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1. Introduction

This paper is a report of recent developments concerning the treatment of singularities in
certain numerical methods for approximating the functions f;, fz and f, which accomplish
respectively the following three conformal maps:

CM1. The mapping of a domain interior to a closed Jordan curve onto the interior of the unit
disc.

CM?2. The mapping of a domain exterior to a closed Jordan curve onto the exterior of the unit
disc.

CM3. The mapping of a doubly-connected domain, bounded by two closed Jordan curves,
onto a circular annulus.

The main objectives of the paper are as follows:
(1) To present detailed information about the location and nature of the singularities that the

three mappings may have on and near the boundary of the domain under consideration.
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(i1) To indicate how the singularities of the conformal maps affect two different classes of
numerical methods, viz. expansion and integral equation methods. (We do this by considering
certain expansion methods which have been studied in [22,26-30], and an integral equation
method which has received considerable attention recently [8-10,12-18,31,33-35,39.40}.)

(iii) To present numerical examples illustrating certain important aspects concerning the
treatment of singularities.

The paper is essentially a detailed survey of developments reported in [14.15,22,26-30].
However, in Section 5 we also present certain new results that provide additional information
about the singular behaviour of the interior and exterior mapping functions f; and fg.

2. The conformal mapping problems
Let 982 be a closed piecewise analytic Jordan curve in the complex z-plane, and assume that
the origin 0 lies in Int(92). Then the two problems associated with the conformal maps CM1 and

CM2 can be stated as follows:

Problem P1. To determine the function

w=f(z) (2.1)
which maps £, = Int(3{2) one-to-one conformally onto the unit disc

D= {w:|w| <1} (2.2)
so that

f(0)=0 and f’(0)>0. (2.3)
Problem P2. To determine the function

w=fg(z) (2.4)
which maps 2 = Ext(9£2) one-to-one conformally onto the exterior of the unit disc

={w:|w|>1} (2.5)

so that

fe(w)=c0 and  lim f¢(z)>0. (2:6)

The above two problems can be related to each other by means of the transformation
z—>z7L (2.7)

This simple inversion transforms 9§ onto a piecewise analytic Jordan curve 38, and maps 2,
onto ¢ = Ext(3Q2) and Q. onto ,= Int(3§2). Therefore, if fl and fg are respectively the
interior and exterior mapping functxons associated with 342, then

fE(z)={fl(z-‘1)} and fl(z)={fE(z_1)} . (2-8)

Thus, in theory at least, there is no need to consider the interior and exterior mapping problems
as separate problems. Indeed, in the case of expansion methods it is generally computationally
convenient to determine f; by using (2.8) and the corresponding approximation to the interior
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mapping function f; see e.g. [27]. In the case of integral equation methods. however, no
numerical advantage can be gained by using the intermediate transformation (2.7), and it is
generally preferable to treat the two mapping problems separately.

Let the parametric equation of 9f2 be

z=7(s), 0<s<L, (2.9)

where s is an appropriate real parameter, and assume that (2.9) defines a positive orientation of
942 with respect to £,. Then the interior and exterior boundary correspondence functions 4, and
¢ associated with the Problems P1 and P2 are defined respectively by

fi{r(s)} =exp(ib,(s)} and fe{7(s)}=exp{ibc(s)}, (2.10a)
Le.

6,(s)=Arg{ £,(r(5))} and 8c(s) = Arg( fe(7(s))}. (2.10b)
where Arg(-) is a continuous argument as defined, for example, in [11, §4.6] and [18. §11.7]. As is
shown in [8], the functions #;, and 8 play very important roles in both the theory and
application of the integral method considered in the present paper.

Let now 342, and 3£2, be two closed piecewise analytic Jordan curves such that 32, C Int(322,)
and 0 € Int(3£2,), and denote by 2, the finite doubly-connected domain

2p = Ext(32,) N Int(3£2,). (2.11)

Then the problem associated with the conformal map CM3 can be stated as follows:

Problem P3. To determine the function

w=fp(z) (2.12)
which maps §2, one-to-one conformally onto a circular annulus

A(r, n)={w:ir,<|w|<n} (2.13)
so that

fol§)=r, (2.14)

where {; is some fixed point on 98, and r, is a prescribed number.

The condition (2.14) uniquely determines the radius r, of the outer circle and ensures that 82,
and 92, are mapped respectively onto the two circles |w| =r, and |w| = r,. The ratio

M=r/r, (2.15)
of the two radii of A(r, r,) is an important domain functional known as the conformal modulus

of p. .
Let the parametric equation of 32, = 92, U 9{2, be

z=7(s), 0<s<L, (2.16a)
so that

02, ={(s):0<s<L,)}
and

902, ={r(s):L,<s< L}, (2.16b)
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where, for notational simplicity, we take
7(L,)=7(L,—)=r(0)
and
r(L)=7(L, +). (2.16¢)

Then, by analogy with the definitions (2.10) of 8, and 8, we define the boundary correspon-
dence function 8 associated with the function f, by

folr(s)} =r(s) exp{ifp(s)}, (2.17a)
where

r(s)= {: ([),fss\g 114 (2.17b)

Op(s) = Arg{ fo(r(s)}. (2.17¢)

3. Numerical conformal mapping
3.1. Expansion methods

By an expansion method we mean a numerical method where the mapping function is
approximated by an explicit formula involving a linear combination of a set of basis functions.
The class of such methods includes the well-known kernel function methods described in [6,
Chapter III], the variational method of {6, p. 249], and the numerical methods described in [4,5].
In the application of any of these methods, information about the dominant singularities of the
mappings is needed for constructing the set of basis functions. This emerges from the observation
that the computational efficiency of an expansion method improves considerably when the basis
set contains functions that reflect the main singular behaviour of the mapping in the complement
of the domain under consideration. In the present paper-we illustrate the construction of such
basis sets by considering the following typical expansion methods:

(i) The well-known Bergman kernel method (BKM) and the closely related Ritz variational
method (RM) for determining approximations to the mapping functions f; and fg. The theory of
both these methods is treated extensively in the literature; see e.g. [1,6,7,25,37].

(i1) The variational method (VM) of Gaier [6, p. 249] and the associated orthonormalization
method (ONM), which emerges from the theory contained in [6, p. 249; 1, p. 102; 25, p. 373]; see
also [28]. Both the VM and ONM are methods for approximating the mapping function f, of
Problem P3.

In both the BKM and RM the approximation to the interior mapping function f; is
determined after first approximating the derivative f{ by an expansion of the form

fin(2) =X am;(2), (3.1)
j=1
where the basis set {1,} is a complete set in the space L,(£2). (Here L,(£2,;) denotes the Hilbert
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space of all square-integrable analytic functions in £,.) The choice of the basis set plays a very
critical role in the application of the methods. That is, for the reasons explained in [22, Section 2]
and [26, Section 4], the set {n;} must be chosen so that the resulting approximation series (3.1)
converges rapidly. This can be achieved, as proposed in [22,26,29], by using an ‘augmented basis’
formed by introducing into the ‘monomial set’

27 j=1,2,3,... (3.2)

functions that reflect the dominant singularities of f{ on 92 and in Ext(3).

The same procedure for constructing the basis set is used in [27], where the BKM and RM are
applied to the exterior mapping Problem P2. Here, however, the approximation to f; is
determined, by means of (2.8), from the corresponding approximation to the interior mapping
function f,. For this reason, in the case of Problem P2, the augmented basis is formed by
introducing into the monomial set functions that reflect the singularities of f{ on 3 and in
Ext(342).

In the case of Problem P3, both the VM and ONM approximation to the mapping function f,
are determined after first approximating the function

H(z)=fp(2)/fo(2)—1/z2 (3.3)
by an expansion of the form
H,(z2)= X aym,(z). (3.4)
j=1

Here, the set {7} is a basis for the Hilbert space of all functions in L,(£p,) which also possess
single-valued indefinite integrals in £,. In this case the augmented basis is formed by introduc-
ing into the ‘monomial set’

7Y 1/27%Y, j=1,2,... ' (3.5)

functions that reflect the singularities of H on 32, and in compl(£2,) = Int(32,) U Ext(382,); see
[28,30] and [3].

3.2. An integral equation method

The integral equation method (IEM) considered in this section is based on certain formula-
tions proposed originally by Symm [33-35], and for this reason the method is frequently referred
to as ‘Symm’s method’.

In the IEM, the approximate conformal map is determined after first solving a weakly singular
Fredholm integral equation of the first kind for an unknown density function ». The three
equations associated with the mapping Problems P1, P2 and P3 can be expressed in a unified
manner by taking G to be the domain under consideration, letting

z=1(s), 0<s<L (3.6)
be the parametric equation of the boundary 3G, and denoting by
w=F(z) (3.7)

the corresponding mapping function. (That is, F denotes one of the functions f;, fg or fp,
depending on whether the domain G is interior, exterior or doubly-connected, i.e. depending on
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whether G is 2,, ¢ or 2.) With this notation, the integral equations for determining the
density function » can be expressed as

L
/v(s)log|~r(a)—'r(s)|ds=8(o), 0<o<lL, (3.82)
0
where
—10g|1'(0)|, GE‘QI*
8(o)={ 1, G=Q, (3.8)
(Ll_o)(i’ G=Qp,

and where, with the usual notation,
0 _ { 1, x> 0,
* 10, x<0.

The theory of the IEM is treated fully in [8,9], where in particular, the question of solvability
of (3.8) is studied. It turns out that in the two cases G =, and G = Q, (3.8) has a unique
solution provided that

cap 0 # 1, (3.9)
where, with the notation of problem P2,
cap 92 = lim { fi(z)} ! (3.10)

is the capacity of the curve 382. Similarly, when G = 2, (3.8) has a unique solution provided that
cap 902, # 1. (3.11)

(In other words, a unique solution always exists subject only to a possible rescaling of G.) It is

also shown in [8,9] that the density functions corresponding to the three mapping problems are

related to the derivatives of the associated boundary correspondence functions as follows:
Problem P1:

2ap(s)= —0,(s). (3.12)
Problem P2: Let y = log{capd{2}. Then
2ayr(s)=0g(s). (3.13)

Problem P3: Assume, without loss of generality, that the mapping is normalized so that
Qp — A(ry, 1), and let y =log M, where M =1/r, is the modulus of £p. Then

2ayv(s)=06p(s). (3.14)

In the two cases G = 2 and G = 2, the integral equations contained in (3.8) are due to
Gaier [8,9] and differ somewhat from those used originally by Symm [34,35]. For the Problem P2
and P3, the formulations of [34] and [35] involve the determination of two density functions #¢
and 7 which are related to the boundary correspondence functions 8,, 8¢ and @, as follows:

Problem P2:

2ap(s)=0.—4,. (3.15)
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Problem P3: Let 01 be the interior boundary correspondence function associated with the
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4. Corner singularities

Any boundary singularities of the mapping functions are corner singularities, similar to those
that arise in the study of elliptic boundary value problems. The asymptotic form of these
singularities can be determined from the results of Lehman [21], which generalize earlier work of
Lichtenstein [24], Kellog [19], Warschawski [38] and Lewy [23].

With the unified notation introduced in section 3.2, assume that part of the boundary 3G
consists of two analytic arcs I} and I, which meet at a point z, and from there a corner of

interior angle am, where 0 < a < 2. (By interior angle, we mean interior to the domain G under
consideration.) Then, depending on whether « is rational or irrational, the results of {21] lead to

the followmg two asymptotic expansions:

(i) If « =p/q, with p and ¢ relatively prime, then as z — z,
k+1/a
F(z) = F(zo) = ¥ Brym(z=20)"" " (log(z = 2))", (4.12)
kJd.m

where k, / and m run over all integers k> 0,1 </<p, 0 <m < k/q, and where B, , # 0. Also.
the terms in (4.1a) are ordered so that the term corresponding to B, ,, precedes the term
corresponding to B,., . if either k + [/a <k’ +'/aor k+1/a=k'+1'"/a and m > m’.

(i1) If a is irrational, then as z — z,,,

F(z)~F(zy)=Y. B, , PR

Nl 1 4 v/ k4

k.
where now k and / run over all integers k >0, /> 1 and where B,, # 0.

—
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In the two cases G = 2, and G = 2, the expansions (4.1a) and (4.1b) simplify considerably
when the two arms I, I of the corner z, are both straight lines. Then, as z — z,,

F(z)—F(zO)=ZB,(z—z0)[/a, B, #0; (4.1¢)
=1
see e.g. [25, pp. 189-194] and {2, p. 170]. Also, when G = 2, and both I} and I, are straight
lines the expansion (4.1b) holds for both rational and irrational «, and the same applies, in all
three cases, G = 2, Q¢, £, when both I'| and I are circular arcs.

It follows from the above that the dominant term in the asymptotic expansion of F is always
(z — z,)"/® This reflects the geometric property that, under the mapping F, the angle aw at
2, € 0G is transformed onto an angle w at the point F(z,). Therefore, when 1/a is not an
integer, a branch point singularity always occurs at the corner z,. Furthermore, because of the
logarithmic terms in (4.1a), a branch point singularity might occur even when 1/« is an integer.
This means, in particular, that the use of preliminary transformations, which is frequently
proposed as a method for rectifying corners, does not necessarily completely remove corner
singularities.

4.1. Singularities of the functions f; and H

As we indicated in section 3.1, this information is needed for constructing appropriate
‘augmented’ basis sets for use with the four expansion methods which we denoted by BKM, RM,
ONM and VM. The form of the ‘singular’ functions needed for augmenting the monomial sets
(3.2) and (3.5) emerges from the asymptotic expansions (4.1). The details, for each of the three
mapping problems, are as follows:

Problem P1. The BKM or RM basis set is constructed by introducing into the monomial set (3.2)
the derivatives of the first few singular terms of the appropriate asymptotic series (4.1a), (4.1b) or
(4.1c). That is, the singular basis functions for dealing with corner singularities are of the form

7(z)= {(z—zo) }, r=k+l/a or r=l/a (4.22)
and

1) = o (2= 20)*"*(log(z — )"} (4.20)

see [22] and [26].

Problem P2. In this case, a corner of exterior angle aw at z, € {2 is transformed, under the
inversion (2.7), into a corner of interior angle aw at the point 1/z, € 38. Therefore, since the
BKM or RM approximation to the mapping function fg is determined by means of (2.8) from
the corresponding approximation to the interior mapping function f,, the details for constructing
the augmented basis are the same as for Problem P1. However, it is important to observe that the
inversion (2.7) transforms a straight line I' into a straight line r only if I' passes through the
origin of the z-plane. This means that in the case of the function f|, the simple asymptotic
expansion (4.1c) cannot be assumed, even when both the arms of the corner are straight lines; see
[27]).
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Problem P3. The question regarding the choice of basis functions for dealing with the corner
singularities at z, of the function H, defined by (3.3), can again be answered by using the
asymptotic expansions (4.1). However, as was indicated in section 3.1, the ONM and VM basis
functions must possess single-valued integrals in 5. For this reason, the form of the singular
functions used for augmenting the set (3.5) depends on whether the corner z, lies on the inner or
outer component of 9. That is, the singular functions are of the form (4.2) when z; is on the
outer boundary 3§2,, and of the form

n(z)=§;{(*1-—l)r}, r=k+l/a for r=I1/a (4.3a)

z oz,

w2l e -2 20

when z; is on the inner boundary 38,; see [28] and [3].

and

4.2. Singularities of the source density function v

As before, we use the unified notation of section 3.2 and assume that part of the boundary 3G
of the domain G under consideration consists of two analytic arcs which meet at a point z, and
form there a corner of interior angle am, 0 < a < 2. We also take the parametric equation of 3G
to be

z=1(s), 0<s<L, (4.4)
and let

zo=1(s4). (4.5)
Then in a neighbourhood of s,, 7(s) has a series expansion of the form

0
2 (s=50) "7 (so+) /0!, s>,
1

m(s)=1(s0)+{ "o (4.6a)
Y (s—s50)" 7" (sg=)/n!, 5<s,,
n=1
where
r(spx)= lim {d"r/ds"). (4.6b)
Let
6(s)=Arg{ F(~(s)) (4.7)

denote the boundary correspondence function associated with the mapping F, i.e. 4 is 8,, 8. or
0y depending on whether G is 2,, ¢ or . Then,

0(s)= —i1F(r(s))F(7(5)) /] F(7(s))]|? (4.8)

and thus, from (3.12)~(3.14), the density function » of (3.8) is related to F by means of

v(s)=Im{ F(7(s))F(7(s))} /27, (4.9)
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where 7= —1 when G = 2, 7 =log{cap 3{2} when G = ¢, and
rilog M, 0<s<L,,
log M, L <s<L,

when G = 2, and the mapping is £, — A(r,, 1). Hence, by using (4.1), (4.6) and (4.9), we find
that as s — s,

i a;o(s—s0), $>3g,
v(s)= (4.10)

0
Y a;¢,(so—s), s<sg,

where a* # 0 and where the functions ¢; depend on the value of « and can be determined from
the expansions (4.1). For example, when « is rational, then according to the ordering of (4.1a),
the first four functions in (4.10) are defined respectively by

¢(o) =071V O<a<2, (4.11a)
o'/, O<axl,
¢,(0)=(ologo, a=1, (4.11b)
0—1+2/a’ 1<a<2’
0,14’1/(1, 0<a<%,
3 1
6 logo, a=3
= ’ = 4.11c
$5(0) ot Ve l<g<l. ( )
o'/", 1<a<2,
0,2-6-]/11’ O<a<;,
o’ log o, a=73,
—1+2/a 1 <l
¢(0)={"° . ITesy (4.11d)
. o]+1/¢x’ %<a<l,
o’(loga), a=1,
0,—1+A3/a, 1<a<2

Regarding the coefficients a* in (4.10), it can be shown that, for certain values of j and a, a;
and a; are related. In particular, the following three relations hold:

a; =A%}, 0<a<?2, (4.12a)

a; = —\/°a? l<a<2, (4.12b)

a; = —\/"ay, i<a<1, (4.12¢)
where

A= P(so=)/mM(s0+) s (4.12d)

see [15] and [16].
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Let »*¥)=d*y/ds*. Then, the following conclusions can be drawn from the above:

CI.1f 1 < a <2, i.e the corner is re-entrant, then the density function » becomes unbounded at
5=5,.

CZO. If1/(1 + g) <a <1/q, where ¢ > 1 is an integer, then »'?> becomes unbounded at s = s,,.

C3. If a=1/q, where ¢ > 1 is an integer, then (4.10) does not involve fractional powers of
s — s,. In general, however, a; # a;, and because of this, »'“~" has a jump discontinuity at
s = 5,. Also, for some j > 1, one of the functions ¢; in (4.10) is a logarithmic function of the form

6% 'log o.

This means that in general, the left and right (24 — 1)th derivatives of » at s=35, become
unbounded.

Consider now the two cases G = 2| and G = {2, and assume that the arms I}, I, of the corner
z, are both straight lines. Then the asymptotic expansion of F at z, is given by (4.1c), and we
may take, without any loss of generality,

s— 38, §25g,
’T(S) _’T(SO) = {(SO —S) exp(iaﬁ'rr), 5 < Sq, (4.13a)
where s denotes arc length and
1, G=48,
= 41
o {—1, G= . (4.13b)

The above two simplifications imply the following. If I, I, are both straight lines, then the
asymptotic expansions of the density function corresponding to the interior and exterior mapping
problems are given by (4.10), where the functions ¢; are defined, for any «, by

¢ (o)=0""1"70 j=1,2,3,..., (4.14a)
and the coefficients a}* satisfy
ar=(-1)""a;, j=1,2,3,..; (4.14b)

see [14,16]. Regarding the nature of the singularity at z,, the conclusions that emerge from the
simpler expansion (4.10), (4.14) are similar to those stated above for the general case. More
precisely, the conclusions C1 and C2 remain unaltered. However, when the simpler expansion
holds, then the conclusions C3 simplifies to the following, rather surprising, result:

C3: If a=1/q, where ¢ >1 is an integer, then the functions (4.14a) do not involve any
fractional powers, and, because of (4.14b):

(a) if g is odd, then there are no singularities in » at s = s;

(b) if g is even, then in general »9~V has a finite jump discontinuity at s, = s.

We end this section by restating certain important observations made in [15] in connection
with the density functions #¢ and # corresponding to the original formulations of Symm [34,35]
for the exterior and doubly-connected problems. In the case of the exterior problem, because of
(3.15), the asymptotic expansion of #¢ at z, will involve terms of the form

(s—50)"'"Y% and (s—s,) 'O, (4.15)

Similarly, for the doubly-connected problem, if z, € 9§2;, then because of (3.16), the asymptotic
expansion of », will involve terms of the form (4.15). This means that for G= 2 and G= 2
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with z, € 082,, the densities #; and 7, will become unbounded for any a # 1. That is, if the
original formulations of Symm {34,35] are used, a serious singularity might occur at z = z,, even
when the corner at z; is not re-entrant.

5. Pole and pole-type singularities

Apart from corner singularities, the three mapping functions f,, fg, fp and the function H of
(3.2) may also have serious singularities off the boundary, in the complement of the closure of the
domain under consideration. The following two sections are concerned with the problem of
determining the location and nature of such singularities.

5.1. Singularities associated with Problems Pl and P2

The main purpose of this section is to outline a procedure, which has been used recently in
[29], for determining the dominant singularities of the function f; in Ext(3£2), i.e. the singulari-
ties of the analytic continuation of f, which are ‘closest’ to d2. Here, however, we extend
somewhat the results of [29] by providing some additional information about the singularities of
f1» and by considering the singular behaviour of the exterior mapping function f; in Int(382).

With the notation of Problem P1, we let I be an analytic arc of 9§ with analytic parametric
equation

z=1(s), s <s5<s,, (5.1)
and assume that the function
z=1(§), (5.2)

of the complex variable { = s + it, is one-to-one and analytic in some simply-connected domain
2* containing the straight line:

L={{:¢=s5s+it,5 <s<s,,t=0}. (5.3)
We also assume that £2* has a symmetric partition with respect to L, so that
Q*=QrULuU R, (5.4)

where £% is the mirror image of 2} in the straight line L, and where the image of £} under the
transformation (5.2) is contained within £,. More precisely, we assume that (5.2) maps *
conformally onto a domain 2, UI'U £, so that the straight line L and the domains ¥, i=1, 2
are mapped respectively onto the arc I' and the domains 2, C £, and 2,. Then the function

fi(2), ze U,

¢(z) = LTI, z<n,, (5.5a)
where
1(z) = ={=T1(2)}, (5.5b)

is analytic in £,, meromorphic in §,, and defines the analytic continuation of f; across I into
2,. This analytic extension of f; is a particular case of the symmetry principle of analytic arcs,
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and the points z, I(z) are called symmetric points with respect to the arc I'; see e.g. [32, p. 102].

It follows from the above that the singularities of f, in £,, i.e the singularities of the analytic
extension ¢, can be determined by examining the behaviour of the function (5.5). For example
the results of the following two theorems can be established easily, by considering the behaviour
of ¢ at the symmetric points of the origin 0 with respect to I'; see [29, pp. 156-57].

Theorem 5.1. If 0 € £2,, then the equation

7($)=0 (5.6)
has exactly one root §; in Qf, and the function ¢ has a simple node at the symmetric point
zo=1(%,) = 1(0) (5.7)

of O with respect to I.

Theorem 5.2. If 0 €38R\ T, then the equation (5.6) has at least one root on Q¥ \ L. Let {, be
such a root and assume that 1 is analytic at the points {, and {, € 023\ L, so that, for some
integers m>1andn>1,

7($)= (5= &) "n($) (5.8a)
and

T(§) = (8) = (§ = &) "n (), (5.8b)
where 7, and 7, are analytic and non-zero at §, and fo, respectively. Then as z = z5 = 7( fo),

¢(z)~(z—zo)_m/". (5.9)

The following three special cases of Theorem 5.2 occur frequently in applications:
(a) m=n=1. In this case ¢ has a simple pole at z,.

(b) m=2, n=1. In this case ¢ has a double pole at z,.

(c) m=1, n= 2. In this case ¢ has a branch point singularity of the form

(z—29) "% (5.10)

The theorem stated below extends the results of [29]. and provides additional information
about the singular behaviour of ¢. The theorem emerges easily from the analysis contained in [29,
p- 157], and for this reason, its proof is not presented here.

Theorem 5.3. Let {, € 02} \ L be such that

7($) =0 and 7(§)=0, (5.11)
and assume that T is analytic at §,, &,, so that for some integers m>1 and n > 2,

7(§)=7(&) = (E = &) "n($) (5.12a)
and

7(§) = 7(&) = (§ = $)"n (%), (5.12b)

where 1), T, are analytic and non-zero at {, and §{, respectively. Then as z — zo=1( &)

¢(2) = ¢(z0) ~ (2= 2,)"". (5.13)
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The theorem shows that if the values of m and » in (5.12) are such that m/n is not an integer,
then the function ¢ has a branch point singularity at z,. In particular, the case m=1, n=2,
which leads to a singularity of the form

6(2) = (z0) ~ (2= 7,)"", (5.14)

occurs frequently in applications.

Before considering the singularities associated with the exterior mapping Problem P2, we make
a number of general remarks, where for simplicity, we refer to the singularities of the analytic
extension ¢ as ‘pole-type singularities of the mapping function f; with respect to the arc I

Remark 1. If 0 €& Q, U (9%,/I") then f; has no poles in £, and is finite in £,U (32,\TI).
However, it is important to observe that f; may have a branch point singularity of the type
predicted by Theorem 5.3. More precisely, if 7({,) =0, where {, € 92*\ L, and if in (5.12) m
and n are such that m/n is not an integer, then f; has a singularity of the form (5.13) at the
point z, = 7({,).

Remark 2. If T is a straight line segment or a circular arc, then we may take respectively
7({)=a+b¢ (5.15)
and
7(§) = c + rexp(if), (5.16)

where a, b # 0 and ¢ are complex constants and r # 0 is real. Since the derivatives of (5.15) and
(5.16) are never zero and since, in each case, we may take 27 = 7{71(Q), it follows that only the
conclusion of Theorem 5.1 applies. This conclusion leads to the results predicted by the
well-known Schwarz reflection principle, i.e. if 0 € £, U 02, \ I, then f; has a simple pole at the
symmetric point z, = I(0), where now z, coincides with the mirror image of 0 in the straight line
or with the geometric inverse of 0 with respect to the circular arc. Therefore, the determination of
the dominant pole-type singularities of f, is particularly simple in the case where 0§ consists of
straight lines and circular arcs. In fact, this is the only geometry for which Levin et al. [22] and
Papamichael and Kokkinos [26] were able to determine the precise location and nature of the
singularities of f; in Ext(9{2). Examples dealing with singularities corresponding to more general
geometries can be found in [29] and also in Section 6 of the present paper.

Remark 3. In the case of the BKM or RM, the procedure for treating pole-type singularities is
exactly the same as that used in the case of singular corners. That is, the BKM or RM basis set is
formed by introducing into the monomial set (3.2) singular functions that reflect the dominant
singularities of f; in Ext(9£2). For example, the singular functions for treating a simple pole and
a branch point of the form (5.9), at z, € Ext (312), are respectively
d z
n(z ‘E{ } (5.17)

z—1z,

and

1(z) =42 {(2=20) "} (5.18)
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Remark 4. Pole-type singularities can also affect the accuracy of the IEM, but their damaging
effect is not as serious as in expansion methods. Here, the cause of the difficulty is that if a
boundary segment I': z = 7(s), s, <s <, lies close to a pole-type singularity, then for s € (s,, s;),
the density function » and its derivatives assume large magnitudes; see (4.8). In collocation and
Galerkin methods this difficulty can be overcome, quite simply, by using an appropriate
non-uniform distribution of boundary nodal points, involving a higher concentration of points on
I'. This means that, in the case of the IEM, we are interested mainly in the approximate location
of the pole-type singularities of f, and not very much in their precise nature; see [14, Example 1],
[16, §5.3, Example 3] and the examples in Section 6 of the present paper.

Remark 5. The form of a pole-type singularity depends on the position of 0 in {2, and the type of
singularity changes when 0 coincides with certain ‘critical’ points. (For example, when I' is an arc
of a conic, then the type of singularity changes when 0 coincides with a foci of the conic, see [29,
Section 3).) Because of this, a difficulty arises, in connection with the construction of the BKM
and RM basis sets, when 0 lies ‘close’ to but does not coincide with a critical point. However, as
Example 1 of Section 6 illustrates, this difficulty can be overcome by introducing into the basis
set a function that reflects the combined effect of the two types of singularities.

Remark 6. Another difficulty occurs, in connection with the BKM and RM, when the regions {2,
corresponding to two different analytic arcs overlap. Let I} and I, be two such arcs and denote
by 20 and @ the corresponding £, regions. Then, in general, the function f; has two
different continuations in 2" N 2, which may be regarded as the extensions of f; on two
different sheets of a Riemann surface due to a branch point on 92 or in Ext(3{2). This situation
arises frequently when I} and I, are the arms of a corner, where a serious branch point
singularity occurs. In such cases, it is in general sufficient to reflect only the corner singularity, by
introducing into the BKM or RM basis set functions of the form (4.2).

We consider next the exterior mapping problem P2 and recall that, for the application of the
BKM or RM, we are interested in the singular behaviour of the function f, associated with the
interior domain {2,.

As before, we let I' be an analytic arc of 92 with analytic parametric equation (5.1). Then,
under the inversion

5=z"1, (5.19)
I' is transformed into an analytic arc I with parametric equation

:=4%(s), s <s5<s,, (5.20a)
where

#(s)=1/7(s). (5.20b)

Therefore, the pole-type singularities of f, with respect to I" can be determined by the procedure
outlined above, with 7 replacing the function 7. Now, however, for many curves 8{ that occur in
practice, the intermediate transformation (5.19) makes it less likely for Theorems 5.1 and 5.2 to
predict singularities of the mapping function f;. This can be explained as follows.
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With reference to (5.4), let
=ruLu: (5.21)

z=7(%), (5.22)
the singularities predicted by Theorems 5.1 and 5.2 occur at points given by

t
2=4(5), (5.23

N

where {, € F U3Q* /L is a root of the equation

#(§) =0. (5.24)

sz oA

Also, observe that (5.24) can only have a root at a point where 7 becomes unbounded. This
means that if, as is frequently the case, 7 is an entire function, and in addition, the largest

admissible reglon ul 1s finite, then ], does not have simple poles or singularities of the form (5.9)
in (2 U (89 \TI), ,= 'r(Q ). However, since

#(¢)= -1 (5)/{7«)} (5.23)
singularities of the type predicted by Theorem 5.3 can still occur. The above remarks are
illustrated by the following three examples.

(i) If the original boundary 982 is a polygon, then f; has no pole-type singularities.

(i) If 9L consists of straight line segments and circular arcs, then the only pole-type
singularities of f; are due to the circular arcs. More precisely, a singularity occurs only if the
centre of a circular arc is in Int(d£2) and does not coincide with the origin of the z -plane. If
zy € Int(3Q2) is such a centre, then f; has a simple pole at the point 2,=1/z, € Ext(3{2).

(iii) If 982 is the ellipse

x*/a*+y*/b*=1, O0<b<a, (5.26)
ie. if
7(s)=aecos(s—in), —-m<s<m, (5.27a)
where
2 2 1/2
oe=11—~52/221 and co 1/ (5 27h)
e={1-b/a‘] and cos hnp=1/e, (5.27b)

then the only two pole-type singularities of f, are of the form (2 — 2,)'/? and occur at the points
2,=%1/ae.

The results (i) and (ii) can be established, as in [27, p. 193], directly from the Schwarz
reflection principle. The result (iii) can be obtained at once from the known form of fg, which in
the case of the ellipse (5.26) is

1,2
fE(z)={z+(z ~- a’e?) }/( +b). (5.28)
it is however instructive to aiso establish the resuit (iii) by considering the form of the function
(5.27). This can be done as follows.
Since

7($) = ae cos({ — in) ‘ (5.29)
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is an entire function, and since the largest admissible symmetric domain £2* is the rectangle

Q*={z=s+it:—'rr<s<'n',—n<t<'q}, (5.30)
it follows that the function f, associated with the ellipse (5.26) does not have singularities of the
form predicted by Theorems 5.1 a d 5.2. However,

Al LY s { % s oNY 4 fe 21\

TL§)=S€C\§ — 1) /ae \0.o1)
and therefore, for any

$o=km—1in, k=0,+1,+£2,..., (5.32)

#(8)=0, #()+#0 and #()=#0. (5.33)

The result (iii) then follows from Theorem 5.3 with m =1 and n = 2, because
Fkm+in)=+1/ae, k=0,+1,+2,.... (5.34)

Finally, we note that the situation regarding the effect and treatment of singularities, in
connection with the IEM solution of Problem P2, is exactly as described in Remark 5. To see
this, let 2, € £, be a point where f; has a pole-type singuiarity, assume that zg=1/%,€ § lies
closetoanarc I': z=17(s), 5, <s<s 2 E)Q nd recall that f; is related to f, by (2.8). Thus, as

Lo JAA-_ - redir
e

M Ji [P Py
(4.8) density function » and its derivatives assu

in the case of Problem Pi, (4.8) implies that the
large magnitudes for s € (s,, 5,).

5.2. Singularities associated with Problem P3

In the case of Problem P3, the situation regarding the singularities in compl(QD) of the

+ d
mapping function f and of the function H, defined by (3.3), is much more involved. In £

Papamichael and Kokkinos [28], who studied the application of the ONM and the VM, were

unable to provide any information about the singularities of the analytic extensions o

functions. However, the problem has also been studied recently in [30], where it is shown that, in
many cases, f;, and H have singularities in (‘nmnl(O )} at the so-called ‘common symmetric

2i&iiy WARSYS JD S DAL iS 2 QNP &b 20 oOURLalINe LIRS oy 222000 %

points’ thh respect to the boundary components 89 and 952,.
Let I, j=1,2 be analytic arcs of 32, j=1,2 remectrvelv Also, let I,(z), j=1, 2 be the

two functrons correspondmg to (5.5b), Wthh deflne respectlvely pairs f symmetrlc points
(z, I,(z)), j=1, 2 with respect to the arcs I, j=1, 2. Then, two points

¢, €Int(32,) and ¢, <€ Ext(32,) (5.35)
are said to be common symmetric points with respect to I and I if
L=1(%) and §=I(%), j=1,2, (5.36)

i.e. if ¢ and ¢, are both fixed points of the two composite functions
S,=1,°1, and S,=1,01,. (5.37)

es for which no common symmetric

points {, and {, can be deterrmned easily from the functions (5.37). In such cases, an analysis
b Puentially on the r eqtpd annh(‘mmn of the Schwarz reflection prir cnle shows that,

o1 AR Calble appiitalifall ol tad 2 - 2130

under certain conditions, the points {1 and §, are smgular points of the functions f, and H. Full
details of this analysrs can be found in [30], where it is also shown that, for the purpose of the
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ONM and VM, the singular behaviour of H may be reflected approximately by introducing into
the monomial set (3.5) the two singular functions

m(z)=1/(z-%)-1/z (5.38a)
and
n(2)=1/(z-%,). (5.38b)

In the case of the IEM, the effect and treatment of the singularities of f,, at the points §; and ¢,
is exactly the same as in the cases of Problems P1 and P2. In what follows we illustrate the above
remarks by considering the case where {2, is a regular polygon with a circular hote. This special
case is studied fully in [30, Section 2].

Let

2, =Ext(02,) N Int(3%2,), (5.39a)
where the inner boundary 342, is the circle

02, ={z:|z| =a,a<1} (5.39b)
and the outer boundary 92, is a concentric N-sided regular polygon with

I={z:z=1+1iy,|y| <tan(m/N)} (5.39¢)
as one of its sides. That is,

N
a2, = Uy, (5.394d)
j=1

where

y,=lwf!, wy=exp{2wi/N}, j=1,2,...,N. (5.3%)
Then, with

I'={z:z=ae"’ |0|<n/N} and I =/, (5.40)
we have that

I(z)=a%/z, L(z)=2-3, (5.41)
and hence

S,(z)=a*/(2-1z2), S,(z)=2-a%/z. (5.42)
Therefore, in this particular case, the common symmetric points with respect to I, and I, are

H=1-(1-a%)"" and §=1+(1-a%)"" (5.43)

More precisely, in this case, there are N pairs of common symmetric points associated with the
circle 02, and each of the N sides of the polygon 3$2,. These points are respectively

D=t and (9=, j=1,2,...,N, (5.44)

where wy is as in (5.3%).
Let G denote the subdomain of £, which is bounded by I, I, and the two rays § = +w/N.
Also, let S;, j=1,2 be the functions (5.42), and define recursively the point sequences {zx1}
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and {z,,} by means of v
Zem; =Sz ;), k=0,1,2,..., (5.45)
with j=1 and j =2 respectively. Then, the following results are established in [30, pp. 95-97]:
(1) For any z, ;€ G,
klirr:ozk'j=§‘j, j=1,2, (5.46)
and in each case the convergence is linear.

(11) The mapping function fj can be continued analytically across I} and I} into two regions
which contain respectively the real intervals {, <x<aand 1 <x <¢,.

(iii) Let
a, = —a, =logM/log(¢,/a), (5.47)
where M is the conformal modulus of . Then, for any z, ;€ G,
Jim {(z,=§) " folze,)} =pp J=1.2, (5.48)

where p; and p, are finite and non-zero numbers which depend respectively on the points z,,
and z,,. _
(tv) For any z,, ; € G,

lim (z,,=§)H(z )} =X, j=1,2, | (5.49)

where A, and A, are finite and, in general, non-zero numbers which depend respectively on the
points z,,; and z,,.

The above results show that, in the case of the domain (5.39), the common symmetric points
(5.43) are singular points of both the functions f, and H. The results also justify the use of
functions of the form (5.38) for approximately reflecting the singular behaviour of the function
H. Similar results can be established for other more general geometries, and such examples can
be found in [30, Section 3].

6. Numerical examples

Many numerical examples, illustrating the very considerable improvement in accuracy which is
achieved by treating the singularities of the conformal maps in the manner described in earlier
sections, can be found in references [3,14-16,22,26-30]. (Of these, [22,26,29] and [27] concern the
use of the BKM and RM for the solution of Problems P1 and P2 respectively, [3,28,30] the use of
the ONM and VM for the solution of Problem P3, and [14-16] the use of the IEM.) In this
section we present five numerical examples whose purpose is to illustrate certain important
aspects of the treatment of singularities which are not widely understood. More specifically, the
purpose of the examples given below is to illustrate the following:

(1) In the application of expansion methods, the effect of pole-type singularities that lie close to
the boundary can, in practice, be as damaging as that of serious corner singularities.

(ii) In expansion methods, the use of singular basis functions that reflect only approximately
the pole-type singularities of the mapping often leads to some improvement in accuracy.
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However, much better improvement is achieved when the exact location and nature of the
dominant pole-type singularities are known, and the corresponding ‘exact’ singular basis func-
tions are used.

(ii1) Pole-type singularities that lie close to the boundary may also affect the IEM. As was
previously remarked, in collocation and Galerkin methods this difficulty can be overcome, quite
simply, by using an appropriate non-uniform distribution of the boundary nodal points.

(iv) The use of preliminary transformations does not necessarily completely remove the effect
of corner singularities.

The expansion methods used in our examples are respectively the BKM for the three interior
and one exterior domains of Examples 1, 2, 3, 5, and the ONM for the doubly-connected domain
of Example 4. The computational details of the BKM and ONM procedures used are exactly as
described in references [22,26—28]. Regarding the IEM, the method used in all examples is the
collocation method of [15]. This method is based on approximating the density function » by
cubic splines and ‘corner singular’ functions, and it is described fully in [15,16].

In each example and for each method used, we give an estimate of the maximum error in the
modulus of the corresponding approximate conformal map. In the cases of Problems P1 and P2,
this error estimate is given respectively by

Enzmjfaxll_lf[.n(zj)” (613)

and

(6.1b)

b

En=mjax|1— | fea(2,)]

where f;, and f;, denote the BKM or IEM approximations to f; and f. and where, in each
case, { z;} is a set of ‘boundary test points’ on d£2. Similarly, in the case of Problem P3 the error
estimate is given by

}, (6.1¢)

En=max<mjax|rl - IfD.n(zl,j) ||’ mjaxlran - |fD.n(22.j)l

where f,, and M, denote respectively the ONM or IEM approximation to f, and M, and
{21}, {2} are two sets of boundary test points on 3%, and 9%2,, respectively. In the cases of
the BKM and ONM, the subscript 7 in (6.1) refers to the ‘optimum’ number n = N, of basis
functions, which gives maximum accuracy in the sense described in [22, p. 178]. In the case of the
IEM, n refers to the size of the linear system whose solution gives the collocation approximation
to »; see [15, p. 303].

In presenting the results, we use the abbreviations BKM/MB and BKM/AB to denote
respectively the BKM with monomial basis (3.2) and with augmented basis. Similarly, we use
ONM/MB and ONM/AB to denote the ONM with monomial basis (3.5) and with augmented
basis.

The BKM and ONM results were computed on a CRAY I computer using programs written in
single precision Fortran. Single length working on the CRAY 1 is between 14 and 15 significant
figures. The IEM results were computed on a DEC 10 computer using programs written in
double precision DEC Algol. Single length working on the DEC 10 is between 8 and 9 significant
figures.
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Z
3
S, z,

Fig. 1.

Example 1. Let £, be the bean-shaped interior domain illustrated in Fig. 1. Its boundary 982 is
the analytic curve

z=1(s)=x(s)+iy(s), —-m<s<m, (6.2a)
where
x(s)=1%{0.2 cos(s) + 0.1 cos(2s) — 0.1}
and (6.2b)
y(s)=3{0.35sin(s) + 0.1 sin(2s) — 0.02 sin(4s)}.
The conformal mapping of the above domain is considered in Reichel [31, Example 2.3], where
the problem of determining and treating the singularities of the function f, is also discussed

briefly. For the domain of Fig. 1, Reichel predicts, by arguments based on intuitive geometric
considerations, that f; has an ‘approximate’ simple pole at the point

5= —0.61. (6.3)
In what follows we show that f; does in fact have a simple pole at a point reasonably close to Z,.
However, we also show that this pole is not the ‘dominant’ singularity of f|, i.e. there are other

singularities at points that lie closer to 0§ than %,. We do this, as outlined in section 5.1, by
determining the zeros of the two functions 7({) and 7’({) in a neighbourhood of the straight line

L={{:¢=s+it,—n<s<m, t=0}.

The details are as follows.

The function 7({) has a simple zero at each of the points

$, =10.660 656 454 578

and
$,= —m+10.532 733 445 375.

Therefore, f; has a simple pole at each of the two points
z, =7() = —0.650 225 813 375

and
z,=7({,) = 1.311 282 520 094;

see Fig. 1.
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The function 7({) has a simple zero at each of the points
¢, =0.376 736 147 099 — 1 0.492 754 434 660
and
§4 = _§3-
Therefore, since 7({;) # 0, j =3, 4, f, has singularities of the form (z —z,)'/?, j=3, 4, at the
points
zy=1(8;) = —0.565 672 547 402 + i 0.068 412 683 544
and
za=7(8,) =73
see Theorem 5.3.

BKM / AB: The points z,, z, and z, lie close to each other. For this reason we construct the
function

_ ((z — )V = (z, _24)1/2)1/2 ,
K" (z—2)

and, because of the reflected symmetry of £2, we take the augmented basis to be
m(z)={z/(z=2)}, n(z)=p(z)+u(z), m3(z)=i(n(z)—p(2)),
714(z)={z/(z"22)}', 7I4+j(z)=zj—1’ j=1’2,3""'

IEM: We use a uniform mesh with respect to the parameter of s of (6.2). This gives rise to a
non-uniform distribution of the nodal points with respect to arc length and, because 7({) has
zeros at the points {;, {,, this distribution involves a higher concentration of nodes near the point
A =1(0). That is, in this example, a uniform mesh with respect to s defines a suitable
non-uniform distribution of nodes for dealing with the dominant pole-type singularities at the
points z,, z5, z,; see Fig. 1.

Numerical results:

BKM/MB: N, = 30, E;p=36X 10~2.

BKM/AB: N,, =20, Ex= 1.4 X 1073, R,,=0.570 943 922.
IEM: E,=32X 1078, R, =0.570 943 972.

(In the above, the R, denote approximations to the so-called conformal radius R = 1/£{(0) of £,
at 0.)

The use of an augmented basis involving only the singular function z/(z — Z,)}’, correspond-
ing to the approximate simple pole (6.3) of Reichel [31], leads to the inferior BKM /AB results:
N, =10, E;;,=3.3x1073.

opt
Example 2. Let 2, be the S-shaped interior domain illustrated in Fig. 2 whose boundary is the
analytic curve
z=1(s)

=2 cos(s) +i{sin(s) +2 cos’(s)}, O<s<2m. (6.4)
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//J .

-z,
'21
Fig. 2.
The mappmg of this domain has been considered by Reichel [31, Example 1.1] and also by
rn | SRTP R | I~ ar Datahal v v Dottt svcmei da nes ..\ Frvimantinm aleae ¢ha
Llld\«Ull l“f, L.Adllll)lc .)J llUWCVCl llCllllCl INCIVLICT 11UL LolldaLultt lJlU /1ac ain HLIOL I ALVl aUUUL LlIC

pole singularities of the function f,.

The fallawine can ha dediiced hy canciderine ag in Exvamnla 1 the 2arac af the two functiang
A 11w lUllV"lllB vall Uv uUvauveu UJ \/\Illdluvlllls, o 11k l_dl\ulllyl\d Ay MIIW LWLV UL AW VYYD ULV ULV
7(§) and 7 (f )-
(1) The function f. has a simple pole at each of the four points + z.. 4+ z,. where
R/ 4% 2 CUOLIL 1 Aads a Sufipic pOIC al Lalll O A0 10D POIAS T2 44, L 43y WIKRIC
z,=0.454 688 019 275 + 1 1.902 477 887 249

z,= —2.884 939 136 035 +1 1.584 060 902 263.
(ii) The function f; has singularities of the form (z + z;)!/? at the points + z;, respectively,
where
z,=0.731 151 125 904 + i 546 446 051 506.
BKM / AB: Because of the tw
set is taken to be
z¥, j=0,1,2,.... (6.5)

For the same reason, the augmented basis is constructed by introducing into the set (6.5) the
three singular functions

{z/(zz_zjz)}, j=1,2 and {(23—2)] —(z;3+z )1/2}

IEM: We use a uniform mesh with respect to the parameter s of (6.4). As in Example 1,
because of the zeros of 7'({), the resulting distribution of boundary nodal points involves higher
concentrations of nodes near the points 4 =7(1) and B =7(1 + «), which lie close to the
singular points z,, z, and — z,, — z,, respectively; see Fig. 2.

o-fold rotational symmetry about the origin, the monomial basis

Numerical results:

BKM /MB: N =17, E;=12x107°

BKM/AB: N, =17, E;;=11x1075 R,,=1.169 091 766.
YTIOAA. r £ N 1N—6 2] 1 10 NON NAL
1CIVL Lgy =0UX 1V y fg7 = 1.10¥ UYL UDS0.

(As in Example 1, the R, denote approximations to the conformal radius of £, at 0.)
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Example 3. Let 2, be the domain exterior to the S-shaped curve of Fig. 2, and recall the notation
of Section 5.1. That is, let 2, be the i image of £ under the inversion Z = z~', denote by fi the
mapping function associated with £,, and let T({) =1/7(8), {=s+1¢, where r is defined by
(6.4). Then the following can be deduced by considering the zeros of the function 7’({).

The function 7/({) has a simple zero at each of the points

¥F =N 15N 19 285 197 L
L74 300 Jai T

— : N NS SL) 729
3 V.1JU V.UJL JUZ 100

[

W

18
17

and
HL=m+¢,.

Also, 7({ Y#0, j=1,2, and #({,) = —7({;). Therefore, by Theorem 5.3, the mapping function
fl has smgularmes of the form (2 + #,)'/? at the points + 2, € Ext(38), where

2, =7(%,)=0.240 671 315 273 — i 0.252 916 790 376.

Of course, this also means that the function f¢ has singularities of the form (z +:z;)'/? at the

points F z, € Int(342), where z,=1/%,; see Fig. 3.
BKM / AB: Because of the two-fold rotational symmetry of the domain {2,, the monomial

basis set for determining the BKM /MB approximation to f, is taken to be
Y, j=0,1,2,.... (6.6)

In this example we consider the use of the following two augmented basis sets:
(1) ABI: This set is formed by introducing into (6.6) the singular function

A a\1/2 n 172
{(21_2) —(2,+2) },
which, because of the rotational symmetry, corresponds to two singular functions of the form
(2£2)%
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(1) AB2: This is the set {n,(z)} defined by

A avs—1/2 N a-1/2)
772;—1(2)={(21_Z)J (& +2) }’

m(z) =300,

j=1.2,3,....

(That is, AB2 is constructed by assuming that at each of the points + z,, f; has an asymptotic
expansion of the form (4.1b), with a =2.)

IEM: We use the same uniform mesh as in Example 2. (Because of the zeros of 7'({) at the
points §;, {,, this mesh also involves higher concentrations of nodes near the points C = 7(0) and
D = (), which lie close to the singular points + z,; see Fig. 3).

Numerical results:

BKM/MB: N, =30, E;y=43X 1071,

BKM/ABL: N,, =30, E;=2.6 X 1072

BKM/AB2: N, ,, =13, E;;=1.6X107% ¢;;=1.772 414 144,

opt

IEM: Eq=60x10"% ¢, =1.772 414 138,

(In the above the ¢, denote approximations to the capacity of the curve 92.)
The numerical results confirm our remark that in expansion methods, the effect of pole-type
singularities can, in practice, be as damaging as that of serious corner singularities.

Example 4. Let £, be a square with a ‘large’ circular hole. More specifically, let

2p = Ext(92,) U Int(8%2,), (6.7a)
where

02, = (z:121=099} and 3R,={z:z=1+iy,|y|<1}, (6.7b)
i.e. (6.7) is the special case N =4, a=0.99 of the doubly-connected domain considered at the
end of Section 5.2. Then in this particular case, the four pairs of common symmetric points,

where the functions f;, and H have singularities of the form described by (5.48) and (5.49), are
respectively

¢, =(0.858 932 640)(i)’ ™", ¢, ,=1(1.141067360)(i)’ "',  j=1,2,3,4.

The mapping of the above domain has been considered recently in [30] and [16], and the
ONM. IEM details given below are taken respectively from these two references.
ONM / AB: Because of the four-fold rotational symmetry, the monomial basis set is taken to
be
zY7 =41, 42,.. . (6.8)

For the same reason, the augmented basis constructed by introducing into the set (6.8) the two
singular functions

423 /(2% - tt)-4/z and 422 /(24 = 83)s
see (30, p. 102].

TEM: In this example we perform the computations by using the following two distributions of
nodes:
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(i) IEM1: A uniform mesh, involving equally spaced nodes on each side of the square and on
the circular inner boundary.
(i) JEM2: A non-uniform mesh, such that the interval lengths between consecutive nodes

o P Ry R (R DI U

c€Creasc 1u auuuucuu plUgleblUll LOWAIaS e polI 'r U 77 '1' U 771 o1l Oul, duu 'r 1 '1' l on 0.‘.42,

ee [16, p. 116] and [36, p. 119].

[« %

Numerical results:
ONM /MB: Nope = 25,

i L2

E, =1
ONM/AB: N, =23, E;,=18x10~°, M,, =1.040 412 14.
IEMI: E,=19x10".
IEM2: E, =58x10% M, =1.040 412 13,

(In the above, the M, denote approximations to the conformal modulus M of 2,.)

Example S. (i) Let £, be the interior domain whose boundary consists of the straight line
I: z=1-2s, -1<s5<0 (6.9a)
and the two half ellipses

I; z=—1+2cos(s)+isin(s), O<s<m (6.9b)
and
I;: z=3cos(s)+1l.5sin(s), m<s<2m,; (6.9¢)

see Fig. 4(a).

The above domain has a re-entrant corner of interior angle 3m at the point 4 = (1, 0), and
corners of angles m and 3= at the points B=(—3, 0) and C = (3, 0), respectively. Therefore, the
mapping function f; has a serious branch point singularity at A4, a less serious one at B, and a
‘weak’ singularity at C; see (4.7a). The function f; also has simple poles at the symmetric points

2, =%+11.885618083 164 and z,= —i3.464 101 615 318 (6.10)

of 0 with respect to the arcs I, and I3, respectively; see Theorem 5.1 and [29, Section 3.1].
BKM /AB: The augmented basis is formed by introducing into the monomial set (3.2) the
singular functions

{z/(z=2)), j=1,2, (=177 j=2,4,51,3,
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and
2
((z+3) log(z+3)}. {(z+3) (log(z +3))"}".
which correspond respectively to the pole singularities at the points (6.10) and the corner
singularities at the points 4 and B.

IEM: The procedure of [16] is designed to treat all corner singularities, i.e., the IEM uses
singular functions for dealing with the singularities at each of the points 4, B and C. In this
example the poie singuiarities at the points (6.10) are not ciose to d{Z, and we use a uniform mesh
with respect to the parameter s of (6.9).

Numerical results:
BKM/MB: N, =30, E;;=14X 10°1,
BKM/AB: N, =29, E,g=23X10"% R,y =1.219 403 701.

opt

IEM: E,y=45%107% R, =1.219 413 687.

(As before, the R, denote approximations to the conformal radius of £, at 0.)
(i) We now consider the possibility of treating the corner singularity at A by using the
p_reliminary transformation

z-(z-1D"’ - (-1)*". (6.11)

This transformation maps £ onto the domain £2* illustrated in Fig. 4(b), and transforms the
corners A, B and C into the corners A*, B* and C*, whose interior angles are respectively m, =
and }m. That is, the singularities at B* and C* are as at B and C, but the transformation (6.11)
reduces the severity of the singularity at A.

The results obtained by applying the BKM/MB to the domain 2} are as follows:
BKM/MB: N, =22, E,,=3.8X 1074, Ry, =1.219 404 136.

Let z and z3 be the images of the points (6.10) under the transformation (6.11). Also, let
z¥ = A* and z} = B*. then the use of an augmented basis including the singular functions

{z/(z —zj’.")}’, j=1,2
and

{(z—zf)zlog(z—zj’.")}’, {(z—z}‘)slog(z-z;‘)z}. j=3,4

leads to the following results:
BKM/AB: N, =27, E;;=13%x107°, R,; =1.219 403 703.

The results of this example confirm our remark that the use of preliminary transformations
does not necessarily completely remove the effect of corner singularities.
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