The maximum dimension of a subspace of nilpotent matrices of index 2

L.G. Sweet ${ }^{\text {a }}$, J.A. MacDougall ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, University of Prince Edward Island, Charlottetown, PEI, Canada C1A4P3
${ }^{\text {b }}$ School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia

A R T I C L E I N F O

Article history:

Received 28 January 2009
Accepted 26 March 2009
Available online 30 May 2009
Submitted by R.A. Brualdi

AMS classification:

15A30

Abstract

A matrix M is nilpotent of index 2 if $M^{2}=0$. Let V be a space of nilpotent $n \times n$ matrices of index 2 over a field \boldsymbol{k} where card $\boldsymbol{k}>n$ and suppose that r is the maximum rank of any matrix in V. The object of this paper is to give an elementary proof of the fact that $\operatorname{dim} V \leqslant r(n-r)$. We show that the inequality is sharp and construct all such subspaces of maximum dimension. We use the result to find the maximum dimension of spaces of anti-commuting matrices and zero subalgebras of special Jordan Algebras.

© 2009 Elsevier Inc. All rights reserved.

Keywords:
Nilpotent matrix
Matrix rank

1. Introduction

An $n \times n$ matrix M is nilpotent if $M^{t}=0$ for some $t>0$. We are concerned with linear spaces of nilpotent matrices over a field \boldsymbol{k}. As far back as 1959, Gerstenhaber [4] showed that the maximum dimension of a space of nilpotent matrices was $\frac{n(n-1)}{2}$. In this paper we are interested in matrices nilpotent of index 2 . Naturally such a space will have smaller dimension. We are able to show that the maximum dimension of such a space depends on the maximum r of the ranks of matrices in the space: $r(n-r)$. This bound is sharp and we characterize those spaces attaining this maximum dimension. While this might seem to be a very specialized result, it has some important consequences. It gives an immediate proof that $r(n-r)$ is the maximum possible dimension of a space of anti-commuting matrices over any field of card $\boldsymbol{k}>n / 2$ (and char $\boldsymbol{k} \neq 2$). It also shows that $r(n-r)$ is the maximum

[^0]dimension of a zero subalgebra of a special Jordan Algebra. All of the proofs involve only elementary linear algebra.

Related work has been done by Brualdi and Chavey [2]. They have investigated the more general problem of finding the maximal dimension of a space of nilpotent matrices of bounded index k. Their arguments are combinatorial in nature and do not imply our result. Atkinson and Lloyd [1] and others have also studied spaces of matrices of bounded rank, but their results do not overlap ours.

2. Preliminary theorems

Theorem 1. Let V be a space of $n \times n$ matrices over a field \boldsymbol{k} where card $\boldsymbol{k} \geqslant n$. Let $A \in V$ have the property that $r=\operatorname{rank} A \geqslant \operatorname{rank} X$ for every $X \in V$. If $a \in \operatorname{ker} A$ then $B a \in \operatorname{Im} A$ for all $B \in V$.

Proof. The result is obvious when $r=n$ so assume $r<n$.
Let $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a basis of ker A and extend S to a basis $B_{1}=\left\{a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right\}$ of \boldsymbol{k}^{n}. Then $T=\left\{A a_{k+1}, A a_{k+2}, \ldots, A a_{n}\right\}$ is a basis of Im A and we extend T to a basis $B_{2}=\left\{c_{1}, c_{2}, \ldots, c_{k}\right.$, $\left.A a_{k+1}, \ldots, A a_{n}\right\}$ of \boldsymbol{k}^{n}.

Now let the vectors in B_{1} form the columns of a matrix Q and the vectors in B_{2} form the columns of a matrix P. Then

$$
P^{-1} A Q=\left(\begin{array}{ll}
0 & 0 \\
0 & I_{r}
\end{array}\right),
$$

where I_{r} is an $r \times r$ identity matrix. Let B be any matrix in V and assume

$$
P^{-1} B Q=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right),
$$

where B_{4} is an $r \times r$ matrix. Then for any $x \in \boldsymbol{k}$ we have

$$
P^{-1}(B+x A) Q=\left(\begin{array}{cc}
B_{1} & B_{2} \\
B_{3} & B_{4}+x I_{r}
\end{array}\right) .
$$

Let S be any $(r+1) \times(r+1)$ submatrix of $P^{-1}(B+x A) Q$ containing $B_{4}+x I_{r}$. Then det $S=0$. Since card $\boldsymbol{k} \geqslant n>r$, each term of this polynomial must be identically 0 . The fact that the coefficient of x^{n} is 0 implies that each element of B_{1} must be 0 . So

$$
P^{-1} B Q=\left(\begin{array}{cc}
0 & B_{2} \\
B_{3} & B_{4}
\end{array}\right) .
$$

Now suppose $a_{0} \in \operatorname{ker} A$. Then

$$
a_{0}=\sum_{i=1}^{k} x_{i} a_{i}=Q\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k} \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

So we have

$$
\begin{aligned}
B a_{0} & =B Q\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k} \\
0 \\
\vdots \\
0
\end{array}\right)=P\left(\begin{array}{cc}
0 & B_{2} \\
B_{3} & B_{4}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k} \\
0 \\
\vdots \\
0
\end{array}\right)=P\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
y_{k+1} \\
\vdots \\
y_{n}
\end{array}\right) \\
& =\sum_{j=1}^{n-k} y_{k+j} A a_{k+j} \in \operatorname{Im} A . \quad \square
\end{aligned}
$$

We note here that the proof actually only required the cardinality of the field \boldsymbol{k} to be more than r, the maximum rank of a matrix in V.

Lemma 1. Let V be a space of $m \times n$ matrices over any field \boldsymbol{k} and partition the elements of V as $V=$ $\left\{\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right)\right\}$. Let $W=\left\{A_{1}\right\}$ and $U=\left\{\left(\begin{array}{cc}0 & A_{2} \\ A_{3} & A_{4}\end{array}\right)\right\} \cap V$. Then $\operatorname{dim} W+\operatorname{dim} U=\operatorname{dim} V$.

Proof. Let $\operatorname{dim} W=s, \operatorname{dim} U=t$, and $\operatorname{dim} V=k$. There must exist independent matrices B_{1}, B_{2}, \ldots, $B_{s} \in V$ so that if $B_{i}=\left\{\left(\begin{array}{ll}B_{i, 1} & B_{i, 2} \\ B_{i, 3} & B_{i, 4}\end{array}\right)\right\}$, then $\left\{B_{1,1}, B_{2,1}, \ldots, B_{s, 1}\right\}$ is a basis of W. Extend $B_{1}, B_{2}, \ldots, B_{s}$ to a basis

$$
B=\left\{B_{1}, B_{2}, \ldots, B_{s}, \ldots, B_{k}\right\}
$$

of V.
For $1 \leqslant j \leqslant k-s$ let

$$
B_{s+j}=\left(\begin{array}{ll}
B_{s+j, 1} & B_{s+j, 2} \\
B_{s+j, 3} & B_{s+j, 4}
\end{array}\right)
$$

Then

$$
B_{s+j, 1}=c_{s+j, 1} B_{1,1}+c_{s+j, 2} B_{2,1}+\cdots+c_{s+j, s} B_{s, 1}
$$

for suitable scalars $c_{s+j, 1}, c_{s+j, 2}, \ldots, c_{s+j, s}$. Replace B_{s+j} by

$$
B_{s+j}^{\prime}=B_{s+j}-\left(c_{s+j, 1} B_{1}+c_{s+j, 2} B_{2}+\cdots+c_{s+j, s} B_{s}\right)
$$

and let $B^{\prime}=\left\{B_{1}, B_{2}, \ldots, B_{s}, B_{s+1}^{\prime}, B_{s+2}^{\prime}, \ldots, B_{k}^{\prime}\right\}$. It is easy to show that B^{\prime} is a basis of V and

$$
U=\operatorname{span}\left\{B_{s+1}^{\prime}, B_{s+2}^{\prime}, \ldots, B_{k}^{\prime}\right\} .
$$

Note: Lemma 1 is more significant than it first appears. For our proof we chose A_{1} as the space W, but in principle there is nothing special about that choice. In fact a result similar to the statement of the Lemma holds if A_{1} is replaced by any set of r fixed positions in the matrices found in V, so long as U is chosen as the set of complementary positions. We will use this principle repeatedly in Section 3.

We need the following lemma in Section 3. It is equivalent to a known result, but we include a short and simple proof.

Lemma 2. Let V be a subspace of $M_{m, n}(\boldsymbol{k})$ where \boldsymbol{k} is any field and let $V^{R}=$ $\left\{A \in M_{n, m}(\boldsymbol{k}) \mid X A=0\right.$ for all $\left.X \in V\right\}$. Then $\operatorname{dim} V+\operatorname{dim} V^{R} \leqslant m n$.

Proof. Let V_{i} be the space spanned by the i th rows of the elements of V, and let V_{i}^{R} be the space spanned by the i th columns of the elements of V^{R}. Then $V_{i}^{R} \subseteq$ nullspace of A_{i} where A_{i} is a matrix whose rows form a basis of V_{i}. This implies that

$$
\operatorname{dim} V_{i}+\operatorname{dim} V_{i}^{R} \leqslant n
$$

But now

$$
\begin{aligned}
\operatorname{dim} V+\operatorname{dim} V^{R} & \leqslant \sum_{i=1}^{m} \operatorname{dim} V_{i}+\sum_{i=1}^{m} \operatorname{dim} V_{i}^{R} \\
& =\sum_{i=1}^{m}\left(\operatorname{dim} V_{i}+\operatorname{dim} V_{i}^{R}\right) \\
& \leqslant m n . \quad \square
\end{aligned}
$$

We note that Lemmas 1 and 2 hold for any scalar field \boldsymbol{k}.
The following known result is needed in a later section. It was first proved by Flanders [3]. The first step of our proof is similar to that of Flanders but then our argument is considerably shorter because of Theorem 1 and Lemmas 1 and 2 . We also note that the restriction on the size of the scalar field \boldsymbol{k} has been removed by Meshulam [5].

Theorem 2. Let V be a space of $n \times n$ matrices over a field \boldsymbol{k} of card $\boldsymbol{k} \geqslant n$. If rank $A \leqslant r$ for all $A \in V$ then $\operatorname{dim} V \leqslant n r$.

Proof. As in the proof of Theorem 1 we can assume that each $B \in V$ is of the form

$$
\left(\begin{array}{ll}
B_{1} & B_{2} \tag{1}\\
B_{3} & B_{4}
\end{array}\right),
$$

where B_{4} is $r \times r$, and we showed there that $B_{1}=0$. There we considered the determinant of any $(r+1) \times(r+1)$ submatrix of $P^{-1}(B+x A) Q$ containing $B_{4}+x I_{r}$. The fact that the coefficient of x^{n-1} in this polynomial must be 0 implies that each row of B_{2} is orthogonal (in the usual sense) to each column of B_{3}. Hence $B_{2} B_{3}=0$.

Let $W=\left\{\left(B_{4}\right)\right\}$ and $U=\left\{\left(\begin{array}{cc}0 & B_{2} \\ B_{3} & 0\end{array}\right)\right\} \cap V$.
In U, let $W_{1}=\left\{\left(B_{3}\right)\right\}$ and $U_{1}=\left\{\left(\begin{array}{cc}0 & B_{2} \\ 0 & 0\end{array}\right)\right\} \cap U$.
If $B=\left(\begin{array}{cc}0 & B_{2} \\ 0 & 0\end{array}\right) \in U_{1}$ and $C=\left(\begin{array}{cc}0 & X \\ Y & 0\end{array}\right) \in U$, then $B+C \in U$, which implies that $B_{2} Y=0$, and so $W_{1} \subseteq\left\{\left(B_{2}\right)\right\}^{R}$. Now by Lemma 2

$$
\operatorname{dim} W_{1}+\operatorname{dim}\left\{\left(B_{2}\right)\right\}=\operatorname{dim} W_{1}+\operatorname{dim} U_{1} \leqslant(n-r) r
$$

Then by Lemma 1

$$
\operatorname{dim} U=\operatorname{dim} W_{1}+\operatorname{dim} U_{1} \leqslant(n-r) r
$$

and

$$
\operatorname{dim} W+\operatorname{dim} U=\operatorname{dim} V \leqslant r^{2}+(n-r) r=n r
$$

Using the techniques of the previous lemmas and theorems, we show how to construct (up to equivalence) all spaces of $n \times n$ matrices of bounded rank r and dimension $n r$. The derivation is somewhat tedious, but we include it here because we will use the same method in Section 4 to characterize the spaces of matrices of nilindex 2 having maximum dimension.

Let V be such a space. Then if $A \in V$ we may assume that

$$
A=\left(\begin{array}{cc}
0 & A_{2} \\
A_{3} & A_{4}
\end{array}\right)
$$

where $A_{2} A_{3}=0, \operatorname{dim} W=\operatorname{dim}\left\{\left(A_{4}\right)\right\}=r^{2}$ and

$$
\operatorname{dim} U=\operatorname{dim}\left\{\left(\begin{array}{cc}
0 & A_{2} \\
A_{3} & 0
\end{array}\right)\right\} \cap V=r(n-r)
$$

Suppose there exists a $B \in U$ of the form

$$
B=\left(\begin{array}{cc}
0 & B_{2} \\
B_{3} & 0
\end{array}\right)
$$

such that there is a non-zero entry $b=b_{i, j}$ in the B_{2} corner of B. Let $c=b_{k, l}$ be any entry in the B_{3} corner of B.

Since $\operatorname{dim} W=r^{2}$ there must exist a matrix D in V such that

$$
D=\left(\begin{array}{cc}
0 & D_{2} \\
D_{3} & D_{4}
\end{array}\right)
$$

in which the j th column of D_{4} and the k th row of D_{4} are filled with 0 s and the remaining submatrix of D_{4} consists of the identity I_{r-1}. Now let S be the $(r+1) \times(r+1)$ submatrix of $B+x D$ containing b, c and D_{4}. Then det $S=0$ and the coefficient of x^{r-1} of the polynomial is $\pm b c$ and so $c=0$. Hence

$$
B=\left(\begin{array}{cc}
0 & B_{2} \\
0 & 0
\end{array}\right)
$$

But if $X \in U$ then $X+x B \in U$ and it follows that in fact

$$
U=\left\{\left(\begin{array}{cc}
0 & A_{2} \\
0 & 0
\end{array}\right)\right\}
$$

Finally let E be any matrix in V where

$$
E=\left\{\left(\begin{array}{cc}
0 & E_{2} \\
E_{3} & E_{4}
\end{array}\right)\right\}
$$

and let X be any matrix in U. Then $E+x X \in V$ and hence $E_{3} \subseteq\left\{\left(A_{2}\right)\right\}^{R}$. But

$$
\operatorname{dim}\left\{\left(A_{2}\right)\right\}=\operatorname{dim} U=r(n-r)
$$

and so Lemma 2 implies that $E_{3}=0$; therefore

$$
V=\left\{\left(\begin{array}{ll}
0 & A_{2} \\
0 & A_{4}
\end{array}\right)\right\}
$$

where A_{2} and A_{3} are arbitrary. A similar argument shows that if no $B \in U$ has a suitable $b_{i, j} \neq 0$ in the B_{2} corner, then

$$
V=\left\{\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right)\right\}
$$

We summarize this discussion in the following
Theorem 3. Let V be a space of $n \times n$ matrices of rank at mostr over a field \boldsymbol{k} with card $\boldsymbol{k} \geqslant n . \operatorname{Ifdim} V=n r$ then up to equivalence V is of the form

$$
\left\{\left(\begin{array}{ll}
0 & A_{2} \tag{2}\\
0 & A_{4}
\end{array}\right)\right\} \text { or }\left\{\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right)\right\}
$$

where A_{4} is $r \times r$.

3. The main result

Theorem 4. Let V be a space of $n \times n$ nilpotent matrices of index 2 over a field \boldsymbol{k} where card $\boldsymbol{k}>n / 2$. Suppose rank $X \leqslant r$ for all $X \in V$. Then $\operatorname{dim} V \leqslant r(n-r)$.

Proof. Let $Q \in V$ such that rank $Q=r$. By rearranging a Jordan basis it is easy to show that Q is similar to

$$
\left(\begin{array}{rr}
0 & I_{r} \\
0 & 0
\end{array}\right),
$$

where I_{r} is an $r \times r$ identity matrix. Without loss of generality we replace Q by the above matrix. Let $A \in V$. In the proof of Theorem 1 we actually require that card $\boldsymbol{k}>r$ but we know that $r \leqslant n / 2$ so we can apply Theorem 1 to assume that

$$
A=\left(\begin{array}{ccc}
A_{1} & A_{2} & A_{3} \\
0 & 0 & A_{4} \\
0 & 0 & A_{5}
\end{array}\right)
$$

where A_{1}, A_{3}, and A_{5} are $r \times r$ matrices. But $(Q+A)^{2}=Q A+A Q=0$ and this shows that $A_{5}=-A_{1}$. We proceed in 3 cases depending on whether any of A_{1} or A_{2} and A_{4} are 0 .

Case 1. Suppose that $A_{1}=0$ for every $A \in V$ so that each $A \in V$ is of the form

$$
\left(\begin{array}{ccc}
0 & A_{2} & A_{3} \\
0 & 0 & A_{4} \\
0 & 0 & 0
\end{array}\right) .
$$

Now let $W=\left\{\left(A_{3}\right)\right\}$ and $U=\left\{\left(\begin{array}{ccc}0 & A_{2} & 0 \\ 0 & 0 & A_{4} \\ 0 & 0 & 0\end{array}\right)\right\} \cap V$. Clearly $\operatorname{dim} W \leqslant r^{2}$.
In U, let $W_{1}=\left\{\left(A_{2}\right)\right\}$ and $U_{1}=\left\{\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & A_{4} \\ 0 & 0 & 0\end{array}\right)\right\} \cap U$.

$$
\text { Suppose } B=\left(\begin{array}{ccc}
0 & B_{2} & 0 \\
0 & 0 & B_{4} \\
0 & 0 & 0
\end{array}\right) \in U \text { and } C=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & C_{4} \\
0 & 0 & 0
\end{array}\right) \in U_{1} \text {. }
$$

Then $(B+C)^{2}=0$ implies that $B_{2} C_{4}=0$. So in U_{1}, if $T=\left\{\left(A_{4}\right)\right\}$ then $T \subseteq W_{1}^{R}$ and by Lemma 2 ,
$\operatorname{dim} W_{1}+\operatorname{dim} T=\operatorname{dim} W_{1}+\operatorname{dim} U_{1} \leqslant(n-2 r) r$.
So by Lemma 1

$$
\begin{equation*}
\operatorname{dim} U=\operatorname{dim} W_{1}+\operatorname{dim} U_{1} \leqslant(n-2 r) r \tag{3}
\end{equation*}
$$

and

$$
\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} U \leqslant r^{2}+(n-2 r) r=n r-r^{2}
$$

Case 2. Suppose A_{2} and A_{4} do not exist. In this case $r=n / 2$ and each $A \in V$ is of the form $A=$ $\left(\begin{array}{cc}A_{1} & A_{2} \\ 0 & -A_{1}\end{array}\right)$.

If each $A_{1}=0$ then $\operatorname{dim} V \leqslant r^{2}=n r-r^{2}$ and so we assume there exists an $A_{1} \neq 0$. Let $W=$ $\left\{\left(A_{1}\right)\right\}$. Let r_{1} be the largest rank of any matrix in W. Then W is a space of nilpotent matrices of index 2 and bounded rank r_{1} so by induction we may assume $\operatorname{dim} W \leqslant r_{1}\left(r-r_{1}\right)$. As above, there exists a matrix in V which is similar to

$$
Q_{1}=\left(\begin{array}{cccc}
0 & I_{r_{1}} & A_{2}^{\prime} & A_{2 \prime}^{\prime \prime} \\
0 & 0 & A_{2}^{\prime \prime \prime} & A_{2}^{\prime \prime \prime} \\
0 & 0 & 0 & -I_{r_{1}} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where $A_{2}^{\prime \prime \prime}$ is an $r_{1} \times\left(r-r_{1}\right)$ matrix.

Also $Q_{1}^{2}=0$ implies that $A_{2}^{\prime \prime \prime}=0$. Now let

$$
U=\left\{\left(\begin{array}{cccc}
0 & 0 & B_{1} & B_{2} \\
0 & 0 & B_{3} & B_{4} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right\} \cap V .
$$

If $B \in U$ then $\left(Q_{1}+B\right)^{2}=0$ implies that $B_{3}=0$ and so $\operatorname{dim} U \leqslant r^{2}-r_{1}\left(r-r_{1}\right)$. Hence by Lemma 1

$$
\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} U \leqslant r r_{1}-r_{1}^{2}+r^{2}-r_{1}\left(r-r_{1}\right)=r^{2}=n r-r^{2}
$$

Case 3. Suppose there exists an $A_{1} \neq 0$ and A_{2} and A_{4} do exist. Note that $r<n / 2$. Each $A \in V$ is of the form

$$
A=\left(\begin{array}{ccc}
A_{1} & A_{2} & A_{3} \\
0 & 0 & A_{4} \\
0 & 0 & -A_{1}
\end{array}\right)
$$

Let $W=\left\{\left(A_{1}\right)\right\}$. Then as above, by induction we may assume $\operatorname{dim} W \leqslant r r_{1}-r_{1}^{2}$ where r_{1} is the largest rank of any matrix in W. Also we may assume there is a matrix in V which is similar to

$$
Q_{1}=\left(\begin{array}{ccccc}
0 & I_{r_{1}} & A_{2}^{\prime} & A_{3}^{\prime} & A_{3}^{\prime \prime} \\
0 & 0 & A_{2}^{\prime \prime} & A_{3}^{\prime \prime \prime} & A_{3}^{\prime \prime \prime} \\
0 & 0 & 0 & A_{4}^{\prime \prime} & A_{4}^{\prime} \\
0 & 0 & 0 & 0 & -I_{r_{1}} \\
0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

where A_{2}^{\prime} is $\left(r-r_{1}\right) \times(n-2 r), A_{2}^{\prime \prime}$ is $r_{1} \times(n-2 r), A_{4}^{\prime \prime}$ is $(n-2 r) \times r_{1}$ and A_{4}^{\prime} is $(n-2 r) \times\left(r-r_{1}\right)$. Then $Q_{1}^{2}=0$ implies that $A_{2}^{\prime \prime}=A_{4}^{\prime \prime}=0$. Let

$$
U=\left\{\left(\begin{array}{ccccc}
0 & 0 & A_{2}^{\prime} & A_{3}^{\prime} & A_{3}^{\prime \prime} \\
0 & 0 & A_{2}^{\prime \prime} & A_{3}^{\prime \prime \prime} & A_{3}^{\prime \prime \prime} \\
0 & 0 & 0 & A_{4}^{\prime \prime} & A_{4}^{\prime} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\right\} \cap V
$$

As above, if $B \in U$ then $\left(Q_{1}+B\right)^{2}=0$ implies that

$$
B=\left(\begin{array}{ccccc}
0 & 0 & B_{2}^{\prime} & B_{3}^{\prime} & B_{3}^{\prime \prime} \\
0 & 0 & 0 & B_{3}^{\prime \prime \prime} & B_{3 \prime}^{\prime \prime \prime} \\
0 & 0 & 0 & 0 & B_{4}^{\prime} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where $B_{3}^{\prime \prime \prime}$ is $\left(r-r_{1}\right) \times\left(r-r_{1}\right)$. Also if $x \in \boldsymbol{k}$ then $\operatorname{rank}\left(Q_{1}+x B\right) \leqslant r$ and this implies that the $\operatorname{rank} B_{3}^{\prime \prime \prime} \leqslant\left(r-2 r_{1}\right)$. Hence if in $U, S=\left\{\left(B_{3}^{\prime \prime \prime}\right)\right\}$ then $\operatorname{dim} S \leqslant\left(r-r_{1}\right)\left(r-2 r_{1}\right)$ by Theorem 2. Now in U let

$$
W_{1}=\left\{\left(\begin{array}{cc}
B_{3} & B_{3}^{\prime \prime} \tag{4}\\
B_{3}^{\prime \prime \prime} & B_{3}^{\prime \prime \prime}
\end{array}\right)\right\} \text { and } T=\left\{\left(\begin{array}{cc}
B_{3} & B_{3}^{\prime \prime} \\
0 & B_{3}^{\prime \prime \prime}
\end{array}\right)\right\} .
$$

Then using Lemma 1 again:

$$
\begin{aligned}
\operatorname{dim} W_{1} & =\operatorname{dim} S+\operatorname{dim} T \\
& \leqslant\left(r-r_{1}\right)\left(r-2 r_{1}\right)+2 r r_{1}-r_{1}^{2} \\
& =r^{2}-r r_{1}+r_{1}^{2}
\end{aligned}
$$

Finally let

$$
U_{1}=\left\{\left(\begin{array}{ccccc}
0 & 0 & B_{2}^{\prime} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & B_{4}^{\prime} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\right\} \cap U .
$$

Using Lemma 2 and the argument as found in Case 1 it can be shown that $\operatorname{dim} U_{1} \leqslant(n-2 r)\left(r-r_{1}\right)$. Now using Lemma 1

$$
\begin{aligned}
\operatorname{dim} V & =\operatorname{dim} W+\operatorname{dim} U \\
& =\operatorname{dim} W+\operatorname{dim} W_{1}+\operatorname{dim} U_{1} \\
& \leqslant r r_{1}-r_{1}^{2}+r^{2}-r r_{1}+r_{1}^{2}+(n-2 r)\left(r-r_{1}\right)
\end{aligned}
$$

Simplifying:

$$
\operatorname{dim} V \leqslant n r-r^{2}+2 r r_{1}-n r_{1} .
$$

But $r<n / 2$ so $2 r r_{1}<n r_{1}$ and hence

$$
\operatorname{dim} V<r(n-r)
$$

There are some important consequences that follow immediately from this theorem. Indeed, it was questions like these that originally interested us in spaces of nilpotent matrices.

Corollary 1. Let V be a space of anticommuting $n \times n$ matrices over a field \boldsymbol{k} where card $\boldsymbol{k}>n / 2$ and char $\boldsymbol{k} \neq 2$ If rank $A \leqslant r$ for all $A \in \boldsymbol{k}$ then $\operatorname{dim} V \leqslant r(n-r)$.

Proof. Since char $\boldsymbol{k} \neq 2$ the matrices in V must be nilpotent of index 2.
Let A be the algebra of all $n \times n$ matrices over a field \boldsymbol{k} where char $\boldsymbol{k} \neq 2$. Define a new multiplication \circ as

$$
X \circ Y=\frac{1}{2}(X Y+Y X) .
$$

Then A with its new operation \circ is a Jordan Algebra. It is often called a special Jordan Algebra.
Corollary 2. Let A be a special Jordan Algebra constructed from $n \times n$ matrices over a field \boldsymbol{k} where card $\boldsymbol{k}>n / 2$ and char $\boldsymbol{k} \neq 2$. If A_{1} is a zero subalgebra of A then $\operatorname{dim} A_{1} \leqslant r(n-r)$ where r is the maximum rank of any matrix in A_{1}.

Proof. In a zero subalgebra $X \circ Y=0$ and the result follows directly from Corollary 1.

4. The spaces of maximum dimension

We now show that the inequality in our main result is sharp by constructing spaces which have the maximum dimension $r(n-r)$. In addition, the spaces constructed below are, up to similarity, the only ones reaching the maximum dimension. Again we consider the three cases.

Case 1. Let $V_{1}=\left\{\left(\begin{array}{rrr}0 & A_{2} & A_{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right\}$ where A_{2} is any $r \times(n-2 r)$ matrix and A_{3} is any $r \times r$ matrix. Clearly V_{1} is a space of nilpotent matrices of index 2 and bounded rank r and $\operatorname{dim} V_{1}=n r-r^{2}$.Similarly
$V_{2}=\left\{\left(\begin{array}{ccc}0 & 0 & A_{3} \\ 0 & 0 & A_{4} \\ 0 & 0 & 0\end{array}\right)\right\}$ where A_{4} is any $(n-2 r) \times r$ matrix and A_{3} is any $r \times r$ matrix is also a space of nilpotent matrices of index 2 and bounded rank r and $\operatorname{dim} V_{2}=n r-r^{2}$.

If a space is of this type has maximum dimension $r(n-r)$, we can show that these are the only such subspaces. The argument is very similar to that in the derivation of Theorem 3, so we omit the details.

Case 2. Let $V_{3}=\left\{\left(\begin{array}{cc}0 & A_{2} \\ 0 & 0\end{array}\right)\right\}$ where A_{2} is any $n / 2 \times n / 2$ matrix (n is even). Then V_{3} is a space of nilpotent matrices of index 2 and bounded rank $r=n / 2$ and $\operatorname{dim} V_{3}=r(n-r)=n^{2} / 4$.

Again we can show that these are the only subspaces of this type that achieve maximum dimension. The argument is similar to that of Theorem 3 and we omit it.

Case 3. Note that in this case we showed that $\operatorname{dim} V<n r-r^{2}$ and so no subspaces of maximum dimension of this type exist.

References

[1] M.D. Atkinson, S. Lloyd, Large spaces of matrices of bounded rank, Quart. J. Math. Oxford Ser. (2), 31 (123) (1980) $253-262$.
[2] R.A. Brualdi, K.L. Chavey, Linear spaces of toepliz and nilpotent matrices, J. Combin. Theory Ser. A 63 (1993) 65-78.
[3] H. Flanders, On Spaces of Linear Transformations with Bounded Rank, J. London Math. Soc. 37 (1962) 10-16.
[4] M. Gerstenhaber, On nilalgebras and varieties of nilpotent matrices III, Ann. of Math. 70 (2) (1959) 167-205.
[5] R. Meshulam, On the maximal rank in a subspace of matrices, Quart. J. Math. 36 (1985) 225-229.

[^0]: * Corresponding author.

 E-mail addresses: sweet@upei.ca (L.G. Sweet), jim.macdougall@newcastle.edu.au (J.A. MacDougall).

