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SUMMARY

RNA functions through thedynamic formationof com-
plexes with RNA-binding proteins (RBPs) in all clades
of life. We determined the RBP repertoire of beating
cardiomyocytic HL-1 cells by jointly employing two
in vivo proteomic methods, mRNA interactome cap-
ture and RBDmap. Together, these yielded 1,148
RBPs, 391 of which are shared with all other available
mammalian RBP repertoires, while 393 are thus far
unique to cardiomyocytes. RBDmap further identified
568 regions of RNA contact within 368 RBPs. The car-
diomyocyte mRNA interactome composition reflects
their unique biology. Proteins with roles in cardiovas-
cular physiology or disease, mitochondrial function,
and intermediary metabolism are all highly repre-
sented. Notably, we identified 73 metabolic enzymes
as RBPs. RNA-enzyme contacts frequently involve
Rossmann fold domains with examples in evidence
ofboth,mutualexclusivityof, orcompatibilitybetween
RNA binding and enzymatic function. Our findings
raise theprospectofpreviouslyhiddenRNA-mediated
regulatory interactions among cardiomyocyte gene
expression, physiology, and metabolism.

INTRODUCTION

RNA-binding proteins (RBPs) are critical interaction partners for

all cellular RNAs. RNAs recruit RBPs to formdynamic ribonucleo-

protein particles (RNPs), and it is these assemblies that execute

RNA function (Castello et al., 2013; Chen and Shyu, 2014; Singh

et al., 2015).Multiple sequencing-basedRBP footprinting studies

(König et al., 2012) have now attested to the long-held view that

RBPs interact with RNA in an intricate and highly combinatorial

manner (Keene, 2007). The identification of proteins that co-pu-

rify with polyadenylated RNA from native cellular contexts by

mass spectrometry, dubbed mRNA interactome capture, has

yielded the first comprehensive views of active RBPs in eukary-
1456 Cell Reports 16, 1456–1469, August 2, 2016 ª 2016 The Author
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otic cells. Specifically, mRNA interactome capture from human

cervical cancer (HeLa) (Castello et al., 2012) and embryonic kid-

ney (HEK293) cells (Baltz et al., 2012), murine embryonic stem

cells (ESCs) (Kwon et al., 2013), S. cerevisiae (Beckmann et al.,

2015; Matia-González et al., 2015; Mitchell et al., 2013),

C. elegans (Matia-González et al., 2015), as well as human hepa-

toma cells (HuH-7) (Beckmann et al., 2015) together identified

over 1,000 RBPs, many of which had no prior RNA-related anno-

tation. Despite this already considerable expansion of mRNP

componentry, more distinct cellular contexts need to be studied

to define context-specific RBP repertoires.

The identification of so many RBPs indicates hitherto-un-

known connections between seemingly disparate cellular pro-

cesses and unexpected ‘‘moonlighting’’ activities that proteins

carry out in a highly compartmentalized cellular environment

(Copley, 2012). One such area deserving of further exploration

is suggested by the reported ability of several metabolic en-

zymes to interact with RNA (Castello et al., 2015; Cie�sla, 2006;

Hentze, 1994; Hentze and Preiss, 2010). Enzymes could moon-

light to regulate mRNA utilization in response to co-factor or

metabolite levels, as documented for the cytosolic aconitase

(ACO1)/iron regulatory protein (IRP1) paradigm (Muckenthaler

et al., 2008). Conversely, RNA could affect enzyme activity,

and collectively these interactions could form regulatory RNA-

enzyme-metabolite (REM) networks (Hentze and Preiss, 2010).

Here, we report the adaptation and parallel application of

mRNA interactome capture (Castello et al., 2012) and RBDmap

(Castello et al., 2016) to beating murine HL-1 cardiomyocytes

(Claycomb et al., 1998). We chose cardiomyocytes because of

their unique metabolic requirements and importance to human

disease (Rosca et al., 2013), gaining insight especially into the

scope of mitochondrial RBPs.

RESULTS

mRNA Interactome Capture and RBDmap Uncover the
RNA-Binding Proteome of Cardiomyocytes
Both proteomic methods require large numbers of cells, and

thus we employed the murine HL-1 cardiomyocyte cell line as

readily renewable source material. HL-1 cells are widely used
(s).
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Figure 1. Identification of Cardiomyocyte RBPs

(A) Schematic of mRNA interactome capture and RBDmap approaches. Proteins identified by one or both approaches constituted a superset of cardiomyocyte

RBPs.

(B) RNA-protein complexes captured on oligo(dT) beads were digested with proteinase K and RNA recovery levels monitored by quantitative PCR. Shown are

averages of six biological replicates. Error bars, SD.

(C and D) Complexes captured on oligo(dT) beads were eluted by RNase-digestion, resolved by SDS-PAGE alongside input WCL (percentage equivalent

to loaded eluate amount as indicated), and analyzed by western blot (C; see Experimental Procedures for antibody details) or silver stain (D). Results are

representative of three independent interactome capture experiments. (See Figures S1A and S1B for equivalent RBDmap controls.)

(E) Proportion of cardiomyocyte RBPs or WCL proteins with GO annotation ‘‘RNA binding’’ or RNA-related annotations (see Supplemental Experimental

Procedures for details on annotation sources). Left, cardiomyocyte RBPs; right, WCL.

(F) Analyses as in (E) for RBDs.

(G) Matrix plot of enriched/depleted KEGG pathways among RBP groups as defined in (E), compared to WCL.

See also Figures S1 and S2 and Table S1.
as a model as they retain many characteristics of adult cardio-

myocytes (Claycomb et al., 1998), although compared to native

myocardium their energy metabolism is less organized (e.g.,

Eimre et al., 2008). Confluent and spontaneously beating murine

HL-1 cells were irradiated with UV light (150 mJ/cm2 at 254 nm)

to induce covalent crosslinks (CLs) between proteins and RNA

within native complexes. Under these conditions, crosslink for-

mation will typically be sub-stoichiometric and selectively occur

at ‘‘zero’’ distance protein-RNA interactions (Castello et al.,

2012, 2016). After denaturing cell lysis, RNA-protein complexes

were captured on oligo(dT) beads and washed with high-salt/

anionic detergent buffer to remove non-crosslinked proteins.
Bound material was then processed for ‘‘mRNA interactome

capture’’ to determine the scope of cardiomyocyte RBPs or for

‘‘RBDmap’’, which maps protein regions contacting RNA, as

schematized in Figure 1A. Three independent biological repli-

cates were processed for each approach, as well as parallel

non-crosslinked controls (noCL). Aliquots taken after the first

round of capture demonstrated selective purification of polyade-

nylated RNAs (cytosolic and mitochondrial; Figure 1B), known

RBPs such as ELAVL1 and PTBP1 (Figures 1C and S1A), and

a distinct subset of cellular proteins as the mRNA interactome

(Figures 1D and S1B). For mRNA interactome capture (Castello

et al., 2012), RBPs were liberated by RNase treatment, digested
Cell Reports 16, 1456–1469, August 2, 2016 1457



with Trypsin/Lys-C protease mix, and analyzed by quantitative

mass spectrometry. This identified 963 high-confidence RBPs

(false discovery rate [FDR], 1%; see Figure S1D for reproduc-

ibility between replicates). Mass spectrometry was also per-

formed on whole-cell lysate (WCL) samples, which identified

4,749 proteins (Table S1).

The RBDmap approach is described and validated in detail

elsewhere (Castello et al., 2016). In applying RBDmap here,

complexes eluted after a first round of capture were digested

with Lys-C only, before a second round of oligo(dT) purification

(Figure S1C). This separated protein fragments into a ‘‘released’’

and an ‘‘RNA bound’’ pool, which were both treated with RNase

and Trypsin. All tryptic fragments within the released pool,

termed Rpeps, can in principle be detected by mass spectrom-

etry (Figure 1A). By contrast, tryptic digestion of the ‘‘RNA-

bound’’ pool will yield two types of peptides. One type (termed

Xpep, depicted in green, Figure 1A) will still carry a remnant,

or remnants, of crosslinked RNA. Due to this heterogeneous

mass shift, Xpeps are difficult to be detected bymass spectrom-

etry (see Castello et al., 2016; Kramer et al., 2014). The other type

(termed neighboring peptide or Npep, depicted in red, Figure 1A)

is of predictable mass and thus readily detectable. Extension

from the Npep boundaries to adjacent Lys-C sites can neverthe-

less still predict the Xpep coordinates, although sub-stoichio-

metric crosslinking and protease cleavage will add some

complexity to the assessment of individual examples. Note

that proteolytic processing efficiency is close to 100% (Fig-

ure S1C). Therefore, matching Npep and Xpep(s) together

constitute the original RNA-bound Lys-C fragment (termed

RBDpep, Figure 1A). Proteins derived from 368 genes exhibited

RBDpeps that were enriched in the RNA bound over the released

pool at an FDR of 1% (see Figure S1E for reproducibility between

replicates).

Proteins that lack a Trypsin cleavage site within their RBDpeps

will not be ‘‘visible’’ by RBDmap but may still be detected by

mRNA interactome capture. Conversely, the additional proteo-

lytic step and enrichment by a second oligo(dT) capture round

in RBDmap will reduce sample complexity and experimental

noise, thus improving detection for another subset of proteins

(Castello et al., 2016). Consequently, proteins identified by

RBDmap substantially (65%), but not completely, overlap with

those of the mRNA interactome approach (183 RBPs are shared

with the HL-1 mRNA interactome Figure 1A; an additional 51 are

shared with the following mRNA interactomes: HeLa, HEK293,

HuH-7). Taken together, both approaches define a ‘‘superset’’

of 1,148 cardiomyocyte RBPs (Tables S1, S2, and S3).

Known and Uncharacterized Cardiomyocyte RBPs
Share Similar Functional Features
Compared to the WCL proteome, cardiomyocyte RBPs were

enriched for RNA-related functions (56% have RNA-related

annotation, Figure 1E; see Figure S1F for the most enriched/

depleted Gene Ontology [GO] terms), as expected. A similar

GO term enrichment was seen with either themRNA interactome

or RBDmap set individually (data not shown). KEGG pathway

enrichment analysis confirms this but interestingly also indicates

overrepresentation of several pathways of intermediary meta-

bolism among RBPs without prior RNA-related annotation (Fig-
1458 Cell Reports 16, 1456–1469, August 2, 2016
ure 1G; see below). Similarly, proteins with classic or non-classic

RNA-binding domains (RBD) are also overrepresented (Fig-

ure 1F). Many known RBD types are enriched among the cardi-

omyocyte RBPs (Figures S1G and S1H). For instance, we

captured most of the RRM-containing proteins expressed in

HL-1 cells (139 out of 168; Figure S1G). Similar trends were

seen for other RBDs, including DEAD box helicase, KH, PWI,

and PUF domains as well as many of the expected zinc finger

domain subtypes (Figures S1I and S1J). We further identified

all eight proteins with the MIF4G fold expressed in HL-1 cells

as RBPs (i.e., EIF4G1-3, UPF2, CWC22, CTIF, NOM1, NCBP1).

These proteins relate to the nexus of mRNA splicing, translation

initiation, and nonsense-mediated decay. Enrichment of the

Nol1_Nop2_Fmu domain was driven by capture of four members

of the NSUN family of RNA:m5C (5-methylcytosine) methyltrans-

ferases (NSUN1, -2, -4, -5). Nucleosidemodifications in polyade-

nylated RNA have received much attention lately and indeed, 29

proteins with annotations related to ‘‘RNA modification’’ were

detected as cardiomyocyte RBPs (Table S3), prominently

covering the enzymology of m5C, m6A (N6-methyladenosine),

and pseudouridine modifications, as well as adenosine to ino-

sine editing, all shown to occur in mRNA (Jaffrey, 2014; Sibbritt

et al., 2013). Beyond that, we find componentry involved in

several additional RNA modifications, including m5U (5-methyl-

uridine), m6
6A (N6,N6-dimethyladenosine), and D (dihydrouri-

dine), suggesting that the diversity of RNA modifications in

polyadenylated RNAs may be richer than currently documented.

All seven mammalian pentatricopeptide repeat (PPR)-containing

proteins were identified here. PPR proteins function in mito-

chondrial RNA metabolism (Lightowlers and Chrzanowska-

Lightowlers, 2013) and recognize RNA in a modular manner

(Filipovska and Rackham, 2013). Several other protein domains

lacking reported RNA-binding activity were also well repre-

sented in our datasets (Figure S1K), possibly reflecting direct

involvement in RNA binding in some cases. Histones were

notable (mostly H1 and H2A variants), possibly relating to the

known association of RNA with chromatin (Mondal et al.,

2010). Consistent with observations in the HeLa cell mRNA inter-

actome (Castello et al., 2012), we detected RNA binding by 11

peptidyl-prolyl isomerases (PPIases, Table S3). Several of these

are known for their involvement in nuclear gene expression (i.e.,

chromatin structure, gene transcription, mRNA splicing, and

export) and some have recognized RBDs (Schiene-Fischer,

2015); however, for others these findings suggest hitherto-un-

known roles for RNA in PPIase biology and pathology (see

below).

Cardiomyocyte RBPs also display the biophysical and

sequence features expected of bona fide RBPs. They range

from low to high abundance, with some tendency toward higher

abundance compared to the WCL proteome (Figure S2A),

reflecting similar observations reported elsewhere (Castello

et al., 2016; Matia-González et al., 2015). Cardiomyocyte RBPs

have no length bias, but they are shifted toward a more alkaline

isoelectric point and lower hydrophobicity (Figures S2B–S2D),

as reported for other mRNA interactomes (Castello et al., 2012;

Kwon et al., 2013). They further display an elevated content

of intrinsically disordered regions and are enriched for the

amino acids arginine (R), lysine (K), tyrosine (Y), and glycine (G)
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Figure 2. Performance of the RBDmap Approach

(A) Analysis of amino acid bias in RBDpeps (cf. Figure 1A) and disordered RBDpeps versus corresponding released fragments. *p < 0.01.

(B) RBDpep distribution between globular and disordered protein domains.

(C) Proportion of RBDpeps that overlap with a known RBD.

(D) In RBDmap proteins containing RRM_1, proportion of RRM_1 motifs with RBDpep coverage (left), of RBDpeps that overlap with an RRM_1 (middle) and of

RRM_1-containing RBPs with at least one such overlap (right).

(E) Graphic representation of RBDmap data for SRSF2. Here, as in subsequent panels/figures displaying RBDmap data, Npeps (red) and Xpeps (green dashes;

the crosslinked amino acid could reside anywhere within the Xpep), jointly termed RBDpep (positions of N- and C- termini are indicated), are mapped onto the

linear protein sequence. y axis indicates enrichment (log2) in RNA bound over released fraction. Boxes underneath the x axis indicate Pfam-annotated domains

with extensions (shaded gray) based on crystal structures, unless otherwise specified. See Supplemental Experimental Procedures for RS domain annotation.

RBDpeps were also highlighted in the co-crystal structure (PDB: 2LEB) of the SRSF2 RRM_1 domain (ribbon diagram) with 50-UCCAGU-30 RNA (teal). Amino

acids contacting RNA in structure are rendered as stick models.

(F) RBDmap data for EIF4B and crystal structure of the EIF4B RRM_1 (PDB: 2J76). Rpeps are shown in blue. DRYG repeats position was obtained from Méthot

et al. (1996).

(G) RBDmap data for PPIE and crystal structure of PPIE RRM_1 dimer (PDB: 3MDF).

(legend continued on next page)
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(Figures S2E and S2F). Low-complexity and repetitive regions,

known to favor formation of RNA-protein granules (Kato et al.,

2012) and to frequently occur in RBPs (Castello et al., 2012),

are also overrepresented (Figures S2G andS2H). All of these fea-

tures also apply to the subset of 688 cardiomyocyte RBPs lack-

ing previously known RBDs. Amino acid patterns that center

around the enriched residues R, K, Y, S, and G include RS re-

peats often found in splicing factors and resemble RGG and

YGG boxes or poly(K) stretches, each previously implicated in

RNA binding (Figure S2I) (Castello et al., 2012).

Overall, the RNA-binding proteome of cardiomyocytes shows

substantial overlap with other mRNA interactomes: 429 RBPs

are shared with the murine ESC set (Kwon et al., 2013), and

717 are in common with three available human mRNA interac-

tomes from HEK293, HeLa, and HuH-7 cells (Baltz et al., 2012;

Beckmann et al., 2015; Castello et al., 2012). 391 ‘‘core’’ RBPs

emerge as ‘‘in common’’ between all reported mammalian

mRNA interactomes, while 393 RBPs are thus far unique to the

cardiomyocyte RBP set (Figure S2J). As expected, the core

RBPs are particularly enriched for RNA-related GOMF annota-

tions and recognized RBDs. The ‘‘unique’’ cardiomyocyte

RBPs have lower proportions of these attributes and instead

feature elevated proportions of proteins withmitochondrial local-

ization, links to cardiovascular disease and development, ge-

netic disease, and metabolic enzyme function (Figure S2K).

This likely reflects the unique physiology of cardiomyocytes,

e.g., their heavy reliance on mitochondrial metabolism, and their

importance to human disease, aspects that we explore further

below.

Benchmarking Cardiomyocytic RBD Assignments by
RBDmap
RBDmap identified 568 RBDpeps at 1% FDR, representing

RNA-binding regions of 368 cardiomyocyte RBPs. The distances

between Lys-C and Trypsin cleavage sites in individual proteins

define the resolution achievable by RBDmap by determining the

lengths of individual RBDpeps, Npeps and Xpeps (range/me-

dian: 7–161/20 amino acids (aa) for RBDpeps, 7–30/11 aa for

Npeps, 1–148/11 aa for Xpeps) (Figure S3A). Limitations of

RBDmap are that some protein-RNA contacts can be absent

from the data due to (1) absence of suitable crosslink geometry;

(2) lack of trypsin cleavage site(s) within RBDpeps; and (3) pep-

tide detection biases ofmass spectrometry. Moreover, Xpep can

only give the boundaries within which the actual RNA-protein

crosslink site is situated but cannot locate it further (see Castello

et al., 2016 for a comprehensive evaluation). That said, RBDpeps

and released peptides exhibit the expected divergent properties.

Positively charged (R, K), aromatic (F, W, Y, H), and tiny amino

acids (A, G, S, T, C) are enriched among RBDpeps, whereas

negatively charged (D, E) and aliphatic amino acids (I, L, V) are

more prevalent in released peptides (Figure 2A). A majority

(347, 61.1%) of RBDpeps map to disordered regions (Figure 2B),

and this subset retains the same amino acid bias (Figure 2A),
(H) Analyses as in (D) but for KH_1 motifs.

(I) RBDmap data for PCBP1 and crystal structure of the third KH_1 motif of PCB

(J) RBDmap data for QKI and crystal structure of QKI KH_1 in complex with 50-A
See also Figure S3 and Table S2.
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evoking a broader role of disordered regions in RNA binding.

These observations match those with RBDmap of HeLa cells

(Castello et al., 2016).

To assess the consistency of RBDmap assignments, we

identified proteins with homologs present in both the HL-1

and HeLa datasets (Figure S3A) and tested for concordance

of RNA-binding site identifications. Approximately two-thirds

of the associated mouse RBDpeps (161 of 237) had an equiv-

alent counterpart in the human dataset (Figure S3B), a high

proportion given the use of different cell lines from different

organisms as well as the relative inefficiency and spatial limita-

tions of UV crosslinking (Castello et al., 2012). Next, we exam-

ined the RBDmap data of 116 proteins with a classic or

non-classic RBD. 158 of 226 RBDpeps derived from these

proteins mapped to one of the known RBDs (Figure 2C).

Forty-six of these proteins contained a total of 79 RRM_1 mo-

tifs. Reassuringly, RBDpeps overlapped with 50 of these

RRM_1 motifs, and RNA binding mapped to at least one of

their RRM_1 motifs for 42 out of the 46 protein examples

examined (Figure 2D). Ten of the 12 members of the serine/

arginine-rich splicing factor (SRSF) family (Busch and Hertel,

2012) were identified as cardiomyocyte RBPs (Figure S3C);

seven of these have coverage in RBDmap. In each case, the

RBDpep clearly overlaps with the first RRM_1 motif (Figures

2E and S3D–S3I). For SRSF2, the Xpep interval spans the

C-terminal part of RRM_1 and extends into the RS domain.

RS domains were proposed to bind RNA as well (Shen and

Green, 2006). However, as there is prior evidence that RNA

binding to SRSF2 does not require the RS domain (Daubner

et al., 2012), the RNA crosslink(s) likely occurred within the

C-terminal region of the RRM_1 domain. This would nicely

reflect the crystal structure of the RRM_1 domain of SRSF2,

which features direct RNA contacts within this region (Fig-

ure 2E, right panel). EIF4B and the splicing-associated PPIase

PPIE are other proteins confirmed by RBDmap to contact RNA

through their RRM_1 domain (Figures 2F and 2G). Nine KH

domain proteins, containing a total of 33 KH motifs, were

also part of the RBDmap dataset. Here, RBDpeps overlapped

with 11 KH motifs, and RNA binding mapped to at least one of

their KH motifs for seven out of the nine proteins examined

(Figure 2H). Examples are the translational regulator poly(rC)

binding protein 1 (PCBP1) (Ostareck et al., 1997) (Figure 2I)

and the splicing regulator quaking (QKI) (Hall et al., 2013) (Fig-

ure 2J). Of further interest, RBDmap also marked a region

adjacent to the NHL repeat domains in the E3 ubiquitin ligase

TRIM2, consistent with recent reports that TRIM-NHL proteins

are sequence-specific RNA-binding proteins (Kwon et al.,

2013; Loedige et al., 2015), and the multiple zinc finger do-

mains of the nuclear pore component and PPIase RANBP2,

known to bind mRNAs encoding secretory proteins to promote

their translation (Mahadevan et al., 2013) (data not shown).

Taken together, these findings support the ability of RBDmap

to identify protein regions in contact with RNA.
P1 (PDB: 1WVN).

CUAACAA-30 RNA (teal) (PDB: 4JVH).
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Figure 3. Association of Cardiomyocyte RBPs with Cardiovascular Disease/Development and Human Mendelian Diseases

(A) Analyses as in Figure 1E but for RBP association with cardiovascular disease/development (left) and genetic disease (based on OMIM; right).

(B) Spectrum of OMIM-listed genetic diseases caused by mutations in cardiomyocyte RBPs.

(C) RBDmap data for SERCA2 (amino acids 612–758; EC:3.6.3.8) and mapping onto Phyre2-modeled structure. Arrow indicates position of disease-associated

missense mutation variants. A R-f domain is also highlighted (wheat).

(D) RBDmap data for PPIF (EC:5.2.1.8) and mapping onto co-crystal structure (PDB: 4TOT) of PPIF with inhibitor NIM258 (orange, PDB: 4TOT).

(E) RBDmap data for ETFA/ETFB andmapping onto crystal structure in complex with FAD andAMP (multicolor; 1EFV). A secondR-f domain in ETFA is highlighted

with a sand color.

See also Tables S3 and S4.
Cardiomyocyte RBPs Have Rich Links to Heart Biology
and Genetic Disease
Next, we defined human orthologs to murine cardiomyocyte

RBPs to investigate links with heart function and disease.

222 cardiomyocyte RBPs relate to cardiovascular disease and

development, based on the Cardiovascular Gene Ontology

Annotation Initiative, and 117 of these had no prior RNA-related

annotation (Figure 3A, left; Table S3). Similarly, 179 cardiomyo-

cyte RBPs, when mutated, are known to cause genetic disease

based on the Online Mendelian Inheritance in Man (OMIM) data-

base; 84 of these have prior RNA-related annotation, while 95

lack it (Figure 3A, right; Table S3). A notable example of the

former is the RRM_1/SR domain-containing splicing factor

RBM20, known to cause dilated cardiomyopathy when mutated

(Brauch et al., 2009) RBM20 is primarily expressed in striated

muscle, with the highest levels found in the heart (Guo et al.,

2012). Consistently, among the available mammalian mRNA

interactomes it was uniquely detected in the HL-1 cardiomyo-

cytes. Collectively, the OMIM-RBPs are associated with a spec-

trum of 273 genetic diseases (Table S4). We find neurological,

metabolic, and cardiovascular disorders as the most prominent

types of disease (Figure 3B). Together, these account for 59% of
the diseases, highlighting the potential relevance of RNA binding

to a molecular understanding of multiple genetic disorders and

reflecting the common co-occurrence of neurological and

cardiac manifestations of disease due to their high energy re-

quirements (see below).

RBDmap data were available for 71 of the OMIM-RBPs (35

without prior RNA-related annotation) and for 12 of these

RBDpeps cover known missense mutations or amino acid dele-

tions (Table S3). Examples are HNRNPA2B1 and TARDBP,

RRM-containing proteins that also harbor low-complexity re-

gions or prion-like domains (PrLDs) with roles in RNA granule

formation. Mutations in the PrLD of RBPs are implicated in

neurodegenerative diseases, e.g., in HNRNPA2B1 and TARDBP,

they cause multisystem proteinopathy and amyotrophic lateral

sclerosis, respectively (Kim et al., 2013; King et al., 2012).

Separate RBDpeps cover not only the RRM domain, but also

the PrLD, overlapping with known disease mutations for both

proteins (data not shown), raising the prospect of defective

RNA binding as an additional disease mechanism in affected

tissues. Seven of the 12 OMIM-RBPs lack prior RNA-related

annotation and are of particular interest. For example, sarco-

plasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2)
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has cardiovascular relevance as well as links to genetic disease.

It regulates heart muscle contractile function by sequestration of

calcium to the lumen of the sarcoplasmic reticulum during relax-

ation. SERCA2 activity is decreased during heart failure, and

gene therapy trials to restore its function have shown promise

(Gorski et al., 2015). Mutations in SERCA2 further cause the

skin disorder Darier’s disease (Zheng et al., 2015). RBDmap

data locate the RNA-binding activity of this protein to a region

adjacent to the ATP binding site in the cytosolic domain (Fig-

ure 3C). Interestingly the RBDpep overlaps with four known Da-

rier’s disease mutations (G749R, A745D, N754del [annotated in

OMIM], G749V [Zheng et al., 2015]), suggesting a possible path-

ogenic role of altered RNA binding. Ten members of the afore-

mentioned PPIase family have been implicated in cardiovascular

disease (Perrucci et al., 2015). We identified four of these as

RBPs: PPIC, -D, -F, and FKBP1A, the latter three also have

RBDmap data (Table S3). PPIF regulates the mitochondrial

permeability transition pore to affect mitochondrial calcium ho-

meostasis and is involved in multiple cardiovascular pathologies

(Perrucci et al., 2015). RBDmap locates RNA binding to the

pro-isomerase domain of PPIF, in close proximity to a pharma-

cological inhibitor-binding site (Figure 3D).

Electron transfer flavoprotein (ETF) is a heterodimer located

in the mitochondrial matrix and functions in the transfer of elec-

trons from fatty acid oxidation (FAO), amino acid, and choline

catabolism to oxidative phosphorylation (OXPHOS). The com-

plex binds FAD in a cleft formed by the C-terminal domain of

the a subunit (ETFA), and the b subunit (ETFB); AMP is bound

entirely within ETFB. Mutations in ETF lead to the metabolic dis-

order multiple acyl-CoA dehydrogenase deficiency (MADD or

GA-II) (Schiff et al., 2006). RBDmap detects RNA binding to

both subunits, with RBDpeps mainly residing on the exterior of

the complex, away from the FAD and AMP sites (Figure 3E).

The RBDpeps overlap with three known MADD mutations

(ETFA: V165A, V168F; ETFB: K202del [annotated in OMIM]).

The occurrence of disease-causing mutations within regions of

RNA contact thus suggests a role of RNA in a number of disease

pathologies.

Domains of the Rossmann Fold Topology Commonly
Bind RNA
The enrichment of annotation relating to intermediary meta-

bolism (Figure 1G) is driven by the presence of 73 metabolic

enzymes (for a definition, see Supplemental Experimental Proce-

dures) among the cardiomyocyte RBPs, densely covering cyto-

solic glycolysis as well as mitochondrial FAO, the TCA cycle, and

OXPHOS (see below). Among these RNA-binding enzymes

(Table S5; 24 with RBDmap data) are ten examples with prior

‘‘classic’’ literature (Castello et al., 2015; Cie�sla, 2006; Copley,

2012; Hentze, 1994; Hentze and Preiss, 2010); another 13 were

identified as RBPs by previous mRNA interactome studies,

which identified a total of 23 metabolic enzymes (Baltz et al.,

2012; Castello et al., 2012; Kwon et al., 2013). Enzyme Commis-

sion (EC) classification EC1 (oxidoreductases; 33 examples)

and EC2 (transferases; 25 examples) are particularly prevalent

among the set of 73 RNA-binding enzymes (Figure 4A). Notably,

most of these interact with either mono or di-nucleotides, e.g.,

ATP/GTP or NAD(P)+/FAD, a function often carried out by a glob-
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ular domain referred to as Rossmann fold (R-f). This domain is

characterized by a six-stranded parallel b sheet with interlinking

a helices on either side of the sheet (Caetano-Anollés et al., 2007;

Rossmann et al., 1974). Thus, we used CATH/Gene3D annota-

tion (Sillitoe et al., 2015) to search for R-f topology (CATH id:

3.40.50). 692 proteins in WCL match this topology, and, while

there was no significant enrichment of R-f proteins among cardi-

omyocyte RBPs, it was still striking that 173 of them harbored a

R-f domain. Among the R-f RBPs, 87 are with and 86 are without

prior RNA-related annotation (Figure 4B; Table S3). 43 of R-f

RBPs are covered by RBDmap data, and 33 of 61 RBDpeps

derived from these proteins mapped to a R-f domain (Figure 4C).

The group of R-f RBPs without prior RNA-related annotation is

rich in metabolic enzymes but also includes other functions

such as the aforementioned Ca2+ ATPase SERCA2 (Figure 3C)

and the flavoproteins ETFA&B (Figure 3E). Among the R-f super-

families 3.40.50.300 (‘‘P loop containing nucleotide triphosphate

hydrolases’’; 96 examples) is the most prevalent (Figure 4D). It

includes 42 RNA helicases (27 DEAD-box, eight DEAH/RHA,

three UPF1-, one Ski2-like, and three others) representing

one-half of the 87 R-f RBPs with prior RNA-related annotation

(Figures 4B and 4E). Notably, other members of the superfamily

3.40.50.300 include several DNA helicases. The large num-

ber of cardiomyocyte RBPs classified within the superfamily

3.40.50.720 (‘‘NAD(P)-binding Rossmann-like Domain’’; 18 ex-

amples) reflects the prevalence of metabolic enzymes among

the RBPs lacking prior RNA-related annotation: 13 of the EC1 en-

zymes among the RBPs display the 3.40.50.720 R-f topology.

Other well-represented superfamilies are 3.40.50.150 (‘‘Vaccinia

Virus protein VP39’’; 18 examples), which references the pres-

ence of RNA-modifying enzymes, and 3.40.50.620 (HUPs; nine

examples), common among tRNA synthetases. Taken together,

the R-f topology emerges prominently among RBPs, both with

and without prior RNA-related annotation.

The structural core of superfamily 1 and 2 helicases is

composed of two helicase domains, each with R-f topology.

ATP binds in a cleft formed by the two domains, while the nucleic

acid contacts with the R-f domains are on the opposite surface of

this core (Fairman-Williams et al., 2010), as exemplified by the

co-crystal structure of EIF4A3 with RNA (Figure S4A). RBDmap

data locate RNA-binding sites within nine helicases (DDX5,

-17, -21, -27, -46; DHX8, -15, UPF1 and ASCC3). Structural

modeling shows that the RBDpep overlaps with the expected

RNA contact surface for the pre-mRNA splicing factor DHX15

(Figure 4F) and three additional examples (Figures S4B, S4C,

and S4I). Interestingly, ASCC3 was previously described as a

DNA helicase (Dango et al., 2011), while it is identified as an

RBP here (Figure S4I). For DDX17, DDX27, DDX5, DHX8, and

UPF1 the RBDpeps map to N-or C-terminal extensions of the

helicase (Figures S4D–S4H), indicating additional RNA contacts

beyond the helicase core. In UPF1, for example, the RBDpep

maps to the C-terminal SQ domain that physically interacts

with the central core and inhibits helicase activity (Figure S4H)

(Fiorini et al., 2013). Notwithstanding these latter observations,

our RBDmap data broadly concur with the expected arrange-

ment of RNA contact sites within helicase R-f topology domains.

29 of the 73 metabolic enzymes identified here as RBPs

have at least one annotated R-f. Inspection of available crystal
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Figure 4. Rossmann Fold Topology and RNA Binding

(A) Classification of metabolic enzymes among cardiomyocyte RBPs.

(B) Analysis as in Figure 1E for R-f cardiomyocyte RBPs.

(C) Proportion of RBDpeps that overlap with a R-f domain.

(D) Distribution of cardiomyocyte RBPs across R-f superfamilies (by CATH id; only families with more than three members are shown).

(E) Proportion of WCL RNA helicases with R-f identified as RBPs.

(F) RBDmap data for DHX15 and mapping onto Phyre2-modeled structure. Here, and in the following panels, R-f domains are highlighted as applicable

(N-terminal, wheat; C-terminal, sand).

(G) Schematic of glycolysis. Purple and red color indicate enzyme(s) present in cardiomyocyte RBPs and the RBDmap dataset, respectively.

(H) RBDmap data for PGK1 (EC:2.7.2.3) andmapping to tetrameric crystal structure in complex with 3-phosphoglyceric acid (orange) and ADP (multicolor) (PDB:

2XE7).

(I) RBDmap data for LDHB (EC:1.1.1.27) andmapping to tetramer crystal structure in complex with NAD+ (multicolor) (PDB: 1I0Z). Enlarged view showsmonomer.

See also Figures S4, S6, and S7 and Tables S3 and S5.
structures identified further enzymes that have domains of

similar topology, increasing this list to 41 entries (Table S5). 27

of these bind either mono- (nine) or di-nucleotides (19). Available

RBDmap data for 16 examples (25 RBDpeps) shows overlap be-

tween RNA binding and the R-f in 12 cases, including PGK1 from

the densely covered glycolysis pathway (Figures 4G and 4H;

further examples are shown in Figures 7, S6, and S7). In four

additional cases the RBDpeps are spatially close to the R-f,

including another glycolysis enzyme, LDHB (Figures 4I). This

shows that the involvement of R-f topology domains is common

among metabolic enzymes that bind RNA, confirming long-held

expectations (Hentze, 1994). Unlike the helicases, R-f topology

as well as tertiary and quaternary structure is more diverse

among the metabolic enzymes, and thus we found the arrange-

ment of RNA binding relative to R-f domain orientation also to be

more varied.
In-Depth Characterization of the Mitochondrial mRNA
Interactome
Cardiomyocytes belong to the most highly energy-consuming

cell types and are rich in mitochondria. 18.0% of WCL proteins

are annotated with the GO term ‘‘mitochondrion,’’ and this

proportion is similar among cardiomyocyte RBPs (16.3% or

187 proteins; Figure S5A; 49 with RBDmap data). RNA and

RBD-related annotations are highly represented among these

mitochondrial mtRBPs (Figures S5B and S5C). Protein network

analysis reveals two major groupings among mtRBPs: the first

represents RBPswith known roles in RNA biology, while the sec-

ond is centered on intermediary metabolism (Figure 5A). Among

the 88mtRBPswith knownRNA roles (17 had RBDmap data), we

found that all steps in the mitochondrial RNA life cycle (Rackham

et al., 2012) are richly represented (Figure 5B). Cross-referencing

the proteome of mitochondrial RNA processing granules
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Figure 5. Analysis of Cardiomyocyte mtRBPs

(A) Functional protein association networks of mtRBPs

based on STRING analysis (see Supplemental Experi-

mental Procedures).

(B) Spectrum of known proteins involved in the

mitochondrial RNA life cycle. Color scheme is as

in Figure 4F.

(C) RBDmap data for GRSF1 isoform 1 and mapping

to the co-crystal structure of N-terminal RRM_6 in

complex with 50-GGG-30 RNA (teal) (PDB: 4QU6).

See also Figure S5 and Tables S1, S2, S3, and S5.
(Antonicka and Shoubridge, 2015), we further noticed an overlap

with 54 of our mtRBPs. These include six PPR proteins, ranging

from the mitochondrial RNA polymerase POLRMT, through the

polycistronic pre-RNA processing factors LRPPRC, MRPP3

and PTCD1, to the translation regulators PTCD3 and MRPS27.

All three subunits of the mitochondrial RNase P complex belong

to this cross-section, as well as three recently described

RNA granule components, FASTKD2, DDX28, and DHX30 (Anto-

nicka and Shoubridge, 2015). RBDmap demarcates RNA

binding to the first two RRM_6 domains of GRSF1 (Figure 5C),

a central mitochondrial RNA granule component (Jourdain

et al., 2013).

The 99 mtRBPs without prior RNA-related annotation (32

with RBDmap data) are dominated by 49 metabolic enzymes,

densely coveringFAO,TCAcycle, andOXPHOS (Figure6A). Inter-

estingly, the mitochondrial RNA granule proteome of 143B cells

similarly contains multiple mitochondrial metabolic enzymes (An-

tonicka and Shoubridge, 2015); nine of these are shared with the

list reported here. Is this an indication of a widespread role of RNA

binding by mitochondrial metabolic enzymes? Of note, the

MRPP3 subunit of RNase P has a PPR RBD, MRPP1 moonlights

as an m1G9 RNA modifying enzyme and HSD17B10/MRPP2, is

also an NAD+-dependent short-chain fatty acid dehydrogenase

(Beckmann et al., 2015; Rackham et al., 2012). All three RNase

P subunits are identified by HL-1 cell interactome capture, indi-

cating they each directly contact RNA. Remarkably, mutations

in HSD17B10 cause progressive neurological abnormalities and

cardiomyopathy in a manner that is unrelated to the protein’s

dehydrogenase activity (Deutschmann et al., 2014).

Twelve TCA cycle-related enzymes or enzyme subunits were

identified as RBPs, covering most reaction steps (Figure 6A).

Seven of these are further validated as RBPs by RBDmap data

(depicted in Figure 7 and Figures S6D and S6E). We performed

small-scale mRNA interactome capture experiments from HL-1

cells and probed western blots of material eluted from oligo(dT)

beads with antibodies against six TCA cycle-related enzymes.

This shows selective RNA-mediated purification of four of the

six enzymes (Figure 6B; ACO2, CS, IDH2, OGDH). We also con-

structed a series of plasmids expressing enzymes C-terminally

tagged with eGFP, transfected them into HeLa cells alongside

positive (Pumilio-eGFP) and negative controls (eGFP alone,

eGFP carrying an N-terminal mitochondrial localization signal),
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and confirmed their expression (Figure S5D)

and intracellular localization (Figure S5E).

Next, we immunopurified these fusion
proteins from UV-crosslinked or control cells and subjected

RNase-treated isolates to 32P 50 end labeling with polynucleotide

kinase. This confirmed selective direct RNA association of fusion

proteins in four cases (Figure 6C, left; ACO2, CS, IDH2, PDHA1).

For ACO2, CS, IDH2, and MDH2, we also replicated these find-

ings when performing pull-down and labeling from lysates of

purified mitochondria (Figure 6C, right; Figure S5F). In summary,

we obtained additional validation of RNA binding for ten TCA cy-

cle-related enzymes by at least one method and two of them,

IDH2 and ACO2, score positively in all four validation assays.

RNA Binding and Metabolic Enzyme Function
We used RBDmap data for 24 metabolic enzymes to explore the

relationship between RNA, substrate, and cofactor binding, tak-

ing into account available information on tertiary and quaternary

structure. Focusing on the TCA cycle, the monomeric enzyme

ACO2 is particularly interesting as its cytoplasmic counterpart

ACO1/IRP1 is well known for its dual enzyme/RBP functions

(Muckenthaler et al., 2008). An RBDpep is situated on one flank

of the iron-sulfur cluster-containing cleft of ACO2 (Figures 7A

and 7A0). Comparison to the crystal structure of IRP1 bound to

the ferritin IRE-RNA stem-loop (Walden et al., 2006) (Figure 7A0,
right) suggests a similar mode of RNA binding to the active site

cleft of ACO2, although, as the predicted Xpep also extends

further, RNA contact with the outer surface of the enzyme is

also plausible. The mitochondrial TCA cycle enzyme NAD+-

dependent IDH3 is a hetero-tetramer consisting of two a, one

b, and one g subunit. No mammalian structures have been re-

ported; all subunits are similar in sequence yet carry out special-

ized functions. An RBDpep is found at the C terminus of the a

subunit (IDH3A; Figure 7B), and structural modeling locates it

to the periphery of the monomer, away from regions important

for catalysis (Figure 7B0). The two NADP+-utilizing IDH isoforms,

cytosolic IDH1 and mitochondrial IDH2, each have R-f topology

and form homodimers. Here, the Npeps overlap with the active

site cleft, while the extended Xpeps reside just outside of the

R-f on the protein surface (Figures S6D, S6D0, S6E, and S6E0).
DLD forms homodimers that serve as the E3 component of

two large hetero-oligomeric assemblies, the pyruvate dehydro-

genase complex, which links glycolysis to the TCA cycle, and

the TCA cycle-integral oxoglutarate dehydrogenase complex.

Here, the Xpep regions extend throughout the surface that binds
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(A) Schematic of mitochondrial TCA cycle, FAO, and OXPHOS. Color scheme is as in Figure 4F. Number of known subunit variants for each OXPHOS complex is

shown in brackets. NDUFA4 is considered as complex IV subunit (Balsa et al., 2012). Box to the right indicates FAO-associated enzymes.

(B) Small-scale mRNA interactome capture from HL-1 cells and western blots with antibodies against positive and negative controls (left; as in Figure 1C) as well

as six endogenous TCA cycle-related enzymes (right; n = 1).

(C) Immunoprecipitation of eGFP-tagged proteins from UV-treated and control HeLa cells and 32P 50 end labeling of crosslinked RNA fragments. Samples were

processed for storage phosphor imaging (top) andwestern blot with anti-GFP antibody (bottom). PUM2-eGFP (at lower dose) is shown as a positive control, while

eGFP alone, with or without a mitochondrial localization signal, and mock purifications from non-crosslinked cells served as negative controls (n = 1–3).

Immunoprecipitation was done from WCL (left) or from purified mitochondria (right). Controls for intracellular localization of fusion proteins and mitochondrial

isolation are shown in Figure S5.

See also Figure S5.
FAD but also include sections on the protein surface (Figures 7C

and 7C0). Succinyl-CoA ligase is a heterodimer formed by the

substrate-binding subunit, SUCLG1, and SUCLG2, which binds

GDP. RBDpeps tag both R-f of SUCLG1 with solvent-exposed

Npep portions located away from the enzyme’s active site (Fig-

ures 7D and 7D0). MDH2 functions as a homodimer and the two

RBDpeps in the central and C-terminal regions lie outside the R-f

on the surface of the dimer (Figures 7E and 7E0).
The two glycolysis enzymes PGK1 and LDHB continue an

emerging theme. PGK1 (Figure 4H) possesses two R-f and func-

tions as a monomer. The RBDpep is located on the outer edge

of thesubstrate-bindingN-terminalR-f ofPGK1withoneextended

Xpep adjacent to the active site and the other facing away from it

on the outer surface, while ATP binds to the C-terminal R-f.

LDHB (Figure 4I) and the aforementioned non-enzymatic ETF

complex (Figure 3E) present similar cases. Altogether, we exam-

ined24metabolic enzymes (additional examples shown in Figures

S6 and S7) and noted diverse spatial relationships between

RBDmap peptides and enzyme active sites.While mutually exclu-

sive RNA binding and catalytic functionmust be expected in a few

cases, surprisingly, a common theme shared bymost examples is

thepotential for concurrentRNAbinding andenzymeactivity, sug-

gesting thepossibility of allostericor scaffolding functions forRNA.

DISCUSSION

We present here a comprehensive analysis of RNA-binding pro-

teins in cardiomyocytes, constituting a rich resource of 1,148
cardiomyocyte RBPs and 568 regions of RNA contact within

368 of these RBPs. The data document and characterize the ac-

tivity of many previously known RBPs in the cardiac context. For

instance, just over half of the RBPs had prior RNA-related anno-

tation and RBDmap identified RNA contact regions within recog-

nized RBDs for many previously uncharacterized examples.

Most interestingly, 393 of our RBPs were not seen in published

interactomes. Among these will be some that remained unde-

tected in past studies for technical reasons, but many were likely

revealed here due to specific aspects of cardiomyocytic gene

expression, metabolism, and function.

Over 200 of our RBPs have annotated roles in the cardiovas-

cular system and/or are encoded by OMIM disease genes, and

roughly half of these have no prior association with RNA biology.

As expected, neurological disorders are prominent among the

diseases linked to RBPs (Castello et al., 2013). Uniquely, almost

half of the OMIM-RBPs identified here have links to metabolic

or cardiovascular disorders. RBDmap identifies RNA contacts

within 71 OMIM-RBPs, frequently overlapping with disease-

causing mutations, and thus providing entry points into molec-

ular exploration of disease relevance. The calcium channel

SERCA2 is a case in point. RNA binding to its cytosolic domain

may affect the function of SERCA2 in cardiac contractility and

may thus represent a therapeutic target during heart failure.

The RNA-binding region of SERCA2 further coincides with the

location of mutations causing Darier’s disease (Figure 3C).

Another feature of our data is the rich coverage of mitochon-

drial RNA biology. Around 190 proteins from mitochondria
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Figure 7. RNA-Binding Modalities among TCA Cycle Enzymes

(A–E) RBDmap data for ACO2 (amino acids 1–523; EC:4.2.1.3), IDH3A (EC:1.1.1.41), DLD (EC:1.8.1.4), SUCLG1 (EC:6.2.1.4, EC:6.2.1.5), and MDH2

(EC:1.1.1.37).

(A0–E0 ) RBDpeps were mapped to enzyme crystal or Phyre2-modeled structures.

(A0) ACO2 crystal structure with 4Fe-4S cluster (multicolor) (PDB: 6ACN) shown on left. IRP1/ACO1 co-crystal structure with IRE-RNA (teal) (PDB: 3SNP) shown

for comparison on right; IRE contacts in IRP1 are depicted in green.

(B0) Phyre2-modeled structure of IDH3A.

(C0) Crystal structure of DLD dimer in complex with FAD (multicolor) (PDB: 1ZMC).

(D0) Crystal structure of SUCLG1-SUCLG2 heterodimer in complex with GTP (multicolor) (PDB: 2FP4).

(E0) Crystal structure of MDH2 dimer in complex with D-malate (orange) and NAD+ (multicolor) (PDB: 2DFD).

See also Figures S6 and S7 and Tables S2 and S5.
were found to be active as RBPs in cardiomyocytes, and only

roughly half of them had prior RNA-related annotation. This

work independently confirms the link to RNA for the latter group,

which includes many examples for which a clear role in the mito-

chondrial RNA life cycle has yet to be defined (Rackham et al.,
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2012). The other half of the mtRBPs lacks prior RNA-related

annotation, opening up rich prospects for discovery. This might

particularly apply to the 49 mitochondrial metabolic enzymes we

identified as RBPs, densely covering the energy-generating

pathways of the TCA cycle, FAO, and OXPHOS. What could



be the function of enzyme-RNA binding? One possibility is that a

subset of enzyme molecules, perhaps in response to metabolite

levels or flux through the associated pathway, could moonlight

as RNA regulators. This is not without precedent inmitochondria:

the MRPP2 subunit of mitochondrial RNase P has an alter ego

as an NAD+-dependent short-chain fatty acid dehydrogenase

(Rackham et al., 2012). It is tempting to speculate that ACO2,

in analogy to its cytosolic counterpart ACO1/IRP1 (Muckenthaler

et al., 2008), functions in post-transcriptional regulation of mito-

chondrial mRNA expression. Future work will need to identify

RNA targets for ACO2 and the many other interesting leads

discovered here to unveil the physiological relevance of their in-

teractions with RNA. In some cases, this might even reveal roles

of RBPs outside of their usual mitochondrial localization.

Overall, the 1,148 cardiomyocyte RBPs are less acidic and hy-

drophobic than the cellular proteome and are enriched in intrin-

sically disordered, low-complexity, and repetitive regions. They

further display enrichment of RNA-related functional and domain

annotation. This independently confirms similar observations

made with the compositionally quite distinct HeLa mRNA inter-

actome (Castello et al., 2012). The RBDmap approach extends

these observations. Relative to the released protein fragments,

RBDpeps are enriched for positively charged aromatic and small

amino acids, as befits RNA interaction surfaces. The majority of

them also lie within disordered protein regions, which retain a

similar amino acid bias, indicating that disordered protein re-

gions represent surprisingly common sites of RNA contact.

Again, even though made on the basis of a largely distinct pep-

tide set, these findings concur with parallel observations made

by applying RBDmap to HeLa cells (Castello et al., 2016).

RBDmap marks well-understood RNA-binding domains with

high accuracy and implicates several globular protein domains

not previously expected to contact RNA, such as the pro-

isomerase domain found in PPIases. Protein domains of the

Rossmann fold are common among the cardiomyocyte RBPs,

prominently found in RNA helicases and the RNA-binding

enzymes. RBDmap affirms the expected and relatively uniform

mode of RNA binding to helicases, which mostly share the

same R-f topology. By contrast, not all RNA-binding enzymes

have R-f domains, and those that do are ofmore varied topology.

Accordingly, RBDmap delineates a diverse range of RNA-bind-

ing modalities for the metabolic enzymes.

RNA binding to so many metabolic enzymes and other pro-

teins with functions apparently unrelated to RNA might suggest

novel roles of RNA in affecting protein function, rather than the

reverse. In the case of enzymes, roles as competitive inhibitor,

allosteric regulator, or as an assembly scaffold are conceivable

(Castello et al., 2015). We have interpreted RBDmap data for

multiple metabolic enzymes in the context of their known tertiary

and quaternary structures, and, while this does not resemble

formal proof, we have found that the most straightforward expla-

nation for the data as a whole is that RNA binding and catalytic

activity need not clash.

RNA binding often applies to multiple enzymes functioning in a

given pathway. Assembly of a pathway metabolon with superior

metabolic flux properties has been described for the TCA cycle

(Vélot et al., 1997; Wu and Minteer, 2015), among other path-

ways. It is thus an exiting possibility that RNAs may provide as-
sembly scaffolds for metabolons, as suggested by the RNase-

sensitivity of a complex of glycolytic enzymes (Mazurek et al.,

1996). Such a role of RNA in metabolism would not be too dis-

similar to scaffolding functions of noncoding RNAs in RNP ag-

gregation, such as NEAT1 in paraspeckle assembly (Bond and

Fox, 2009). Methods to biochemically isolate metabolons should

be applied to search for putative RNA scaffolds in future work.

Altogether, we present here a comprehensive compendium of

RNA-binding proteins active in cardiomyocytes and a survey of

the regions they use to contact RNA. This work provides a fertile

resource to study RNA-level regulation and its interfaces to other

cellular processes in the context of mitochondrial function,

cardiac (patho)physiology, and genetic disease.

EXPERIMENTAL PROCEDURES

A detailed version of the experimental procedures can be found in the Supple-

mental Information.

Cell Culture

HL-1 cardiomyocytes (a gift fromW. Claycomb) were maintained as described

(Claycomb et al., 1998). HeLa cells were purchased from ATCC and main-

tained by standard procedures.

mRNA Interactome Capture

Beating HL-1 cells were irradiated with UV light at 254 nm. Cells were lysed,

and RNA-protein complexes were captured on oligo(dT)25 magnetic beads,

which were washed, eluted, and processed for mass spectrometry essentially

as described (Castello et al., 2012).

RBDmap

Following mRNA interactome capture as detailed above, eluted RNA-protein

complexes were digested with Lys-C followed by recapture on oligo(dT)25
beads, separating a released fraction from RNA bound peptides, which

were again eluted from the beads. Both released and RNA bound fractions

were processed for mass spectrometry. RBDmap is described in Castello

et al. (2016).

LC-MS/MS

An LTQ-Orbitrap Velos Pro mass spectrometer (Thermo Scientific) coupled to

a nanoAcquity UPLC system (Waters) was used for detection of peptides in

WCL, mRNA interactome, and RBDmap fractions.

Statistical Analysis and Interpretative Bioinformatic Analyses

Approaches to test for significance and for detecting ontology, pathway

and disease association/enrichment, as well as protein sequence and other

features are detailed in the Supplemental Information.

RNA-Binding Assays with eGFP-tagged RBPs

eGFP-RBP fusion plasmids were transfected into HeLa cells before irradiation

with UV light at 254 nm. Cells or mitochondria were lysed, and RNA-fusion

protein complexes were then captured on GFP-Trap beads and digested

with RNase T1 before 50 end labeling with g-32P-ATP by T4 PNK, anti-GFP

western blot, and storage phosphor imaging.

Data Availability

The R scripts and source code used for data analyses can be found

at: http://fischerlab.dkfz.de/cardiomyocyteInteractome/, and https://github.com/

PreissLab/cardiomyocyteInteractome.

ACCESSION NUMBERS

The accession numbers for the mass spectrometry data reported in this paper

are PRIDE: PXD002541 and PXD002543.
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SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and five tables and can be found with this article online at
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