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A b s t r a c t - - I n  this paper, we give new formulae which calculate easily the Adomian's polynomials 
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almost obvious by using a weak hypothesis on the nonlinear operator of the functional equation. 
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1.  I N T R O D U C T I O N  

In the eighties, G. Adomian [1] proposed a new and fruitful method for solving exactly nonlinear 
functional equations of various kinds (algebraic, differential, partial differential, integral, . . .  ). 
The  technique uses a decomposition of the nonlinear operator as a series of functions. Each term 
of this series is a generalized polynomial called Adomian's polynomial. The Adomian technique 
is very simple in its principles. The difficulties consist in calculating the Adomian's polynomials 
and in proving the convergence of the introduced series. Some at tempts  to prove convergence 
have been given in [2-5]. None of these proofs tried to demonstrate directly the convergence of 
the series solution. In [5], a proof of convergence of the series solution is given but  it uses a 
very strong hypothesis on the nonlinear operator. In the following, we shall prove convergence 
of the series solution owing to a new formula giving the Adomian's polynomials. This formula 
will express the series solution as a function of the first term of the series (this te rm is always 
known). 

Let us first recall the basic ideas of the decomposition method of Adomian [1,3,4]. Consider 
the general functional equation 

u = N(u)  + f ,  (1.1) 

where N is a nonlinear operator from a Hilbert space H into H,  and where f is a known function. 
We are looking for a solution u of (1.1) belonging to H. We shall suppose that  (1.1) admits a 
unique solution. If (1.1) does not possess a unique solution, the decomposition method will give 
a solution among many (possible) other solutions. The decomposition method consists in looking 
for a solution having the series form 

o o  

= Z us. (1.2) 
i=0 

The nonlinear operator N is decomposed as 
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oo 

N(u) = Z An, 
n ~ O  

where the An are functions called the Adomian's polynomials. 
Adomian [1], the An were obtained by writing 

(1.3) 

In the first approach given by 

v = i ~  )d u4, N(v) = N i=0)~4u4 = nfo:k nan.  (1.4) 

We remark that the An are formally obtained from the relationship [1,3,4,6] 

n! An = - ~  N )~4 u4 , n = 0, 1, 2 , . . . .  (1.5) 
4=0 ~ = 0  

These definitions are only formal, and nothing is proved or supposed about the convergence of 
the series ~ u4 and ~ An. 

Putting (1.2) and (1.3) into (1.1) leads to the relationship 

o¢~ oo 

u4 = ~ A4 + f, (1.6) 
4=0 4----0 

and the Adomian's method consists in identifying the u~ by means of the formulae 

UO ---- f ,  

U l  = Ao, 
?22 ~ A1, 

Un = An-l ,  

(1.7) 

In [2,4], it was proven that the Ai only depend on u0, u l , . . . ,  ui, and thus the formulae (1.7) give 
all the terms ui of the series in an explicit manner, if we are able to calculate the polynomials Ai 
for every i. But to prove convergence of the series ~ u4, it is necessary (and sufficient) to prove 
the convergence of the series ~ An. Unfortunately, the convergence of ~ An is not a consequence 
of the previous definitions. In [3], the convergence is proved by using a new formulation of the 
method and by applying the fixed point theorem. In [4], a proof of convergence is obtained 
by means of properties of the substituted convergent series, and supposing that (1.1) admits a 
solution of the form Y]u4, where the series is absolutely convergent. In the following, we shall 
prove convergence of the series ~ An owing to new formulae giving An in function of u0 only. 
This approach generalizes a result given in [5]. 

2. N E W  F O R M U L A E  F O R  C O M P U T I N G  T H E  An 

In [2], we have given a simpler formula than in [1,6] for calculating the Ai's. Let us recall this 
formula: 

An= 
O~ l-J.-...+c~n.-~. 

Ao = N(uo), 

U~ 1 --Or 2 O~n-- 1 - -¢~  Otn 

N(al)(u°) (~---~2)! un-1 un 
(an-I - an)[ an[ '  n ~: O, (2.1) 
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where (OQ)i_-- 1 ..... n is a decreasing sequence. The sum in (2.1) has to be done on all the solutions 
of the equation 

Otl -[- OL2 J r ' ' ' '  -~- a n  = n, a l  >_ o~2 _> " "  _> an. (2.2) 

Let us call P ( n )  the number of solutions of (2.2). Using number theory [7] allows us to evaluate 
P(n ) .  Indeed, we have the following result. 

T H E O R E M  2 . 1 .  

PROOF. Set 

P ( n )  < exp lr 

oo oo 

for n e N*. (2.3) 

f ( t )  = E P ( n ) t n  = 1-[(1 -- tk) -1, Itl < 1. 
n=0 k = l  

For 0 < t < 1, we define g(t) as 

g(t) = log f ( t ) .  

oo ~ t k  j ~ (  tj ) 1 
g(t) = - E log(1 - t k) = - ) -  = ~ -:. 

k = l  k = l j = l  j = l  3 

Then, we have 

If j _> 1 and 0 < t < 1, we obtain 

(2.4) 

(2.5) 

( 2 . 6 )  

1 - t j 

1 - - t  
-- 1 + t + t 2 + - . .  + t  j - t ,  (2.7) 

and then 
1 - tJ 

j t j - 1  < - - f - - ~  < j ,  

Putt ing (2.8) into (2.6) implies 

O < t < l ,  j _ l .  (2.8) 

oo t j_  1 1 - t  co 1 
< --i -9(t) < 

-- j = l  

(2.9) 

But  we know that  

and, therefore, 

lim (1 - t) g(t) _ ~r 2 
t--*l t 6 ' 

P ( n )  t"  < f ( t ) ,  

From these inequalities, we deduce that  

i f 0 < t < l ,  for n_> 0. 

(2.1o) 

(2.11) 

log P(n )  < - ~  1 -----t + n log . (2.12) 

Let us set 1 + u = 1/t ,  then 0 < u < c~, for 0 < t < 1, and we obtain 

7r 2 1 
- + n u .  log P(n )  < -~- u (2.13) 

The function ~r2/(6u) + nu  has a minimum (with respect to u) for u = ~r/x/~-n, and thus, 

log P ( n )  < 7r (2.14) 

CAFIdA zg:7-H 



106 K. ABBAOUI AND Y. CHERRUAULT 

This result will be used later for proving the convergence of the decomposition method. Let 
us give some properties of the An before proving the convergence of the series ~ An. In [2], we 
have redefined the Adomian's polynomials An by setting, for any sequence 

n 

an(h)  = u,,  (2.15/ 
i=0  

n 

N (un(A)) = E M Ai, (2.16) 
i=0  

and thus we obtain the An by the relationships 

An = ~. " ~  N M ui (2.17) 
i=O A=O 

Then, we have the following results. 

THEOREM 2.2. 
0 

(1) Ouo An-k  = _ _  ~ An, Vn, k, n > _ k. (2.18) 

In particular, for n = k, we obtain 

0 0 An, Vn, (2.19) 
Ou---o Ao = Oun 

1 
(2) An+l = n +----1 K An, where (2.20) 

n 0 (2.21) g = E ( k  + 1) uk+l 
O u k  " 

k=O 

PROOF. The first result is a direct consequence of the definition of An. For the second result, 
we have, by definition, 

A n + l -  ( n + l ) !  dh n+l N Mui  
A=0 

n 0 
_ 1 ~ cnk (k + 1)[ Uk+l (n -- k)l ~ An-k 

(n + 1)1 - -  

k=O 

1 0 1 n ~ An 
- -  i n + 1)l E ( k  + 1) uk+l ~ An-k  = n +---~ E ( k  + 1) uk+l l 

k=0 Ouk " 

Now, let us give a formula giving An as a function of u0. We have the following result gener- 
alizing those of [5]. 

THEOREM 2.3. 

An = E ca~ ..... a,~ (N(uo)) n+l-c'' (N'(uo)) a'-c'2 . . .  (N(n-1)(uo))°"~-~-c"~ 

~+...+a~=n (2.22) 

, 

where 
n~ 

(2.23) c~1 
..... ~ "  ( a l - a 2 ) !  • ( a n - l - a n ) I  a J  ( I ! ) ~ i - ~  . . .  (n  - i )  ~" - I -~"  ( n + l - a x ) ! "  

PROOF. We first remark that 
1 d n 

An = in + 11----------~ dA n [N(u°)n+l]' 

which can be proved easily by induction. Then, using a classical formula [8] for calculating the 
n th derivative of a function, it leads to (2.22), with parameters ca 1 ..... 6.  given by (2.23). 
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An= 
Gl+...+(~n=n 

Applying Theorem 2.1 implies 

which is the general term of a convergent series. | 

But  a difficulty remains. Indeed, the convergence of the series ~ An depends on the ui 's by 
hypothesis (a) and the ui are also obtained from the Ai's. Practically, it will be difficult to prove 
that  ui is bounded in norm. The following result gives a more useful result proving directly that  
the series ~ An converges. 

THEOREM 3.2. If  N is C (°°) and satisfies [[g(n)(u0)[[ < M < 1 for any n E N,  then the 
decompositional series ~-~°°=o u~ is absolutely convergent and we have 

Ilun+lll = HAnll < M n+l n ~/H exp r . (3.2) 

PROOf. By using Theorems (2.1) and (2.3), one can prove that: 

~ Ic~i,~ ..... ~ I < n'/-~ exp 7r , and therefore, 
C[l+'"+~n =n 

HAnl] < M n+ln J-~ exp r 

IIAnll is majorized by the general term of a convergent series. | 

4. C O N C L U S I O N S  

The decomposition method first developed by Adomian has now proved its power for solving 
all kinds of nonlinear functional equations. In [2,5] and in this paper, we have given practical 
formulae well adapted to numerical computations of the Adomian's polynomials An. The An can 
also be calculated by using software for formal calculus. Before these approaches, the computation 
of An was often a difficult problem when n > 3. Owing to this study, we are also able to prove 
the convergence of the Adomian's series without hypothesis on the ui's. It suffices to have some 
hypothesis on the nonlinear operator N at u0. These hypotheses are not generally difficult to 
verify on concrete problems. Applications of decomposition methods are very important  and 
numerous. Let us specially quote the applications to modelling where parameters have to be 
identified from experimental data. In that  case, the decomposition method can be associated 
to an optimization technique. In the same way, the decomposition method may be applied to 
optimal control problems arising, for instance, in biomedicine. It allows us to transform an 
optimal control problem into a classical optimization problem. 

N(a')(u°) (al - a2)[ . . . . .  ( a n - ,  - an)! an!" 

3. R E S U L T S  O F  C O N V E R G E N C E  

From Theorem 2.1, we deduce the following result. 

THEOREM 3.1. With the following hypotheses, 

(a) N is C (~) in a neghbourhood of uo and NN(n)(uo)H <_ M',  for any n (the derivatives of 
N at uo are bounded in norm); 

(b) Iluill _< M < 1, i = 1 , 2 . . . ,  where II " II is the norm in the Hilbert space H; 

the series ~-~n~=o An is absolutely convergent and, furthermore, 

PROOF. We know that  
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