It is well known that LP invalidates the Dis- 
junctive Syllogism (@, l@ v c$ Ftp 4). Priest [37,38] argues that this is a draw- 
back: a consistent theory should preserve classical conclusions. He suggests to resolve 
this drawback by considering as the relevant models of a set r only those that are 
minimally inconsistent. Such models assign T only to some minimal set of atomic 
formulae. The consequence relation &, of the resulting logic, LPm, is then de- 

fined as follows: r #n, @ iff every minimally inconsistent model of r is a model 
of@. 

The original treatment of Priest defines LPm only for what we have called the monotonic 
classical language ((V, A, 1, t, f}). This idea, however, can easily be extended to richer 
languages, and that is what we just have done. 

Like +& and bit, the logic of Priest can also easily be simulated in FOUR: 

Proposition 69. Suppose that d(r, @) = [ ~1, ~2, . . .}. The following conditions are 

equivalent: 

(1) r k&, $. 
(2) r,p1 v-Pl,P*v-P2d=~, @. 

(3) r,P1v-Pl,P2v-P* ,... +h. 

Proof. The three-valued models of r are the same as the four-valued models of r U { pl v 
-PI, p2 v 7~2, . . .}. Since each one of them assigns to the atomic formulae in d(F', $) 

” Also known as Jg, RM3, and PAC (see [6,13,39] and Chapter IX of [HI). Strictly speaking, .I3 and RM3 are 

extensions of LP, since they have added conditional operators. 
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values from {t, f, T}, the LPm models of r are the same as the 11 -mcms and the Zz-mcms 

offU(Plv-pl,P2v’P2,...). 0 

Althouglh the motivation for b& and especially for kE& is similar to that of Priest’s 

Gn (all of them try to minimize the amount of inconsistency), they are not the same 

logic. For instance, p 3 -p, -p > p bLpm p, while p > -p, -p > p kij p for j = 1,2. 

On the other hand, the following proposition shows that in the monotonic classical 

language b=&, is identical to +“z,, and has strong relations to +“z,. 

Proposition 70. Let r, A be two sets of formulae and 9 a formula in the language of 

(-3 A, v, t. fl. 
(a) r +:&,r, A ifSr +$ A. 
(b) Suppose that + is a formula in CNE none of its conjuncts is a tautology. Then 

r i==‘;p, @ ifSr !=;, 1cI. 

Proof. We leave the proof of part (a) to the reader. Part (b) immediately follows from part 
(a) and Proposition 66. q 

Propositton 70(b) together with Proposition 59 imply that a switch to four-valued 
semantics might improve the three-valued inference process of LPm: Let q be a formula 
in the mormtonic classical language. For checking whether r &,, I++, it is sufficient to 
convert $ to a conjunctive normal form, remove every conjunct which contains some 
atomic formula together with its negation, and check the resulting formula only in the 
k-minimal Zl-mcms of r. The number of such models is usually smaller (and never 
bigger!) than the number of the LPm-models. This is due to the fact that from every 
k-minimal Zt -mcm one can obtain several LPm-models by changing every -L-assignment 
to either t or f. Here is a very simple example: Let r = (-p v q, p v q}. q follows from r 

according t’o & and so also according to bi, (and classically as well, of course). Now, 
r has two ILPm-models: (p : t, q : t} and (p : f, q : t} (these are also its classical models), 

Fig. 5. Relationships among the three- and four-valued systems where L = (-, A, v, r, f). 
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but only one k-minimal Zt-model: {p : I, q : t). This single model suffices for inferring 

that q follows from r. 

Fig. 5 summarizes the relationships among the three- and four-valued consequence 
relations with respect to the monotonic classical language. 22 One should remember, 

however, that important as it is, this language is quite limited. 

6. More than four values are usually not necessary 

In this section we consider a class of structures that naturally generalize (FOUR). We 

then generalize the above four-valued logics to those structures in an attempt to achieve 

more powerful inference mechanisms. The major result of this section is that this freedom 

to use more truth values does not add much; Each one of the multi-valued logics considered 

here can actually be characterized by one of our four-valued logics. 

6. I. Bilattices 

6.1.1. Background and motivation 

Bilattices [26,27] are algebraic structures that naturally generalize Belnap’s four-valued 

lattice, FOUR. The idea is to consider arbitrary number of truth values, and to arrange 

them (as in FOUR) in two closely related partial orders, each forming a lattice. As in the 

four-valued case, one intuitively understands one of the orderings as representing degrees 

of truth, and the other as representing degrees of knowledge. 
The original motivation of Ginsberg for using bilattices was to provide a uniform 

approach for a diversity of applications in AI. In particular he treated first-order theories 
and their consequences, truth maintenance systems and formalisms for default reasoning. 

The algebraic structure of bilattices has been further investigated by Fitting and Avron [7, 

18,211. Fitting has also shown that bilattices are very useful tools for providing semantic for 
logic programs: He proposed an extension of Smullyan’s tableaux-style proof method to 

bilattice-valued programs, and showed that this method is sound and complete with respect 

to a natural generalization of van Emden and Kowalski’s operator (see [ 17,191). Fitting 

also introduced a multi-valued fixedpoint operator (that generalizes the Gelfond-Lifschitz 

operator [25]) for providing bilattice-based stable models and well-founded semantics for 
logic programs (see [20]). A well-founded semantics for logic programs that is based on 

the bilattice NINE (Fig. 6) is considered also in [ 1 I]. Bilattices have also been found useful 

for nonmonotonic reasoning [3,4], temporal reasoning [22], model-based diagnostics [27], 
and reasoning with inconsistent knowledge bases [5,41]. 

** The observation that &, and +i 1 are incomparable follows from the facts that excluded middle is valid 

with respect to +&, but not with respect to +s,, while the disjunctive syllogism (applied to atomic formulae) is 

valid in +i, but not in &. 
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Fig. 6. NINE, and DEFAULT. 

61.2. PreEminaries 

Definition 71 (Ginsberg [27]). A bilattice is a structure f? = (B, &, <k, -) such that B 

is a nonempty set containing at least two elements; (B, &), (B, <k) are complete lattices; 
and - is a unary operation on B that has the following properties: 

(a) if a Gr b, then -a >r -b, 

(b) if a <k b, then -a <k -b, 

(c) --a = a. 23 

In what follows we shall continue to use A and v for the meet and join of &, and 8, 

$ for the meet and join of <k. Also, f and t still denote the respective least and greatest 
element with respect to &, while _L and T-the least and the greatest element with respect 
to <k. It is easy to see that t, f, T, and J_ are all distinct from each other. 

Definition 72. A bilattice is called distributive [27] if all the twelve possible distributive 
laws concerning A, V, 63, and CB hold. It is called interlaced [17,19] if each one of A, v, 
8, and $ is monotonic with respect to both Gr and <k. 

The following subsets of the truth values in B are used for defining validity of formulae 
and the associated consequence relation. They provide a natural generalization of the set 
of the designated values (t, T} of (FOUR). 

Definition 73 (Arieli and Avron [2,3]). 

(a) A bl’filter of a bilattice B is a nonempty set 3 c B, 3 # B such that: a A b E 3 iff 
aE,FandbE3,a@bE3iffaE3andbE3’. 

(b) A bifilter 3 is called prime, if it satisfies also: a v b E 3 iff a E 3 or b E 3, 
a@bE3iffaE3orbE3. 

23 Note that FOUR is the minimal nondegenerated bilattice. 
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Proposition 74 (Arieli and Avron [4]). A subset 3 of an interlaced bilattice B is a (prime) 

bi$lter iff it is a (prime) Jilter relative to & and T E 3 (iff it is a (prime) jilter relative to 

<k and t E 3). 

From now on (unless otherwise stated) 3 will denote a prime bifilter. Obviously, if a E 3 

and b at a or b >k a, then b E 3. It immediately follows that t, T E 3 while f, I 4 3. 

Example 75. Ginsberg’s DEFAULT (Fig. 6, right) and Belnap’s FOUR are bilattices that 
contain exactly one bifilter, {T, t}, which is prime in both. NINE (Fig. 6, left), on the other 
hand, contains two bifilters: {b I b >k t) as well as (b ( b >k dt); both are prime. 

Definition 76 (Arieli and Avron [2,3]). A logical bilattice is a pair (a, 3), where f3 is a 
bilattice, and 3 is a prime bifilter on a. 

Proposition 77 (Arieli and Avron [4]). Every distributive bilattice can be turned into a 

logical bilattice. 

In [3] it is shown that if B is interlaced, then 27(B) = {b E I3 1 b at T} is always a bifilter, 
and even the smallest one. 

Example 75-continued. (FOUR) = (FOUR, {t, T)), (DEFAULT, {t, TJ), (NINE, 

(b I b >k t)), and (NINE, {b I b >k dt]) are all logical bilattices. 

The following definition of entailment is a natural generalization of Definition 1 for 
arbitrary logical bilattices. 

Definition 78 (Arieli and Avron [2,6]). Let (23,3) be a logical bilattice (23,3). Define: 

a>b= 
b ifaE3, 
t ifa$3, 

a--+b=(a>b)r\(-b>-a), 

a*b=(a+b)r\(b-+a). 

The following semantic notions are also obvious generalizations of the four-valued ones: 

Definition 79. 
(a) A valuation u in B is a function that assigns a truth value from B to each atomic 

formula. Any valuation is extended to complex formulae in the standard way. 
(b) Given (a, 3), we will say that u satisjies @ (v + I++), iff v(e) E 3. 
(c) A valuation that satisfies every formula in a given set of formulae, r, is said to be a 

model of r. Given (23,3), the set of the models of r will be denoted mod(r). 

6.1.3. Types of truth values and valuations 
We assign to every element of a bilattice t3 and to every valuation in a a specific type. 

This typing of the space of valuations on B will have a great significance in what follows. 
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Definition 80. Let (at, Fl) and (&, 32) be two logical bilattices. Suppose that bi is some 
element of Bi and that Vi is a valuation on Bi for i = 1,2. 

(a) bt and b2 are of the same type if: (i) bl E 31 iff b2 E 32, and (ii) -bl E 31 iff 

yb2 E 32. 
(b) ur and u2 are of the same type if for every atomic p, q(p) and Q(P) are of the 

same type. 

Note that the types depend on the identity of the bifilter, so two valuations might not be 
of the same type even in case they are identical and the underlying bilattice is the same. 
Consider, e.g., a valuation u on NINE s.t. u(p) = ot for some atom p. Then u for 3 = {b 1 
b >k t) (is not of the same type as the same u where the bifilter is 3 = {b 1 b >k dt}). 

Proposition 81. Let (131, .Fl) and (&,32) be two logical bilattices and suppose that 

~1, u2 are <two valuations on B1 , B2 (respectively), which are of the same type. Then for 

everyformula +, ul(@) and IQ(+) are of the same type. 

Proof. By an induction on the structure of @ (the fact that 3 is prime is crucial here!). q 

Corollary 82. Let ul ,312 be two valuations of the same type on a logical bilattice (l3,3). 

Then for every formula $, VI (I+%> and IQ(@) are of the same type. 

Theorem 113. A model of r in (FOUR) is also a model of r in every logical bilattice 

(B, 3). 

Proof. Let iVlc4) be a model of r in (FOUR), and suppose that LVZ@,~ is the same 
valuation defined on some logical bilattice (a, 3). Since every bifilter 3 contains t, T 
and does not contain f, I, then A4c4) and M@sn are of the same type. Hence, by 
Proposition 81, M(4)($) and M@,m($) are of the same type for every * E r. In 

particular ft4(13,fl must be a model of r in (23,3) as well. 24 q 

Lemma 841. Let u be a valuation in a logical bilattice (Z?, 3). Then u($r += 4) E 3 ifs 
u(e) and v(4) are of the same type. 

Notation 8;5. Given a logical bilattice (23,3). Denote the four possible types of its 

elements by l;B,F, I’J,‘, 7-F.’ and I,“,‘, i.e.: 

la,j’={bEBIbE3,1b~3}, t 7”,“F=(bEBIb$3,-bE3), f 

7”,jr={bEBIbE3,1bE3}, T 7”,F=[bEBIb$3,-b$3). I 

We shall usually omit the superscripts, and just write ‘&, ‘Z-f, IT, 71. 

24 In the spelzific case where (B, F) is interlaced, the last theorem immediately follows from Proposition 3.1 of 

[19], since it is shown there that FOUR is actually a sub-bilattice of every interlaced bilattice B, so in this case 
Mc4)(+) and M(“s3)(+) are not only of the same type, but are actually identical. 
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Definition 86. Let (B, fl be a logical bilattice. Define a function h : L3 + FOUR as 
follows: 

Proposition 87. 
(a) h is a homomorphism onto FOUR. 

(b) M is a model in (i?, I=) of a set r offormulae iff the composition h o M is a model 

off in (FOUR). 

Proof. Left to the reader (see also [3, Theorems 2.17,3.17]). c] 

6.2. Extending the four-valued logics to bilattice-based logics 

In this section we introduce obvious generalizations of the logics of Section 4 to arbitrary 
logical bilattices. The main conclusion is that as in the case of the generalization of the 
classical two-valued logic to arbitrary Boolean algebra, no new logic is obtained. 

6.2.1. The logics +B,F and b:” 

Definition 88. Let (B, 3) be a logical bilattice, and suppose that f, A are two sets of 
formulae. 

(a) r +“,F A if every model of I’ is a model of some formula in A. 

(b) r $” A if every k-minimal model of r is a model of some formula in A. 

Note that b4 = +lFoUR) and b: = +rUR). Therefore, in the particular case of 

(FOUR) we shall continue to use the abbreviations b4 and bi. 

Theorem 89 (Arieli and Avron [3]). r haps A ifj’r b4 A. 

Proof. One direction follows from Theorem 83. For the other, suppose that r ka,s A. 

Then there is a valuation M that is a model of r in (8, F) but M(S) 4 F for every 6 E A. 

Let M’ = h o M. From Propositions 8 1 and 87 it follows that M’ is a four-valued model of 
r s.t. M’(6) 4 {t, T] for every S E A. Therefore r k4 A. q 

Theorem 90. Let (B, fl be a logical bilattice s.t. infk F E J? 25 Then 

r bFJ A iff rt=iA. 

Proof. First, we prove some lemmas: 

25 This is clearly the case whenever B is finite. It can be shown also that if i? is interlaced then infk 3 E 3 iff 

inff 3 E 3. Moreover, in this case inf, 3 = in& 3 A T while infk 3 = infr 3 8 t. 
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Lemma 90-A. Suppose that 0 # X c B and let -X = {7x 1 x E X}. Then infk -X = 
- infk X. 

Proof. 

XE-lXjlXEXjlX~ki~fXjX~k’i~fX. 

Thus: infk -X >k - infk X. On the other hand, replacing X with -X yields that 
infk 1-X >k -infk -X, i.e., infk X >k - infk 1X. Therefore - infk X >k infk -X, and 
so - infk X = infk -X. 0 

Lemma 90-B. For every x E {t, f, T, 1) infk 7, E 7,. Moreover: infk 71 = 1, infk ?; = 
infk 3 = mink 3, infk 7f = - infk 3 = 1 tink 3, and infk 7T = mink 3 $ - tink 3. 

Proof. 

(9 
(ii) 

(iii) 

(iv) 

The case x = I is trivial, since I E 71. 
The case x = t: Let a = infk 3. Since ?; E 3, infk ‘& bk a. Now, a E 3 (given). 
On the other hand, t E 3. Hence t >k a, and so f >k -a. It follows that -a $! 3 
(otherwise f E 3-a contradiction). Therefore a E ‘&, and so a = mink ?;. 
The case x = f. Let again a = infk3. Since -7f C 3, by Lemma 90-A 
- infk If ak a. Hence infk If >k -a. On the other hand we just have shown that 
-a q! 3, while --a = a E 3. It follows that -a E If, and so -a = Inink 7-f. 
The case x = T: Since 7T C 3 and -7T E 3, infk 7T >k infk 3 E 3 and 
- illfk 7T >k infk 3 E 3. Hence inf 7T E 3 and inf -7T E 3. By Lemma 90-A, 
then, inf 7T E 7~. For the other part note that mink 3 @ - mink 3 E 3 and also 

-(~3$-m~3)=-*3$min3E3. 
k 

ThllSmink3@-m&3E7T,andso 

i;f 7T <k mp 3 @ - “,‘” 3. 

On the other hand, Vb E 7T b >k Inink 3 (by (ii)) and -b >k -mink 3 (by (iii)). 
Hence 

vbE7Tb>kmjn3@-mfn3. 

In particular, 

i;f 7T >k “,‘” 3 @ - mp 3, 

therefore 

Lemma 90-C. Suppose that M is a k-minimal model of I’ in (B, 3), and let h : f3 + FOUR 
be the homomorphism defmed in Defmition 86. Then h o M is a k-minimal model of r in 
(FOUR). 

Proof. Suppose not. Then there is another model N of r, which is k-smaller than h o M 
in (FOUR). By Theorem 83, N is also a model of r in (B, 3). Define a valuation N’ by 
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N’(p) = infk IN(~) (p atomic). By Corollary 82, N’ is also a model of r in (D, 3). Note 
that N and N’ are of the same type, and so are M and h o M. Let p be an atomic formula. 

Case A: If N(p) and (h o M)(p) are of the same type, then so are N’(p) and M(p). By 
the construction of N’, N’(p) <k M(p). 

Case B: If N(p) and (h o M)(p) are not of the same type, then since N(p) <k 
(h o M)(p), there are three possible cases: (i) N(p) = I and (h o M)(p) E {t, f, T}, or 
(ii) N(p) = t and (h o M)(p) = T, or (iii) N(p) = f, and (h o M)(p) = T. Let’s consider 
each case: 

Case B(i): In this case N’(p) = -L as well, while M(p) $ 71, thus M(p) # I and so 

N’(P) <k M(P). 

Case B(ii): Since, by Lemma 90-B, N’(p) = Inink3 and M(p) E 3, so N’(p) <k 
M(p). But N’(p) # M(p) since -M(p) E 3 while -N’(p) 6 3. Therefore N’(p) <k 

M(P). 
Case B(iii): Again, by Lemma 90-B, in this case N’(p) = mink -3. But -M(p) E 3, 

so N’(p) <k M(p) here as well. 
Now, since N is a model of r in (FOUR), which is strictly k-smaller than h o M, there is 

at least one atom po that falls under case B above. For this po, N’(po) <k M(po) while for 
any other atom p, N’(p) <k M(p). Hence N’ is a model of r in (B, 3) which is k-smaller 
than M-a contradiction. q 

The “if” direction of Theorem 90 now easily follows from Lemma 90-C: Suppose that 

for some logical bilattice (B, 3), r FF’ A. Let M be a k-minimal model of r s.t. 
M(6) $3 for every 6 E A. By Lemma 90-C h o M is a k-minimal model of r in (FOUR) 
of the same type as M. Therefore (h o M)(6) 6 {t, T} for every 6 E A, and so r i&i A. 

The other direction: Suppose that r F,” A. Then there is a k-minimal model M of 
r in (FOUR) s.t. M(6) 4 {t, T} for every 6 E A. Define a valuation M’ on B as follows: 
M’(p) = infk 7~~~1 (p atomic). By Corollary 82 and Lemma 90-B, h o M’ = M. Hence (by 
Proposition 87) M’ is a model of r, and M’(6) $3 for every S E A. Moreover, M’ is a k- 

minimal model of r, and so r kfVF A. Indeed, if N is another model of r s.t. N <k M’, 
then h o N <k h o M’ = M. Also, there is p s.t. N(p) <k M’(p) and so N(p) # ‘&Q). 
Hence h(N(p)) # M(p), and so actually h o N <k M. Since h o N is a model of r in 
(FOUR) (because N is a model of r), M is not k-minimal-a contradiction. q 

6.2.2. The logics of bf’F 

Like 1=4 and bi, the logics bi, and biZ have also natural generalizations to bilattices. 

Definition 91 (Arieli and Avron [2,3]). Let (23,3) be a logical bilattice, and b-an 
arbitrary element in B (the carrier of 23). A subset Z of B is called an inconsistency set 
in (B, 3), if it has the following properties: (a) b E Z iff -b E Z, (b) 3 f’ I= IT. 

Lemma 92. Suppose that Z is an inconsistency set in (t?, 3). Then: 
(a) 7T c 1 c 7~ u 71. 
(b) TEZandt, f $2. 

Proof. Immediate from Definition 9 1. q 
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Example 93. IT and IT U 71 are respectively the minimal and maximal inconsistency Set 
in every logical bilattice. In (FOUR) the former set was denoted 11 (see Notation 36(a)) 
and the latter 22 (Notation 43(a)). These are the only inconsistency sets of (FOUR). 

Notation 94. I (u, z> = (p 1 p is atomic and u(p) E Z). Intuitively, I (u, 2) is the set of the 
inconsistent assignments of a valuation u with respect to an inconsistency set Z (compare 
to Notations 36(b) and 43(b)). 

The next two definitions are natural extensions of Definitions 37, 38, 44, and 45, to 
general logical bilattices: 

Definition 95. Let r be a set of formulae, and M, N models of r. 
(a) M is more consistent than N with respect to Z (M >x N) if Z(M, 2) c Z(N, z). 
(b) M is; a most consistent model of r with respect to Z (Z-mcm, in short), if there is 

no other model of r which is more consistent than M. The set of all the Z-mcms of 

r is denoted mcm(r, z>. 

Definition 96. r +F3F A if every Z-mcm of r is a model of some formula of A. 26 

Note. Several relations similar to +t,F are considered in the literature. We have already 

mentioned, e.g., Priest’s LPm [37,38]. In our terms, Priest considers the inconsistency set 
Z = IT. In the three-valued case this is the only inconsistency set, and it consists only 
of T. In the general (multi-valued) case there are many others. 

Kifer and Lozinskii [28] also propose a similar relation (denoted there PA, where 
A stands for the values that are considered as representing inconsistent knowledge). 
This relation is considered in the framework of annotated logics [44,45]. See [3,5] for a 

discussion on the similarities and the differences between bz”,F and PA. 

We now show that again everything that one can infer by using bF,F may be inferred 

in (FOUR) together with either 11 or Z2 as the inconsistency set: 

Theorem 97. For every logical bilattice (I3,3) and an inconsistency set Z there is a 

consistency set 3 in (FOUR) s.t. r +f” A ifSr +$ A. 

Proof. In the course of this proof we shall use the following convention: whenever v is 
a function from the atomic formulae to (t, f, T, I), u4 denotes its expansion to complex 

26There is a slight (but significant) change between the relation @ defined here and the relation 

k ~& (abbreviation: kcon), considered in [2,3]. The difference is that instead of considering the inconsistent 

assignments 01‘ v on every atomic formulae as we do here, in [2,3] only the assignments on the atomic formulae 

that appear in the language of the set of assumptions, r, are considered. In other words, the relevant set of 
assignments there is I(u, r,z) = (p E A(r) ( v(p) E 1) (cf. Definition 94). Our new definition has certain 

advantages over the original one. Thus, Proposition 49(b) fails for +&lT I)) and Proposition 53(a) fails for 

both CL(lTl) and ä xl(lT,Il). 
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formulae in FOUR, and v B denotes the corresponding valuation on B. 27 

Let (B, .?) be a logical bilattice, and let h : (B, .F) -+ FOUR be the homomorphism onto 
FOUR, defined in 86. 

Lemma97-A.v4=hovB. 

Proof. We show by induction on the structure of a formula 1// that u4 ($) = h o uB (+I>. For 
atomic formulae this follows from the fact that on {t, f, T, I}, h is the identity function. 
For more complicated formulae we use the fact that h is an homomorphism. q 

Lemma 97-B. vB is a model of r in (t?, _F) ifsv4 is a model of r in (FOUR). 

Proof. Immediate from Lemma 97-A and the fact that uB (@) E F iff u4 (+) = h o u B (I/J) E 

It, TI. q 

The rest of the proof is divided into two cases that correspond to the two possibilities of 
defining an inconsistency set in (FOUR) : 

l Case A: 71 G 1. 
l CuseB:I~\Z#PI. 

For each case define a corresponding inconsistency set in (FOUR). In Case A let ,7 = 12 = 
{T,I},andinCaseBlet J=Zt ={T]. 

Lemma 97-C. In Case A, M is an Z-mcm of r in (l3, .F) if h o M is an Zz-mcm off in 

(FOUR). 

Proof. By Lemma 92(a) in Case A, Z = TT U li and so b E Z iff h(b) E &. Therefore, 
for every two valuations Ml and M2 in B, 

* (P I @ 0 MI)(P) E 121 c b I (h 0 M20) E 121 

ehoM1 >&hoMz. 

It immediately follows that if h o M is an Z2-mcm of r in (FOUR) then M is an Z-mcm 
of r in (x3, a. For the converse, assume that h o M is not an Zz-mcm of r in (FOUR). 
Let v be an assignment in FOUR s.t. u4 is a model of r in (FOUR) and v4 >& h o M. 

By Lemma 97-A, v4 = h o vB. Thus h o vB >i2 h o M, and so vB >FF M. Moreover, by 

97-B uB is a model of r in B. Hence M is not an Z-mcm of r in (B, n. q 

Corollary 97-D. In Case A, r bF3 A ifSr b& A. 

27 Note that although v4(p) = uB (p) when p is atomic, this might not be the case in general, unless 13 is 
interlaced. 
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Proof. Suppose that r l&Y& A. Then there is an assignment v in FOUR s.t. v4 is an X2- 

mcm of r in (FOUR) that is not a model of any 6 E A. By Lemma 97-A, v4 = h o v B and 
by Lemmas 97-B and 97-C, vB is an 2-mcm of r in (Z3, fl s.t. ~~(6) $ F for every 6 E A. 

Hence r p’F,r A. For the converse, assume that M is an Z-mcm of r in (Z?, fl which is 
not a model of any formula in A. Then, by Lemmas 97-B and 97-C, h o M is an Z2-mcm 
ofrin(FO(/R),andhoM(6)E(f,I}forevery6EA.Thereforer~~~A. q 

Let us turn now to Case B, in which there is an a! E 71 \ 2. Suppose that M is a model 
of r in (Z3, F). Consider the valuation Mu, defined for every atomic formula p as follows: 

Since obviously h o M = h o M,, then in particular: 

Z(h o M,Zl) = Z(h o Mu, Zl). 

Lemma 97-E. For every $ E r, M ( I,?) E 3 iff M, (@) E E 

Proof. Immediate from Proposition 8 1. q 

Corollary 97-F. If M is an Z-mcm of r then M = M,. 

(1) 

Proof. In other words, we have to show that there is no atom p such that M(p) E 71 n T. 
Assume otherwise. Then Ma >fSF M. Since by Lemma 97-E Ma is also a model of r, 
this implie,s that M is not an Z-mcm of r. q 

Lemma 97-G. Zf M = Mu then: 

Z(M, 2) = Z(h o M, 2-l). (2) 

Proof. If M = Mu, there is no atom p such that M(p) E 71 n 1. Hence, by Lemma 92, 

M(~)EZ~M(~)E~~(~~M)(~)EZI, 

andsoZ(M,Z)=Z(hoM,Zl). q 

Lemma 97-H. In Case B, Zf M is an Z-mcm of r in (8, fl then h o M is an 11 -mcm of r 
in (FOUR). 

Proof. Suppose that M is an Z-mcm of r in (Z3, a. Assume that v is a valuation in FOUR 
s.t. v4 is a model of r in (FOUR) and v 4 > 2, h o M. By Lemma 97-B, vB is a model of 

r in (Z?, F). Now, since obviously (v,“), = v,“, we have: 

Z(v:,Z) = Z(hov,B, 11) by Lemma 97-G 

= Z(h o vB 3) by Eq. (1) 

= Z(V”J~) by Lemma 97-A 

c Z(h o M, 11) by the assumption 

= Z(M,2) by Corollary 97-F and Lemma 97-G. 
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Hence u,” >T,, M, and so M is not an Z-mcm of r in (B, F), a contradiction. q 

Corollary 97-I. In Case B, r +$’ A iSfr bi, A. 

Proof. If r /7+’ A then there exists an Z-mcm M of r s.t. M(6) $! .F for every S E A. 

By Lemma 97-H, h o M is an Zt-mcm of r in (FOUR) and (h o M)(S) $ {t, T) for every 
S E A. Therefore f k$, A _ For the converse, assume that r &i, A. Suppose that v is an 

assignment in FOUR s.t. u4 is an Zr-mcm of r in (FOUR) and u4(S) $ {t, T} for every 
S E A. By Lemma 97-A u4 = h o un. By Lemma 97-B and its proof, ~a is a model of r 
in (a, fl s.t. uB (8) +! 3 for every S E A. By Lemma 97-E the same is true for u,“. It is 
left to show, then, that u,” is an Z-mcm of r in (B, F). Suppose otherwise. Then there is 

an Z-mcm M of r, s.t. M >!3F u,“. Since (u,“), = v,” and (by Corollary 97-F) M = M,, 

we have: 

I(hoM,Zl) = Z(M,Z) by Lemma 97-G 

c r($?) by the assumption 

= Z(h 0 l&2,) by Lemma 97-G 

= Z(houE,Zt) byEq.(l). 

Therefore (h o M) >g, (h o vB) = u4. Since h o M is a model of r (because M is), this is 
a contradiction. This concludes the proof of Corollary 97-I and Theorem 97. q 

The following conclusion easily follows from the proof of Theorem 97: 

Corollary 98. Let (t3, FT) and Z be some logical bilattice and an inconsistency set in it. 

Note. The relation bz: of [2,3] (see footnote after Definition 96) can also be 

characterized by (FOUR); r ~~,&, A iff there is an inconsistency set J in FOUR s.t. 

r K&s, A. The proof is similar to that of Theorem 97; We omit the details. 

7. Summary and conclusion 

Bilattices are algebraic structures that have been shown useful in several areas of 
computer science. The smallest nondegenerated bilattice, (FOUR), consists of four 
elements, and it is usually associated with Belnap four-valued logic. The goal of this work 
has been to show that the logical role of (FOUR) among (logical) bilattices is similar to that 
the two-valued (classical) lattice has among Boolean algebras. As such, (FOUR) provides 
a useful framework for capturing classical reasoning (in cases its use is appropriate) as well 
as some standard non-monotonic methods and paraconsistent techniques. 
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We began this work by providing appropriate interpretations of the classical connectives 
in terms of (FOUR), and adding to them connectives that correspond to the basic bilattice 
operations. We have examined the expressive power of the various fragments of the 
resulting language, and showed that (a fragment of) our language is functionally complete 
for FOUR. 

With this syntactical tool in our disposal, we turned to considering the use of (FOUR) 

as our main semantical tool. The existence of elements like T and I, as well as the idea 
of ordering data according to degrees of knowledge, suggest that this structure should be 
particularly suitable for reasoning with uncertainty. 

During the discussion on the importance of (FOUR) we have considered several 

inference relations that allow plausible reasoning mechanisms: 
l b4: This is a consequence relation in the standard sense of Tarski and Scott. It was 

called here “the basic consequence relation”. We have shown that this relation is sound 
and complete with respect to the cut-free Gentzen type system GBL, monotonic, 
compact, and paraconsistent. Its main drawbacks are that it is strictly weaker than 
classical logic even for consistent theories, and that it always invalidates some 
intuitively justified inference rules, like the Disjunctive Syllogism. 

l +i: This relation considers only the k-minimal models for making inferences. The 
idea behind its definition is that we should not assume anything that is not really 
known. We have shown that as long as we are interested in inferring formulae that do 
not include our nonmonotonic >, bi is equivalent to k4. Therefore, in such cases 

we can indeed limit ourselves to the k-minimal models without any loss of generality, 
and so reduce the amount of models required for making inferences. 

l +i : The idea here is to give precedence to the models that minimize the amount 
of inconsistent belief. This approach reflects the intuition that contradictory data 
corresponds to inadequate information about the real world, and therefore should be 
minimized. This relation is a plausibility logic, paraconsistent, nonmonotonic, and 
preferential. In the monotonic classical fragment of the language this relation can be 
used for efficiently checking which element of a given set of formulae classically 

follows from a given consistent theory. 
l +i2: This relation prefers definite knowledge to an uncertain one. Thus, the 

approach taken here is to prefer classical inferences whenever possible. Indeed, for 
consistent theories in the classical fragment this inference relation is identical to the 
classical one. In general, however, b$ is different than classical logic, since it is 
paraconsistent and nonmonotonic. 

All these consequence relations can be generalized in a natural way to arbitrary logical 
bilattices. A natural question that arises at this point is whether by this generalization one 
obtains something that is not already available in (FOUR). Alternatively, one may wonder 
whether only three values suffice. Our answer to both questions is basically negative. We 
have shown that everything that can be done using three values is also possible in the four- 
valued setting, and even more efficiently, while the converse is not true. On the other hand, 
we gave a sequence of theorems that show that it is possible to characterize in (FOUR) 
any bilattice-valued version of the consequence relations mentioned above. The outcome 
is, as the title of this paper implies, a strong evidence for the fundamental logical role and 
usefulness ‘of the four-valued framework. 
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