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nilpotent n x n matrices of index 2 over a field k where card k > n
and suppose that r is the maximum rank of any matrix in V. The
object of this paper is to give an elementary proof of the fact
Submitted by R.A. Brualdi that dimV <r(n — r). We show that the inequality is sharp and
construct all such subspaces of maximum dimension. We use the
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matrices and zero subalgebras of special Jordan Algebras.
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1. Introduction

Ann x n matrix M is nilpotent if M* = 0 for some t > 0. We are concerned with linear spaces of
nilpotent matrices over a field k. As far back as 1959, Gerstenhaber [4] showed that the maximum

dimension of a space of nilpotent matrices was @ In this paper we are interested in matrices
nilpotent of index 2. Naturally such a space will have smaller dimension. We are able to show that the
maximum dimension of such a space depends on the maximum r of the ranks of matrices in the space:
r(n — r). This bound is sharp and we characterize those spaces attaining this maximum dimension.
While this might seem to be a very specialized result, it has some important consequences. It gives
an immediate proof that r(n — r) is the maximum possible dimension of a space of anti-commuting

matrices over any field of card k > n/2 (and char k # 2).1t also shows that r(n — r) is the maximum
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dimension of a zero subalgebra of a special Jordan Algebra. All of the proofs involve only elementary
linear algebra.

Related work has been done by Brualdi and Chavey [2]. They have investigated the more general
problem of finding the maximal dimension of a space of nilpotent matrices of bounded index k. Their
arguments are combinatorial in nature and do not imply our result. Atkinson and Lloyd [1] and others
have also studied spaces of matrices of bounded rank, but their results do not overlap ours.

2. Preliminary theorems

Theorem 1. Let V be aspace of n x nmatrices over afield k where card k > n. Let A € V have the property
thatr = rank A >rank X foreveryX € V.Ifa € ker Athen Ba € ImAforallB € V.

Proof. The result is obvious when r = n so assume r < n.
LetS = {ay,ay, . ..,ax} be abasis of ker Aand extend S to a basis By = {ay,ay, ..., dk, Qk+1,- - -, 0n}

ofk".ThenT = {Aay+1, Aag4a, . - ., Aay, }isabasisofImAand we extend T toabasis B, = {cy,¢ca, .. ., Ck,

n
Aag41, - .., Aay} of k.
Now let the vectors in By form the columns of a matrix Q and the vectors in B, form the columns
of a matrix P. Then

44 (0 0O
P AQ_<0 ,r),

where I, is an r x r identity matrix. Let B be any matrix in V and assume
“1p~ _ (B1 B2
PT'BQ = (33 B4> ,
where By is an r x r matrix. Then for any x € k we have

-1 _(B1 B,
P (B+xA)Q—<B3 B4+X,r).

Let S be any (r + 1) x (r + 1) submatrix of P~1(B + xA)Q containing B4 + xI,. Then det S = 0.
Since card k >n > r, each term of this polynomial must be identically 0. The fact that the coefficient
of x" is 0 implies that each element of B; must be 0. So

-1 _ 0 By
P 'BQ = (33 B4>'

Now suppose ag € ker A. Then

X1
X2

k :
a =) xia =Q|xk
i=1
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So we have

Xq Xq 0
X2 X2 0

B : B 0 B, : B :
Bap=BQ | Xk _P(B3 B4) x| =P| O

0 0 Vi1
0 0 Yn
n—k
=Zyk+jAak+j e IlmA. O
=1

We note here that the proof actually only required the cardinality of the field k to be more than r,
the maximum rank of a matrix in V.

Lemma 1. Let V be a space of m x n matrices over any field k and partition the elements of V as V =
A1 A _ _ 0 Ap . . s
[GF )] tetw = {ayandu = {(p,  42)} N V. ThendimW + dimU = dim .

Proof. Let dimW = s, dimU = t, and dim V = k. There must exist independent matrices By, By, . . .,
Bs € Vsothatif B; = {(g:; gii)} then {By1,Ba1,. .., Bs1 } is a basis of W. Extend By, B, . . ., B to
a basis ' '

B={B1,By,...,Bs,...,By}

of V.
For1<j<k —slet

By — (Bs+j,1 Bs+j,2>
s+ Bsij3  Bsija/”
Then
Bstj1 = Cs4j1 B1,1 + Cs4j2Bo1 4 -+ - + Cspjs B

for suitable scalars ¢;j1, Cs4j2, - - - » Cs+js- Replace Bsj by
B ;= Bstj — (Csj1 B1 + Csj2 B2 + -+ - + Copis Bs)
and let B’ = {Bl,Bz, .o Bs, B 1B g, ..., By } It is easy to show that B’ is a basis of V and

U = span {B;+I'Bg+2""'3;<}' O

Note: Lemma 1 is more significant than it first appears. For our proof we chose A; as the space W,
but in principle there is nothing special about that choice. In fact a result similar to the statement of
the Lemma holds if A; is replaced by any set of r fixed positions in the matrices found in V, so long as
U is chosen as the set of complementary positions. We will use this principle repeatedly in Section 3.

We need the following lemma in Section 3. It is equivalent to a known result, but we include a short
and simple proof.

Lemma2. et V be a subspace of Mpn(k) where k is any field and let VR =
{A € Mym(k) | XA = 0forallX € v} . Then dim V + dim VR < mn.
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Proof. Let V; be the space spanned by the ith rows of the elements of V, and let ViR be the space spanned
by the ith columns of the elements of VX. Then V,-R C nullspace of A; where A; is a matrix whose rows
form a basis of V;. This implies that

dimV; + dim VR <n.

But now

m m
dimV +dimV® <Y " dimV; + Y _ dimV{
i=1 i=1
m
= ) (dimV; + dim V)
i=1
<mn. U

We note that Lemmas 1 and 2 hold for any scalar field k.
The following known result is needed in a later section. It was first proved by Flanders [3]. The first
step of our proof is similar to that of Flanders but then our argument is considerably shorter because

of Theorem 1 and Lemmas 1 and 2. We also note that the restriction on the size of the scalar field k
has been removed by Meshulam [5].

Theorem 2. Let V be a space of n x n matrices over a field k of card k > n. Ifrank A <r forall A € V then
dimV <nr.

Proof. As in the proof of Theorem 1 we can assume that each B € V is of the form

B1 B
<B3 B4> ’ (M
where By is r X r, and we showed there that By = 0. There we considered the determinant of any
(r+1) x (r + 1) submatrix of P~1(B + xA)Q containing B4 + xI,. The fact that the coefficient of

x"~1 in this polynomial must be 0 implies that each row of B, is orthogonal (in the usual sense) to
each column of Bs. Hence B,B3 = 0.

0 B
Let W = {(Bg)} and U = {<33 02>} nv.
InU, let W; = {(B3)} and U = {(8 302)} nu.
0 B 0 X S
IfB= (0 0) € Ujand C = (Y 0) € U, then B + C € U, which implies that B,Y = 0, and so
W; C {(By)}}. Now by Lemma 2
dimW; + dim{(By)} = dimW; + dimU; <(n — r)r.
Then by Lemma 1
dimU = dim Wy + dim U; <(n — r)r.
and
dimW +dimU =dimV<r*+(—nr=nr. O
Using the techniques of the previous lemmas and theorems, we show how to construct (up to
equivalence) all spaces of n x n matrices of bounded rank r and dimension nr. The derivation is
somewhat tedious, but we include it here because we will use the same method in Section 4 to

characterize the spaces of matrices of nilindex 2 having maximum dimension.
Let V be such a space. Then if A € V we may assume that

(0 A
A_<A3 A4>’
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where AyA3 = 0,dim W = dim {(A4)} = r? and

o 0 A _
dlmU_dlm{(A3 0>}ﬂv_r(n—r).

Suppose there exists a B € U of the form
_ (0 B
b= (Bs 0)

such that there is a non-zero entry b = b;; in the B, corner of B. Let ¢ = by, be any entry in the B3
corner of B.
Since dim W = r? there must exist a matrix D in V such that

(0 D
b= (D3 D4)
in which the jth column of D4 and the kth row of D, are filled with Os and the remaining submatrix

of D4 consists of the identity I,_1. Now let S be the (r 4+ 1) x (r + 1) submatrix of B 4+ xD containing
b, c and D4. Then det S = 0 and the coefficient of x ! of the polynomial is &=bc and so ¢ = 0. Hence

_ (0 B
= (3 ).

But if X € U then X + xB € U and it follows that in fact

 (CROIE

Finally let E be any matrix in V where

=16 Bl

and let X be any matrix in U. Then E + xX € V and hence E3 C {(A2)}%. But
dim{(A))} =dimU =r(n—r)
and so Lemma 2 implies that E3 = 0; therefore
_[(0 A
v={l &)}

where A; and As are arbitrary. A similar argument shows that if no B € U has a suitable b;; # 0in
the B, corner, then

0 0
= {<A3 A4>} '
We summarize this discussion in the following

Theorem 3. LetV be aspace of n x nmatrices of rank at most r over a field k with card k > n.IfdimV = nr
then up to equivalence V is of the form

{(8 ﬁi)} . {@ A04>} (2)

where A4 ist X 1.
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3. The main result

Theorem 4. Let V be a space of n x n nilpotent matrices of index 2 over a field k where card k > n/2.
Suppose rank X <r forallX € V. ThendimV <r(n —r).

Proof. Let Q € V suchthatrank Q = r.Byrearranging a Jordan basis it is easy to show that Q is similar

to
0 I
0 0)

where I is an r x r identity matrix. Without loss of generality we replace Q by the above matrix. Let

A € V. In the proof of Theorem 1 we actually require that card k > r but we know that r <n/2 so we
can apply Theorem 1 to assume that

A Ay As
A=[0 o A4,
0 0 As

where A, A3, and As are r x r matrices. But (Q + A)?> = QA + AQ = 0 and this shows that As = —A.
We proceed in 3 cases depending on whether any of A; or A; and A4 are 0.

Case 1. Suppose that A; = 0 for every A € V so that each A € V is of the form

0 Ay As
0 0 Ag).
0 O 0
Ay

0 0
Now let W = { (A3) }and U = [(8 8 A04>} N V. Clearly dim W <r?.

0 0 0
an,letW1={(A2)}andU1=i(g g %)}DU.

0 0 0 0 0
Then (B + €)? = 0 implies that ByC4 = 0.Soin Uy, if T = { (A4) } then T C WX and by Lemma 2,

dimWy +dimT = dimW; + dimU; <(n — 2r)r.
So by Lemma 1
dimU = dimW; +dimU; <(n — 2r)r (3)

0 By O 0 0 o0
SupposeB= (0 0 B(;; eUandC=1[0 0 C4) € Uj.

and

dimV:dimW+dimU<r2+(n—2r)r=nr—r2.

Case 2. Suppose A, and A4 do not exist. In this case r = n/2 and each A € V is of the form A =
A1 A
(0 —A1)'
If each Ay = 0 then dimV <r? = nr — r? and so we assume there exists an A; # 0.Let W =
{ (A7) }. Let r{ be the largest rank of any matrix in W. Then W is a space of nilpotent matrices of index
2 and bounded rank ry so by induction we may assume dim W <r{(r — ry). As above, there exists a
matrix in V which is similar to
0 I, A, A
_lo o A A
“=lo o ¢
0 o0 0 0

4

)

", .
where A, isanry X (r — ry) matrix.
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Also Q2 = 0 implies that A;l = 0. Now let

0 0 B B
Jfo o By B
U=1lo o o of(""

00 0 O

If B € U then (Q + B)? = 0implies that B3 = 0 and so dim U < r? — r; (r — r7). Hence by Lemma
1

dimV =dimW 4+ dimU<rnr —r]2+r2—r1(r—r1) =r=nr—r%.

Case 3. Suppose there exists an A; # 0 and A; and A4 do exist. Note that r < n/2. Each A € V is of
the form
Al Ay Az
A= (O 0 Ay ) .
0 0 —A
Let W = { (A7) }. Then as above, by induction we may assume dimW <rr; — rl2 where rq is the

largest rank of any matrix in W. Also we may assume there is a matrix in V which is similar to

"

0 I, A, A, A
0 0 A A Ay
Q=fo o o A 4 |
00 0 0 —I
00 0 0 O

where A} is (r — 1) X (n —//Zr),A/; isr; x (n— 2r),AZ is(n—2r) x ryandAjis (n — 2r) X (r —ry).
Then Q = 0 implies that A, = A, = 0. Let

As above, if B € U then (Q; + B)? = 0 implies that

0 0 B, By B
0 0 0 By B
B=lo o o o B[
00 0 0 O
00 0 0 O

where B;/ is (r —r;) x (r —ry). Also if x € k then rank (Q; + xB) <r and this implies that the
rank B;l <(r — 2r1). Hence if in U, S = { (B;,) } then dimS <(r — r1)(r — 2ry) by Theorem 2. Now
in U let

W‘l = B/% B/%/ and T = B3 B%// . (4)
B; B 0 B
Then using Lemma 1 again:

dimW;=dimS +dimT
<(r—r)(r—2r) + 2 — 12

=r? — my + r12.
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Finally let
0 0 B, 0 0
0O 0 0O 0 O
Uy = 0O 0 0 O Bﬁl Nu.
0 0 0 0 O
o 0 0O 0 O

Using Lemma 2 and the argument as found in Case 1 it can be shown that dim U; <(n — 2r)(r — rq1).
Now using Lemma 1

dimV=dimW + dimU
=dimW + dimW; + dim U,
<rry — rl2 +r2— m + rl2 + (n—2r)(r — ).
Simplifying:
dimV <nr — r? + 2rr; — nry.
Butr < n/2 so 2rry < nrq and hence

dimV <r(n—r). 0O

There are some important consequences that follow immediately from this theorem. Indeed, it was
questions like these that originally interested us in spaces of nilpotent matrices.

Corollary 1. Let V be a space of anticommuting n x n matrices over a field k where card k > n/2 and
chark # 2IfrankA <rforallA € k thendimV <r(n —r).

Proof. Since char k #+ 2 the matrices in V must be nilpotent of index 2.

Let A be the algebra of all n x n matrices over a field kK where char k #+ 2. Define a new multipli-
cation o as

1
XoY:E(XY—i-YX).

Then A with its new operation o is a Jordan Algebra. It is often called a special Jordan Algebra. [

Corollary 2. Let A be a special Jordan Algebra constructed from n x n matrices over a field k where

cardk > n/2 and char k #+ 2. If A is a zero subalgebra of A then dim A1 <r(n — r) where r is the
maximum rank of any matrix in Ay.

Proof. In a zero subalgebra X o Y = 0 and the result follows directly from Corollary 1. [

4. The spaces of maximum dimension

We now show that the inequality in our main result is sharp by constructing spaces which have
the maximum dimension r(n — r). In addition, the spaces constructed below are, up to similarity, the
only ones reaching the maximum dimension. Again we consider the three cases.

0 A A3
Case 1. Let V; = {(0 0 0 ) } where A, is any r x (n — 2r) matrix and A3 is any r X r matrix.
0 0 o0

Clearly V; is a space of nilpotent matrices of index 2 and bounded rank r and dim V; = nr — r2.Similarly
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0 0 A

Vy = { (0 0 A4) } where A4 is any (n — 2r) X r matrix and A3 is any r X r matrix is also a space
0 0 0

2

of nilpotent matrices of index 2 and bounded rank r and dim Vo, = nr — r°.

If a space is of this type has maximum dimension r(n — r), we can show that these are the only
such subspaces. The argument is very similar to that in the derivation of Theorem 3, so we omit the
details.

0 A . . . .

Case 2. Let V3 = {(0 0 )} where A, is any n/2 x n/2 matrix (n is even). Then V3 is a space of
nilpotent matrices of index 2 and bounded rank r = n/2 and dim Vs = r(n — r) = n*/4.

Again we can show that these are the only subspaces of this type that achieve maximum dimension.
The argument is similar to that of Theorem 3 and we omit it.

Case 3. Note that in this case we showed that dimV < nr — r? and so no subspaces of maximum
dimension of this type exist.
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