On the varieties of special divisors

by Marc Coppens and Gerriet Martens

Katholieke Industriële Hogeschool der Kempen, Campus H.I. Kempen, Kleinhoefstraat 4,
B-2440 Geel, Belgium
marc.coppens@khk.be
Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstrasse 1 1/2
D-91054 Erlangen, Germany
e-mail: martens@mi.uni-erlangen.de

Communicated by Prof. J.P. Murre at the meeting of January 28, 2002

ABSTRACT

Based on a relation between the varieties $W_d^r(C)$ of special divisors on a curve C and subloci of effective divisors on C imposing a suitable number of conditions on a certain linear series we develop a tool for the construction of irreducible components of $W_d^r(C)$. Using this we discover new irreducible components of $W_d^r(C)$, for a general k-gonal curve C of genus g, and in some cases we can identify the duals of these components in $K_C - W_d^r(C) = W_d^{r'}(C)(d' = 2g - 2 - d, r' = g - 1 - d + r)$.

1. INTRODUCTION

C always denotes a smooth irreducible projective curve of genus $g > 0$ over the complex numbers, and W_d^r is its variety of complete linear series of degree d and dimension at least r on C. For non-negative integers e and f we let

$$V_{e}^{e-f}(g_d^r) := \{ E \in C^{(e)} | \dim(g_d^r(-E)) \geq r - e + f \},$$

the sublocus of effective divisors of degree e on C imposing at most $e - f$ linear conditions on a fixed linear series g_d^r on C; it has a natural scheme structure.

In particular, fixing a non-negative integer n and a pencil g_k^r on C we will consider $V_{e}^{e-f}(|K_C - ng_k^r|)$. Then $\dim |ng_k^1 + E| \geq \dim |ng_k^1| + f \geq n + f$ for $E \in V_{e}^{e-f}(|K_C - ng_k^r|)$, and so we have a natural map

$$\sigma: V_{e}^{e-f}(|K_C - ng_k^r|) \to W_{nk+e}^{n+f}, \ E \mapsto |ng_k^1 + E|.$$
For \(n = 0 \) it displays \(V^e_{ \text{e} - f}(\{K_C\}) \) as a \(\mathbb{P}^f \)-bundle over \(W^f_{ \text{e} - f} \). For \(n > 0 \), however, it usually does not map irreducible components of \(V^e_{ \text{e} - f}(\{K_C - ng_k\}) \) onto irreducible components of \(W^{n + f}_{nk+e} \) (even in the case \(\dim |ng_k| = n \); e.g., cf. [CM2], 4.2.2).

It is the purpose of this paper to show how to construct this way (i.e. via \(\nu \)) irreducible components of \(W^{n + f}_{nk+e} \) and to show that the method can be applied in some interesting situations. Our tool for the construction is Theorem 1 in Section 1. In Section 2 we use it to exhibit irreducible components of \(W''_d \), on a general \(k \)-gonal curve \(C \). Specifically, we prove

\[
\text{Let } C \text{ be a general } k \text{-gonal curve of genus } g \text{ and } d, r \text{ and } \alpha \text{ be positive integers. Assume that } \alpha < k \text{ and that } \alpha \text{ divides } r \text{ or } r + 1. \text{ Then } W'_d \text{ has an irreducible component } V_{\alpha} \text{ of dimension } \dim V_{\alpha} = \rho_g(d, r) + (r + 1 - \alpha)(g - d + r - k + \alpha) \text{ provided that this number is non-negative and not less than } \rho_g(d, r), \text{ the Brill-Noether number} (\text{note these are natural obstructions}).
\]

Contrary to the components of \(W'_d \) constructed in [CM2], Section 2 these components \(V_{\alpha} \), for \(\alpha \neq r + 1 \), are contained in \(W'^1_1 + W_{d-k} \). The \(V_{\alpha} \) have a certain description, and it would be interesting to have a description of their duals \(K_C - V_{\alpha} \), too. For example, it is easy to see that the dual of \(V_{k-1} \subseteq W'_d \) is \(V_1 \subseteq W''_d \) \((d' = 2g - 2 - d, r' = g - 1 - d + r)\), and in Section 3 we prove that the dual of \(V_{k-2} \subseteq W'_d \) is \(V_2 \subseteq W''_d \). Using this description we show that an ‘unexpected’ linear series \(g^{k-3}_d \) on a general \(k \)-gonal curve \(C \) (i.e. a \(g^{k-3}_d \) such that \(\rho_g(d, k - 3) < 0 \)) always contains the unique pencil \(g^1_k \) of \(C \); this answers, for series of dimension \(k - 3 \), a question asked in [CM2].

Notations. We use the same notations and conventions as in [CM2] (which mostly agree with those in [ACGHI]). In particular, \(C^{(d)} \) is the set of effective divisors of degree \(d \) on \(C \). Dealing with \(W'_d \) we make tacitly use of the Abel-Jacobi map \(\iota : C^{(d)} \to \text{Jac}(C) \) into the Jacobian variety \(\text{Jac}(C) \) of \(C \). However, in order to make the notation not too cumbersome we do not denote a complete linear series \(g^{(d)}_d \) on \(C \) and its image \(\iota(g^{(d)}_d) \) in \(W'_d \) by different symbols, and a canonical divisor \(K_C \) on \(C \) sometimes is identified with the point \(\iota(K_C) \) on \(\text{Jac}(C) \).

\[
\rho_g(d, r) := g - (r + 1)(g - d + r) \text{ is the Brill-Noether number. For fixed } d \text{ and } r \text{ we put } r' := g - 1 - d + r \text{ (i.e. } r' + 1 \text{ is the index of speciality } h^1(g^{(d)}_d) \text{ of a complete linear series } g^{(d)}_d \text{ on } C); \text{ so } \rho_g(d, r) = g - (r + 1)(r' + 1). \text{ Fixing a complete and base point free pencil } g^1_k \text{ on } C \text{ we call a complete } g^1_k \text{ on } C \text{ a series of type 2 if its dual is compounded of the } g^1_k, \text{ i.e. if } |K_C - g^1_k| \text{ away from the base locus is the multiple } r'g^1_k \text{ of the } g^1_k, \text{ and } r' \geq 1.
\]

2. THE TOOL.

We begin with a simple but useful application of the base point free pencil trick. (In this Section \(C \) is any smooth curve of genus \(g \).)
Lemma 1. Let L, M be (maybe, incomplete) linear series on C. Assume that M is base point free and $\dim(L - M) \leq \dim(L) - \gamma$. Then, for any integer $m \geq 0$, $\dim(L + mM) \geq \dim(L) + m\gamma$.

Proof. We may assume that $L \neq \emptyset$. Obviously,

$$\dim(L + mM) = \dim(L - M) + \sum_{n=0}^{m} (\dim(L + nM) - \dim(L + (n - 1)M)),$$

and by the base point free pencil trick (cf. [ACGH], III, ex. B-4), for $n \geq 1$,

$$\dim(L + nM) - \dim(L + (n - 1)M) \geq \dim(L + (n - 1)M) - \dim(L + (n - 2)M).$$

Thus $\dim(L + mM) \geq \dim(L - M) + (m + 1)(\dim(L) - \dim(L - M)) = \dim(L) + m(\dim(L) - \dim(L - M)) \geq \dim(L) + m\gamma$. □

Corollary. For a base point free pencil g^1_k on C and non-negative integers e, f, n let $E \in V^e_{g^1_k}([K_C - ng^1_k])$ (so $E \in C^{(e)}$ with $\dim|ng^1_k + E| \geq n + f$). Assume that $\dim|(n - 1)g^1_k + E| = n - 1$. Then

$$\dim|(n + \lambda)g^1_k + E| \geq n + f + \lambda(f + 1) \text{ for any integer } \lambda \geq 0.$$

In view of this corollary, condition (C3) in the next theorem (the construction tool) expresses a behaviour which one likes to expect for a general choice of E in $V^e_{g^1_k}([K_C - ng^1_k])$.

Theorem 1. Let g^1_k be a base point free pencil on C, and e, f, n be non-negative integers such that $f \leq k - 2$. By Z we denote an irreducible component of $V^{e - f}_{g^1_k}([K_C - ng^1_k]) \neq \emptyset$, and $\sigma : Z \to W^{n + f}_{nk + e}$ is the natural map defined by $F \mapsto |ng^1_k + F|$. For a general $E \in Z$ we assume that the following conditions are satisfied:

(C1) $\dim|(n - 1)g^1_k + E| = n - 1$

(C2) If $n \geq 1$, $|(n - 1)g^1_k + E|$ is not a specialization of a linear series $g^{n-1}_{(n-1)k + e}$ satisfying $|g^{n-1}_{(n-1)k + e} - (n - 1)g^1_k| = \emptyset$

(C3) $\dim|(n + \lambda)g^1_k + E| = \max((n + \lambda)k + e - g, n + f + \lambda(f + 1)) \text{ for all } 0 \leq \lambda \leq n.$

Then, for any integer $t \geq 0$ such that $\dim[K_C - (n + t)g^1_k - E] \geq k - 2 - f$ the set $\sigma(Z) + tg^1_k = \{|(n + t)g^1_k + F| : F \in Z\}$ is an irreducible component of $W^{n + f + (f + 1)}_{(n + t)k + e}$.

Before we prove the theorem we want to show its usefulness by a simple example:
Corollary. Let \(g_k (k \geq 2) \) be a base point free pencil on \(C \) such that \(|\lambda g_k^1| = \lambda g_k^1 \) (i.e. \(\dim |\lambda g_k^1| = \lambda \)) for any \(0 \leq \lambda \in \mathbb{Z} \) unless \(|\lambda g_k^1| \) is non-special. Let \(e \) and \(r \) be non-negative integers such that \(\rho_g (rk + e, r) \leq e \). Then \(rg_k + W_e \) is an irreducible component of \(W_k + e \).

Proof of the corollary. For \(r = 0 \) the result is trivial. So let \(r \geq 1 \). In the Theorem take \(f = n = 0 \). Of course, \(\mathcal{V}_e(V|K_C|) = C(e) \neq \emptyset \) is irreducible for \(e > 0 \). Choose \(E \in \mathbb{Z} := C(e) \) general. Then \(|E - g_k^1| = \emptyset \) (which is (C1)) since \(\rho_g (rk + e, r) \leq e \) implies \(e - k < g \). (C2) is void, and (C3) holds by our assumption on the multiples of the pencil \(g_k^1 \) since \(E \in C(e) \) is general. Thus \(rg_k + W_e \) is an irreducible component of \(W_k^{r + e} \) as long as \(\dim |K_C - rg_k^1 - E| \geq k - 2 \). But this latter inequality is equivalent to \(\rho_g (rk + e, r) \leq e \) since \(r \geq 1 \).

We add some remarks on the Corollary:

At first, by dualization we obtain further components made up by series of type 2; this generalizes [CM1], 3.1. Also, the Corollary is best possible because for \(rg_k + W_e \) to be an irreducible component of \(W_k^{r + e} \) it's necessary that \(e = \dim (rg_k + W_e) \geq \rho_g (rk + e, r) \). The hypothesis on the multiples of the \(g_k^1 \) is satisfied by a general \(k \)-gonal curve \(C \) ([B]); but there are also ‘special’ \(k \)-gonal curves satisfying it (e.g., smooth curves in \(\mathbb{P}^1 \times \mathbb{P}^1 \) of bi-degree \((h, k) \) with \(h \geq k \)).

Proof of the theorem. (i) First we need some preparation.

We may assume that \(|ng_k^1 + E| \) is special because otherwise there is nothing to prove. Then we may write \(\dim |K_C - ng_k^1 - E| = t_0(k - 1 + f) + \epsilon \) with \(0 \leq t_0 \in \mathbb{Z} \) and \(0 \leq \epsilon \leq k - 2 - f \), i.e. we let

\[
t_0 := \left\lceil \frac{\dim |K_C - ng_k^1 - E|}{k - 1 - f} \right\rceil.
\]

By (C3) we know that \(\dim |ng_k^1 + E| = n + f \).

Claim 1. For \(0 \leq \lambda \in \mathbb{Z} \), \(|(n + \lambda)g_k^1 + E| \) is special if and only if \(\lambda \leq t_0 \), and then we have

\[
\dim |(n + \lambda)g_k^1 + E| = n + f + \lambda(f + 1).
\]

Proof of the claim. By (C3), \(|(n + \lambda)g_k^1 + E| \) is special if and only if \(\dim |(n + \lambda)g_k + E| = n + f + \lambda(f + 1) \geq (n + \lambda)k + \epsilon - g \), i.e. \(t_0(k - 1 - f) + \epsilon = \dim |K_C - ng_k^1 - E| = g - 1 - nk - e + n + f > \lambda(k - 1 - f) - 1 \), or, equivalently,

\[
\frac{\epsilon + 1}{k - 1 - f} > \lambda - t_0
\]

32
(recall that \(f \leq k - 2 \)). Since
\[
0 < \frac{\epsilon + 1}{k - 1 - f} \leq 1
\]
the claim follows.

Note that, by (C1), (1) also holds for \(\lambda = -1 \). Clearly, then, by the Riemann-Roth theorem,
\[
\dim |K_C - (n + \lambda)g^1_k - E| = \dim |K_C - ng^1_k - E| - \lambda(k - 1 - f)
= (t_0 - \lambda)(k - 1 - f) + \epsilon \quad \text{for} \quad -1 \leq \lambda \leq t_0.
\]

In particular, \(L_0 := |K_C - (n + t_0)g^1_k - E| \) is a series of dimension \(\epsilon \). Since, by the claim, \(|(n + \lambda)g^1_k + E|\) is non-special for \(\lambda > t_0 \) we know that \(|L_0 - g^1_k| = \phi\), and from (2) it follows that
\[
\dim |L_0 + mg^1_k| = m(k - 1 - f) + \epsilon
\]
for any integer \(m \) with \(0 \leq m \leq t_0 + 1 \).

Thus \(\dim |L_0 + g^1_k| = k - 1 - f + \epsilon = 2\epsilon + 1 + \tau \) with \(0 \leq \tau := k - 2 - f - \epsilon \leq k - 2 - f \). However, if \(L \) is some complete linear series with the same degree and dimension as \(L_0 \) and such that \(|L - g^1_k| = \phi\) one only knows, by the base point free pencil trick, that \(\dim |L + g^1_k| \geq 2\dim(L) - \dim |L - g^1_k| = 2\epsilon + 1 \); this indicates trouble in the case \(\tau > 0 \).

We now introduce the following notation. Let \(Z_\tau \subseteq W^\tau_{\deg(L_0)} \) be the closure of the series \(L \) as above (recall \(|L - g^1_k| = \phi\)) with the additional property \(\dim |L + g^1_k| = 2\epsilon + 1 + \tau \). We just observed that \(K_C - t_0g^1_k - \sigma(Z) \subseteq Z_\tau \). Since \(Z \) is irreducible there is an irreducible component, \(Z_{\tau,0} \) say, of \(Z_\tau \) containing \(K_C - t_0g^1_k - \sigma(Z) \).

Claim 2. \(Z_{\tau,0} = K_C - t_0g^1_k - \sigma(Z) \).

Proof of the claim. Let \(L \in Z_{\tau,0} \) be general.

First we show that
\[
\dim |L + mg^1_k| = m(k - 1 - f) + \epsilon \quad \text{for any integer} \quad 0 \leq m \leq t_0 + 1.
\]

In fact, we know that \(\dim |L + g^1_k| = 2\epsilon + 1 + \tau = k - 1 - f + \epsilon \), by definition of \(Z_\tau \). Applying Lemma 1 to the series \(|L + g^1_k|\) and \(g^1_k \) (i.e. using \(\dim L = \dim |L + g^1_k| - (k - 1 - f) \)) we obtain, for \(m \geq 1 \),
\[
\dim |L + mg^1_k| = \dim |(L + g^1_k) + (m - 1)g^1_k|
\geq \dim |L + g^1_k| + (m - 1)(k - 1 - f) = m(k - 1 - f) + \epsilon
\]
(and, obviously, this also holds for $m = 0$). But since $|L_0 + mg_k^1|$ is a specialization of $|L + mg_k^1|$ we conclude from (3), by semi-continuity, that we have equality in the latter inequality, for $m = t_0 + 1$. This proves (4).

Applying (4) for $m = t_0$ and $m = t_0 + 1$ we see, by Riemann-Roch, that dim $|K_C - (L + t_0g_k^1)| = n + f$ and dim $|K_C - (L + (t_0 + 1)g_k^1)| = n - 1$. (In fact, this is clear without carrying out computations since it is, by (1), true for I_0 instead of I, and (3) and (4) have the same right hand side.)

Let $n = 0$. Then $|K_C - (L + t_0g_k^1)|$ specializes to $|K_C - (L_0 + t_0g_k^1)| = |E| = \sigma(E)$ where $E \in Z$ is general. But $\sigma(Z)$ is, for $n = 0$, an irreducible component of W_f^ϵ. This implies that $K_C - Z_{r,0} - t_0g_k^1 \subseteq \sigma(Z)$.

Let $n \geq 1$. Then $|K_C - (L + (t_0 + 1)g_k^1)|$ specializes to $|K_C - (L_0 + (t_0 + 1)g_k^1)| = |(n-1)g_k^1 + E|$. Therefore (C2) implies that $|K_C - (L + (t_0 + 1)g_k^1)| = |(n-1)g_k^1 + F|$ for some $F \in C^\epsilon$. Clearly, $F \in V_\epsilon \setminus \{ |K_C - ng_k^1| \}$, and F specializes to F. Since $E \in Z$ is general we must have $F \in Z$. Hence $K_C - Z_{r,0} - t_0g_k^1 \subseteq \sigma(Z)$, and the claim is proved.

(ii) Now we are in a position to prove the Theorem. We keep the notation of (i).

We have to show that $\sigma(Z) + tg_k^1 (0 \leq t \in \mathbb{Z})$ is an irreducible component of $W_{(n+1) + \epsilon}^\epsilon(n+1)$ as long as dim $|K_C - (n + \epsilon)g_k^1 - E| \geq k - 2 - f$, i.e. dim $|L_0 + (t_0 + \epsilon)g_k^1| \geq k - 2 - f \geq 0$. By (3), this condition means: $t \leq t_0$, and in case $\epsilon < k - 2 - f$ we even must have $t < t_0$. Thus, putting $\lambda := t_0 - t$ we suppose that $\lambda \geq 0$, and that $\lambda = 0$ implies $\epsilon = k - 2 - f$. Since, by claim 2, $\sigma(Z) + tg_k^1 = K_C - Z_{r,0} - \lambda g_k^1$ we must show (up to dualization) that $Z_{r,0} + \lambda g_k^1$ is an irreducible component of $W_{\deg L_0 + \lambda k}^{\lambda(k-1-\epsilon)}$. Recall that, by claim 2, L_0 is general in $Z_{r,0}$.

First, let $\lambda = 0$ (i.e. $t = t_0$). Then we have $\epsilon = k - 2 - f$, i.e. $t = k - 2 - f - \epsilon = 0$. But for $t = 0$ we have seen in (i) that dim $|L_0 + g_k^1| = 2\epsilon + 1$, the minimum value. This implies that (by its definition) $Z_{0,0}$ is an irreducible component of $W_{\deg L_0}^\epsilon$, and so we are done in this case.

Next, assume $\lambda = 1$. Let Y be an irreducible component of $W_{\deg L_0 + k}^{\epsilon + (k-1)}$ containing the set $Z_{r,0} + g_k^1$, and let $M \in Y$ be general. Then $|M - g_k^1|$ specializes to L_0, and it follows, by semi-continuity, that dim $|M - g_k^1| \leq \epsilon$. If we have dim $|M - g_k^1| = \epsilon$ we have $|M - g_k^1| \in Z_{r,0}$, and since $Z_{r,0}$ is an irreducible component of Z_r it follows $|M - g_k^1| \in Z_{r,0}$, i.e. $Y \subseteq Z_{r,0} + g_k^1$, as wanted. So assume that dim $|M - g_k^1| < \epsilon$. By the base point free pencil trick, dim $|M + g_k^1| \geq 2 \dim |M| - \dim |M - g_k^1| \geq 2(\epsilon + k - 1 - f) - (\epsilon - 1) > \epsilon + 2(k - 1 - f)$. But $|M + g_k^1|$ specializes to $|L_0 + 2g_k^1| \in Z_{r,0} + 2g_k^1$, and we know that dim $|L_0 + 2g_k^1| = 2(k - 1 - f) + \epsilon$, by (3) (note that for $t_0 = 1$ we use (3) here at its limit validity $t_0 + 1 = 2$). This contradiction to semi-continuity settles the case $\lambda = 1$.

Finally, let $\lambda \geq 2$. We proceed by induction thus assuming that $Z_{r,0} + (\lambda - 1)g_k^1$ is already known to be as irreducible component of $W_{\deg L_0 + (\lambda - 1)k}^{\epsilon + (\lambda - 1)(k-1-\epsilon)}$. Let Y be an irreducible component of $W_{\deg L_0 + (\lambda - 1)k}^{\epsilon + (\lambda - 1)(k-1-\epsilon)}$ containing $Z_{r,0} + \lambda g_k^1$, and let $M \in Y$ be general. Then $|M - g_k^1|$ specializes to a general element of $Z_{r,0} + (\lambda - 1)g_k^1$ whence dim $|M - g_k^1| \leq (\lambda - 1)$.
\[(k - 1 - f) + \epsilon.\] If we have equality here then \[|M - g_k^1| \in Z_{r,0} + (\lambda - 1)g_k^1\] since the latter set, by induction hypothesis, is an irreducible component of \[W^r_{\deg(l_0)+\lambda g_k^1} \subset Z_{r,0} + (\lambda - 1)g_k^1\], and so we obtain \[Y \subseteq Z_{r,0} + \lambda g_k^1.\] The possibility \(<\) in the last inequality is ruled out in the same way as for \(\lambda = 1\), using the base point free pencil trick for \(\dim |M + g_k^1|\) and using (3).

The Theorem is thereby proved. \(\Box\)

In the closing lines of this Section we want to compute the dimension of the set \(\sigma(Z) + t g_k^1\) considered in the Theorem. Assuming, of course, that \(g_k^1\) is base point free and \(Z\) is an irreducible component of \(V_{e-f}(K_C - n g_k^1) \neq \emptyset\) we use the following abbreviations \((0 \leq t \in \mathbb{Z}) : d := (n + t)k + e, r := n + f + t(f + 1), r' := g - 1 - d + r\) and \(\kappa := \dim Z - (e - f (g - n(k - 1) - e + f)).\) Obviously, \(r \geq f,\) and it is known that \(\kappa \geq 0\) \((\kappa = 0\) if and only if \(Z\) has its ’expected’ dimension).

Lemma 2. Assume (Cl) holds for \(Z\). Then, using the above notation, \(\sigma(Z) + t g_k^1 \subseteq W^r_d,\) and its dimension is

\[
\rho(g(d,r) + (r-f)(r' - (k-2-f)) + \kappa \quad \text{ if } n = 0
g(d,r) + (r-f)(r' - (k-2-f)) + \kappa - (n-1)f \quad \text{ if } n > 0.
\]

Proof. By (Cl), for \(n > 0\) we have \(h^0(E) = 1\) for a general \(E \in Z\). Hence the natural map \(\sigma : Z \to \sigma(Z) \subseteq W_{nk+e}^{n+f}\) has generic fibre dimension \(f\) resp. \(0\) if \(n = 0\) resp. \(n > 0\). So

\[
\dim(\sigma(Z) + t g_k^1) = \dim(\sigma(Z)) =
\dim(Z) - f = e - f (g - e + f) + \kappa - f = \rho(g,e,f) + \kappa
\]

for \(n = 0\) and \(\dim(\sigma(Z) + t g_k^1) = \dim Z = e - f (g - n(k - 1) - e + f) + \kappa\) for \(n > 0\). Some tedious calculation gives the above dimension formula. Finally, \(\sigma(Z) + t g_k^1 \subseteq W^r_d\) follows from (Cl) and Lemma 1. \(\Box\)

Corollary. Assume (Cl) holds for \(Z\).

(i) If \(r > f\) (i.e. \((n, t) \neq (0, 0))\) and \(\kappa = 0\) then \(\sigma(Z) + t g_k^1\) is not an irreducible component of \(W^r_d\) unless we choose \(t\) as in the theorem (i.e. such that \(r' \geq k - 2 - f\)).

(ii) \(\dim(\sigma(Z) + t g_k^1) \geq \rho(g,d,r)\) if \(r' \geq k - 2 - f\) and \(n \leq 1\).

(iii) \(\dim(\sigma(Z) + t g_k^1) \geq \rho(g,d,r)\) if \(r' \geq k - 2\).

Note that in Lemma 2 it is not excluded that \(\sigma(Z) + t g_k^1 \subseteq W^r_d + 1\) in which case it clearly cannot be an irreducible component of \(W^r_d\). This explains (C3) in the Theorem. As for (C2) cf. the next section. In view of [CM2], 1.1.1, (Cl) is a very natural condition for \(Z\).
3. NEW COMPONENTS OF W_d

In this Section C denotes a general k-gonal curve of genus g and g^1_k a fixed (complete and base point free) pencil of degree k on C. Then $g > 2(k-2)$. If $g > 2(k-1)$ the g^1_k on C is unique ([AC]).

Proposition 1. Let e, f and $n \geq 0$ be integers such that $0 < f \leq k-2$ and $g - n(k-1) - e + f > 0$. Assume that

$$e - f(g - n(k-1) - e + f) \geq \begin{cases} f & \text{for } n = 0 \\ 0 & \text{for } n > 0 \end{cases}.$$

Then there exists an irreducible component Z of $V^{e-f}_e(|K_C - ng^1_k|)$ of the expected dimension $e - f(g - n(k-1) - e + f)$ which satisfies the conditions (C1) and (C3) of Theorem 1.

Proof. The existence of Z and property (C1) for it are settled by the Main Theorem of [CM2]. So we need to show that (C3) holds for this component Z, more precisely, for a general element of Z which we denote by A here. To do so we adapt the notation and procedure of the Proof of Theorem 4.2.1 in [CM2]. Specifically, let C' be a general $(f+2)$-gonal curve of genus g and P_1, \ldots, P_{k-2-f} be general points on C' such that $(C;g^1_k)$ specializes to $(C';g^1_{f+2} + P_1 + \ldots + P_{k-2-f})$. Under this specialization Z specializes to a subset $Z' \subseteq C'(e)$ (called W in loc. cit.) which has the following properties: For the complete linear series

$$L := |K_{C'} - (g - 1 - n(k-1) - e + f + n)g^1_{f+2} - n(P_1 + \ldots + P_{k-2-f})|$$

on C' one computes (loc. cit.)

$$m := \dim L = e - f(g - n(k-1) - e + f)$$

and

$$\deg L = e + m + (n-1)(k-2) + (k-2-f).$$

By our assumptions, $\deg L \geq e$ if $n > 0$. For $n = 0$ we even assume $m \geq f$ whence $\deg L = e + m - f \geq e$, again. As in loc. cit. we see that Z' is an irreducible component of the set $\{ E \in C'(e) : |L - E| \neq \emptyset \}$. The claim in loc. cit. shows that Z' in fact is an irreducible component of $V^{e-f}_e(|K_{C'} - n(g^1_{f+2} + P_1 + \ldots + P_{k-2-f})|)$; more precisely the Proof of that claim showed that, for general $E \in Z'$,

$$|K_{C'} - n(g^1_{f+2} + P_1 + \ldots + P_{k-2-f}) - E| =$$

$$|(g - 1 - n(k-1) - e + f)g^1_{f+2} + E'|$$

36
with some fixed effective divisor E' of C' (so $E' \in |L - E|$). For $0 \leq \lambda \in \mathbb{Z}$ let

$$M := |(n + \lambda)(g^1_{g+2} + P_1 + \ldots + P_{k-2-f}) + E|.$$

Then one computes:

$$\dim |K_{C'} - M| = \dim |K_{C'} - n(g^1_{g+2} + P_1 + \ldots + P_{k-2-f}) - E| - \lambda(g^1_{g+2} + P_1 + \ldots + P_{k-2-f})| = \dim |(g-1-n(k-1)-e+f-\lambda)g^1_{g+2} + E'| - \lambda(P_1 + \ldots + P_{k-2-f})| = \dim |(g-1-n(k-1)-e+f-\lambda)g^1_{g+2} - \lambda(k-2-f)|$$

(note that none of the points $P_i, i = 1, \ldots, k-2-f$, is contained in E'; in fact, since they are general w.r.t. $|K_{C'} - (g-1-n(k-1)-e+f+n)g^1_{g+2}|$ none of them is a base point of L, and since E is general in Z' so is $E + E'$ in L)

$$= (g-1-n(k-1)-e+f-\lambda) - \lambda(k-2-f),$$

as long as $\lambda(k-2-f) \leq g-n(k-1)-e+f-\lambda$.

If $\lambda(k-2-f) > g-n(k-1)-e+f-\lambda$ then $|K_{C'} - M| = \phi$. Hence, by Riemann-Roch,

$$\dim M = \max((n + \lambda)k + e - g, n + f + \lambda(f + 1)).$$

Since the series M on C' is a specialization of the series $|(n + \lambda)g^1_k + A|$ on C we have, by semi-continuity,

$$\dim |(n + \lambda)g^1_k + A| \leq \max((n + \lambda)k + e - g, n + f + \lambda(f + 1)).$$

Lemma 1 implies that we have equality. \(\square\)

For $n \leq 1$ condition (C2) in Theorem 1 is void. Therefore, Theorem 1, Lemma 2 and Proposition 1 imply the

Theorem 2. Let $d, f, n \leq 1$ and t be non-negative integers such that $0 < f \leq k-2$. Put $r := n + f + t(f + 1)$ and $r' := g-1-d+r$. Then W'_d contains an irreducible component V of dimension $\dim V = \rho_q(d, r) + (r-f)$ $(r' - (k-2-f))$ as long as $\dim V \geq \max(0, \rho_q(d, r))$. The general series in V is base point free (and simple if $r \geq 2$).

Proof. Clearly, $r \geq f$. If $r = f$, i.e. $n = t = 0$, the Theorem reduces to [CM 2], 2.3.2. So assume $r > f$. Then the condition $\dim V \geq \rho_q(d, r)$ means $r' \geq k-2-f$. We want to choose $V = \sigma(Z) + tg^1_k$ with Z as in the Proposition; then the general series in V is base point free since this is so for the general series in $\sigma(Z)$.
([CM2]), and simpleness follows from [CM1], 1.6 if \(r \geq 2 \). There is only some
calculation left. Let \(e := d - (n + t)k \). Then

\[
k - 2 - f \leq r' = g - 1 - d + r = (g - n(k - 1) - e + f) - t(k - 1 - f) - 1
\]

implies that

\[
g - n(k - 1) - e + f \geq (t + 1)(k - 1 - f) > 0.
\]

Calculating \(t \) from \(r = n + f + t(f + 1) \) we obtain \((f + 1)d = (f + 1)e + (r + nf - f)k \); so the hypothesis on \(e - f(g - n(k - 1) - e + f) \) in Proposition 1
turns out to be equivalent with \((f + 1)d \geq kr + f(g + 1 + f - k) \) (both for \(n = 0 \)
and \(n = 1 \)) which in turn is equivalent with \(\dim V \geq 0 \). (This is also clear from
the proof of Lemma 2.)

Finally, to apply Theorem 1 we need to know that \(\dim [K \cap (n + t)g_k] - E \) \begin{align*}
&\geq k - 2 - f \\
&\text{for } E \in Z \text{ general. But, using (Cl) and Lemma 1, we get}
\end{align*}

\[
\begin{align*}
\dim [K \cap (n + t)g_k] - E &= g - 1 - d + \\
\dim [(n + t)g_k + E] &\geq g - 1 - d + r = r' \geq k - 2 - f.
\end{align*}
\]

(Of course, since \(f \leq k - 2 \) we have that \((n + t)g_k^1 + E \) is special and so
\(\dim [(n + t)g_k^1 + E] = r \).)

Note that we have \(|L - g_k| \neq \phi \) for any series \(L \) in the component \(V \) of Theorem
2 if and only if \(r > f \). It is an interesting question how the dual \(K - V \) of \(V \)
may look like; we turn to this question in Section 3.

Examples. Let \(V \) be as in Theorem 2.

(i) In the special case \(n = f = 1, t = 0 \) (then \(r = 2 \)) \(V \) is an irreducible component
of \(W'_{d} \) made up by Segre's nets (cf. [S]; [CM1]), for \(k \geq 4 \).

(ii) It follows from [CM2], 1.1.1 that for maximal \(f \), i.e. \(f = k - 2 \), \(V \) consists
of series of type 2 if \(r' \geq 1 \). The existence of this component was already ob-
served in Section 1.

Corollary. Let \(d, r \) and \(\alpha \) be positive integers such that \(\alpha < k \) and \(\alpha \) divides \(r \) or
\(r + 1 \). Then \(W'_d \) has an irreducible component \(V_\alpha \) of dimension
\(\dim V_\alpha = \rho_\alpha(d, \alpha - 1) - (r + 1 - \alpha)k = d - rk + (\alpha - 1)(d - g + k - \alpha) = \rho_\alpha(d, r) + (r + 1 - \alpha)(g - d + r - k + \alpha) \) provided that this number is non-negative and not less
than \(\rho_\alpha(d, r) \).

Proof. If \(\alpha = 1 \) choose the irreducible component \(r g_k^1 \) of \(W'_d \) found in
the Corollary in Section 1. So let \(2 \leq \alpha < k \).

If \(\alpha \) divides \(r \) take \(f := \alpha - 1, n = 1 \) and \(t := \frac{\alpha - 1}{\alpha} \) in Theorem 2.
If α divides $r + 1$ take $f := \alpha - 1, n = 0$ and

$$t := \frac{r + 1}{\alpha} - 1$$

in Theorem 2.

Then choose $V_{\alpha} := V$. □

We have $V_{\alpha} \subseteq W_k^1 + W_{d-k}$ unless $\alpha = r + 1$. The components V_1, V_2 and, if $r \leq k - 2$, also the components V_r, V_{r+1} are always present as long as the related dimensions $\dim V_1 = d - rk$, $\dim V_2 = \rho_g(d, 1) - (r - 1)k, \dim V_r = \rho_g(d, r-1) - k$ and $\dim V_{r+1} = \rho_g(d, r)$ are non-negative and $\geq \rho_g(d, r)$. For fixed $d < g$ and r, $\dim V_{\alpha}$ is a decreasing function in

$$\alpha \geq \frac{k - 1}{2}.$$

Remark. Let $k \geq 6, k - 3 \leq r \not\equiv 1 \mod 3$ and $d = g - 1$. Since 2 and 3 divide r or $r + 1$ we can apply the corollary for $\alpha = 2$ and $\alpha = 3$. The irreducible component V_3 of W_{d-1}^r has bigger dimension than V_2 thus showing that the ‘optimistic guess’ on $\dim W_d^r$ made in the closing lines of [CM2], Section 4 has to be refined, for $k \geq 6$. (For $k \leq 5$ the guess is true; [CM2], [P].) Of course, it is not hard to write down this refinement if one only considers the components V_{α} of W_d^r; but there might be others. □

In order to get rid of condition (C2) we applied Theorem 1 only for $n \leq 1$. The following examples show that we get troubles with (C2) for $n \geq 2$; so in that case the discovery of irreducible components (if any) seems to be more delicate.

Examples. (i) Take Z as in Proposition 1, such that $g - n(k - 1) - e + f = k - 1 - f$. (Hence $\dim |K_C - ng_k^1 - E| = k - 2 - f$ for a general $E \in Z$.) Assume that $n \geq 2$. Then, by Lemma 2, $\dim \sigma(Z) = \rho_g(d, r) - (n - 1)f < \rho_g(d, r)$, and so $\sigma(Z)$ cannot be an irreducible component of $W_{d-1}^r (d = nk + e, r = n + f)$. By Proposition 1 and Theorem 1 the condition (C2) must be violated.

(ii) In Proposition 1, let $k = 4, f = 1, n = 2, e = g - 8$. Then $\sigma(Z) \subseteq W_3^1$ has dimension $g - 11 > g - 12 = \rho_g(g, 3)$. But $W_3^3 = K_C - W_3^{g-2}$ and, by [CM1], 3.2, W_3^{g-2} has irreducible components of dimension $g - 12$ and $g - 10$ only. Thus $\sigma(Z)$ is not an irreducible component of W_3^g, and so (C2) is false again.

4. DUALIZATION

In this Section (which generalizes results of [P]) C denotes a general k-gonal curve of genus g and g_k^i a fixed pencil of degree k on C, for $k \geq 4$. Recall that $\dim |\lambda g_k^1| = \lambda$ for any $0 \leq \lambda \in \mathbb{Z}$ if $|\lambda g_k^1|$ is special ([B]).

We want to discuss the dual $K_C - (\sigma(Z) + tg_k^1)$ of the set $\sigma(Z) + tg_k^1$ ($0 \leq t \in \mathbb{Z}$) where Z is an irreducible component of $V_{\alpha}^{\text{gen}} (|K_C - ng_k^1|) \neq \phi$ satisfying
(C1). By an example in Section 2 we already know what happens in the case of maximal \(f \), i.e. \(f = k - 2 \). Here we restrict to the case \(f = k - 3 \).

First we recall from [CM1], [CM2] the

Definition. A linear series \(g'_d \) on \(C \) is called a series of type 3 if it is complete and base point free with \(r \geq 1 \) and \(r' = r - 1 + d + r \geq 1 \) and if \(g'_d = \lfloor (r-1)g^1_k + E \rfloor \) for some effective divisor \(E \) on \(C \) such that \(\dim |g'_d - g^1_k| = r - 2 \).

(Note that \(E \neq 0 \), by [B], and \(h^0(E) = 1 \) in case \(r \geq 2 \).)

The crucial fact on series \(g'_d \) of type 3 is that we know the dimension of the set they constitute in \(W'_{g'} \) ([CM2], 4.3.1). To apply this we need the following technical result.

Lemma 3. For positive integers \(d, r \) let \(g'_d \) be a complete linear series on \(C \) such that \(\dim |g'_d - g^1_k| = r - 2 \). Then

(i) \(g'_d = \lfloor (r-1)g^1_k + F \rfloor \) for some effective divisor \(F \) with \(|F - g^1_k| = \phi \).

(Here \(F = 0 \) if and only if \(\dim |(r-1)g^1_k| = r \), and then \(g'_d \) is non-special.)

Or:

(ii) Away from its base locus \(g'_d \) has the form \(t g^1_k + g^0_x \) where \(g^x_x \) is a series of type 3, and \(s + 2t = r \geq s \).

Note that for \(t = 0 \) case (ii) is contained in (i), and for \(r' \geq 1 \) case (i) is contained in (ii) with \(t = 0 \).

Proof. Since \(\dim |g'_d - g^1_k| = r - 2 \) we have \(r \geq 1 \), and if \(r = 1 \) we obviously are in case (i). So let \(r \geq 2 \). Write \(|g'_d - g^1_k| = g'^{r-2} + F \) where \(F \) is the base locus of \(|g'_d - g^1_k| \). (In particular, \(|F - g^1_k| = \phi \).) Clearly, \(\dim |g'^{r-2} + g^1_k| \geq r - 1 \). If we have equality then, by [CM1], 1.8, \(g'^{r-2} - (r-2)g^1_k \), and so \(g'_d - \lfloor (r-1)g^1_k + F \rfloor \) with \(\dim |(r-1)g^1_k| = r - 1 \), and we are in case (i) with \(F \neq 0 \). So let \(\dim |g'^{r-2} + g^1_k| = r \). Then \(r \geq 3 \), \(F \) is the base locus of \(g'_d \), and the base point free part \(g'_d - F \) of \(g'_d \) is the sum of \(g^1_k \) and the base point free \(g'^{r-2} \). By the base point free pencil trick,

\[
 r - 3 \geq \dim |g'^{r-2} - g^1_k| \geq 2(r - 2) - \dim |g'^{r-2} + g^1_k| = r - 4.
\]

Assume \(\dim |g'^{r-2} - g^1_k| = r - 3 \). Then \(\dim |g'^{r-2} = \dim |g'^{r-2} - g^1_k| + \dim g^1_k \) which implies, by [CM1], 1.8, that \(g'^{r-2} = (r-2)g^1_k \), and we are in case (i) again.

But now we have \(\dim |(r-1)g^1_k| = \dim |g'_d - F| = r \); hence \(g'_d - F \) (and, in particular, \(g'_d \)) is non-special ([B]), and so \(d \geq r \) by \(\dim |g'_d - F| = d \) \deg \ F \ g \), i.e. \(F = 0 \). (Conversely, if \(F = 0 \) in (i) then \(\dim |(r-1)g^1_k| = r \), and \(g'_d \) is non-special.)

Now, let \(\dim |g'^{r-2} - g^1_k| = r - 4 = (r - 2) - 2 \). Then \(h^1(g'^{r-2}) \geq 2 \): In fact, if \(h^1(g'^{r-2}) \leq 1 \) we obtain, by Riemann-Roch,
whence \(k + \deg F \leq 3 \) contradicting \(k \geq 4 \). By the above reasoning, applied to the base point free series \(g^e_{e-2} \) (instead of \(g^f_d \)), we conclude that \(g^e_{e-2} \) is of type 3, or is the sum of \(g^i_k \) and a base point free \(g^{e-2}_{e-k} \) \((r \geq 5)\) with \(h^1(g^{e-2}_{e-k}) \geq 2 \) such that \(\dim |g^{e-2}_{e-k} - g^i_k| = (r - 4) - 2 \). Proceeding inductively we see that the base point free part \(g^e_d - F \) of \(g^e_d \) is of form

\[
|g^i_k + \text{series of type 3 of dimension } s |
\]

such that \(s + 2t = r \), and we are in case (ii), with \(t \geq 1 \).

Returning to our sets \(\sigma(Z) + tg^i_k \), for \(f = k - 3 > 0 \), and assuming (Cl) for \(Z \) we know that \(\sigma(Z) + tg^i_k \subseteq W^r_d \) for \(d := (n + t)k + e \) and \(r := n + f + t(f + 1) = (t + 1)(k - 2) + n - 1 \). (Except for the closing lines, \(d \) and \(r \) always have this meaning, and we let \(r' := g - 1 - d + r \).) It is not clear yet if \(\sigma(Z) + tg^i_k \subseteq W^r_{d+1} \). However we have the

Corollary. Let \(Z \) be an irreducible component of \(V_e^{e-k}(K_c - ng^i_k) \) for which (Cl) holds \((0 \leq n \in Z)\) and let \(r' \geq 1 \). Assume that the general element \(L \) of \(\sigma(Z) + tg^i_k \) is not of type 2 (w.r.t. our chosen \(g^i_k \)). Then (C3) holds for \(Z \), and the dual \(|K_c - L|\) of \(L \) has a description as in part (ii) of Lemma 3.

Proof. By Lemma 1, \(\dim L \geq (t + 1)(k - 2) + n - 1 = r \). Hence \(\dim |K_c - L| \geq r' \geq 1 \). To show (C3) for \(Z \) we have to show that \(\dim L = r \). To see this we use the

Claim. \(\dim |L - \lambda g^i_k| \geq \dim L - \lambda(k - 2) \) for any \(0 \leq \lambda \in Z \).

By applying the claim with \(\lambda = t + 1 \) we obtain, by (Cl),

\[
n - 1 = \dim |L - (t + 1)g^i_k| \geq \dim L - (t + 1)(k - 2),
\]

i.e. \(\dim L \leq (t + 1)(k - 2) + n - 1 = r \).

To prove the claim (which turns out to be true for any complete series \(L \) with \(\dim |K_c - L| \geq 1 \) which is not of type 2) we first observe that it is valid for \(\lambda = 0 \). Assume it is true for \(\lambda = \lambda_0 \geq 0 \) but violated for \(\lambda = \lambda_0 + 1 \). Then

\[
\dim |K_c - (L - \lambda_0 g^i_k)| + \dim g^i_k \leq \dim |(K_c - (L - \lambda_0 g^i_k)) + g^i_k| = \\
= \dim |K_c - (L - (\lambda_0 + 1)g^i_k)| = g - 1 - (d - (\lambda_0 + 1)k) + \dim |L - (\lambda_0 + 1)g^i_k| \leq \\
\leq g - 1 - (d - (\lambda_0 + 1)k) + \dim L - (\lambda_0 + 1)(k - 2) - 1 = \\
= g - (d - \lambda_0 k) + \dim L - \lambda_0(k - 2) \leq g - (d - \lambda_0 k) + \dim |L - \lambda_0 g^i_k| = \\
= \dim |K_c - (L - \lambda_0 g^i_k)| + \dim g^i_k,
\]
i.e. we have \(\dim |(K_C - (L - \lambda_0 g^1_k)) + g^1_k| = \dim |K_C - (L - \lambda_0 g^1_k)| + \dim g^1_k \). By [CM1], I.8 this implies that \(|L - \lambda_0 g^1_k| \) is of type 2. But \(|L - \lambda_0 g^1_k| \) is not of type 2 since \(L \) is not. This contradiction proves the claim.

It remains to show the assertion on \(L' := [K_C - L] \). Since \(|L - g^1_k| \) is a general element of \(\sigma(Z) + (t - 1)g^1_k \) and is not of type 2 (since \(L \) is not) note that we have \(\dim |L - g^1_k| = t(k - 2) + n - 1 = r - k + 2 \) (also for \(t = 0 \)). Hence \(\dim L' = r' \) and \(\dim |L' + g^1_k| = \dim |K_C - (L - g^1_k)| = g - 1 - (d - k) + r - k + 2 = r' + 2 \), and applying Lemma 3 to \(|L' + g^1_k| \) we obtain that \(|L' + g^1_k| \) is as in (i) or (ii) of that lemma. In case (i) we see that the base point free part of \(L' \) is \(r'g^1_k \) \((r' \geq 1)\) whence \(L \) is of type 2, a contradiction. Hence \(|L' + g^1_k| \) is as in part (ii) of Lemma 3 (with \(t \geq 1 \) there), and so also \(L' \) is as in part (ii) of Lemma 3, i.e. we have

\[
L' - \text{base locus} = |r'g^1_k + \text{series of type 3 of dimension } s'|
\]

for some integers \(s' \geq 1, \tau \geq 0 \) such that \(s' + 2\tau = r' \).

If we now restrict, in the corollary, to \(n = 0 \) or \(n = 1 \) we obtain a result which goes far beyond Theorem 2 in the case \(f' = k - 3 \):

\textbf{Theorem 3.} Let \(Z \) be an irreducible component of \(V_{e^{-(k-3)}}((K_C - ng^1_k)) \) for \(n = 0 \) or \(n = 1 \), and assume that (CI) holds for \(Z \). Let \(0 \leq t \in \mathbb{Z}, d = (n + t)k + e, r = (t + 1)(k - 2) + n - 1, \) and assume that \(r' = g - 1 - d + r \geq 1 \). Then \(\sigma(Z) + tg^1_k \) is an irreducible component of \(W' \) of the (expected) dimension \(\rho_{\tau}(d, r) + (r - (k - 3))(r' - 1) \), and \(K_C - (\sigma(Z) + tg^1_k) = \tau g^1_k + X_0 \) where \(X_0 \) is an irreducible component of \(W'_{d', r} \) resp. \(W'_{d' - r} \) \((d' := 2g - 2 - d)\) made up by pencils resp. nets of type 3 if \(r' = 2\tau + 1 \) is odd resp. \(r' = 2\tau + 2 \) is even.

\textbf{Proof.} Let us abbreviate \(\delta := d - tk = nk + e, \ s := n + k - 3 \) and \(s' := g - 1 - \delta + s \). Then we have \(s' = r' + 2\tau \geq 1 \) and \(\sigma(Z) \subseteq W'_{\delta} \).

First we claim that \(\sigma(Z) \) is not contained in the irreducible subset \(W \) of \(W'_{\delta} \) made up by the linear series of type 2 (w.r.t. our chosen \(g^1_k \)) which have the same degree \(\delta \) and the same dimension \(\geq s \) as the general element of \(\sigma(Z) \). Assume \(\sigma(Z) \subseteq W \). Since \(\dim W \leq \rho_{\delta}(\delta, s) + (s - (k - 2))s' \) (cf. [CM2], 2.3.5; the \(\leq \) is due to the fact that the series in \(W \) are of dimension \(\geq s \)) and, by Lemma 2, \(\dim \sigma(Z) \geq \rho_{\delta}(\delta, s) + (s - (k - 3))(s' - 1) \) we see that this is impossible for \(s = k - 3 \). If \(s = k - 2 \) (i.e. \(n = 1 \)) we obtain \(s' = 1 \) and \(\dim \sigma(Z) = \dim W \) whence the general series of type 2 is contained in \(\sigma(Z) \). But this is impossible by the Proposition in [CM2], Section 1.

From the Corollary of Lemma 3 we conclude that a general series in \(\sigma(Z) \) is a complete \(g^1_\delta \) such that

\[
|K_C - g^1_\delta| - \text{base locus} = |r'g^1_k + \text{series of type 3 of dimension } s'|
\]
where \(s^* + 2t^* = s' = r' + 2t \) for some integers \(s^* \geq 1, t^* \geq 0 \). Let \(\epsilon \) denote the degree of this base locus and \(\delta' := \deg|K_C - g_k^1| = 2g - 2 - \delta \). Then the involved series of type 3 and dimension \(s^* \) has degree \(\beta := \delta' - \epsilon - t^*k \), and according to [CM2], 4.3.1 the closure \(X \) of the set of series of type 3 in \(W^r_d \) is equidimensional of dimension \(\rho_g(\beta, 1) \) if \(s^* = 1 \) resp. \(\rho_g(\beta, 1) + 1 - (k + 1)(s^* - 1) \) if \(s^* \geq 2 \). One computes that

\[
\rho_g(\beta, 1) = \rho_g(\delta', 1) - 2\epsilon - 2t^*k = \rho_g(\delta', 1) - 2\epsilon - (s' - s^*)k = \rho_g(\delta', 1) - 2\epsilon - (s' - 1)k + (s^* - 1)k.
\]

Hence it follows that

\[
dim X = \rho_g(\delta', 1) - 2\epsilon - (s' - 1)k \quad \text{for} \ s^* = 1, \quad \text{and} \quad \dim X = \rho_g(\delta', 1) - 2\epsilon - (s' - 1)k - (s^* - 2) \quad \text{for} \ s^* \geq 2.
\]

Since \(K_C - \sigma(Z) \subseteq t^*g_k^1 + X + W \), we obtain

\[
\epsilon + \dim X \geq \dim(K_C - \sigma(Z)) = \dim \sigma(Z) \geq \rho_g(\delta, s) + (s - (k - 3))(s' - 1) = \rho_g(\delta', 1) - (s' - 1)k,
\]

and so \(\epsilon = 0 \) (i.e. \(|K_C - g_k^1| \) is base point free), \(1 \leq s' \leq 2 \) and \(K_C - \sigma(Z) = t^*g_k^1 + X_0 \) for an irreducible component \(X_0 \) of \(X \).

It follows that, for a general series \(L \in o(Z) + tg_k^1 \), we have

\[
|K_C - L| = |(t^* - t)g_k^1 + \text{series of type 3 of dimension } s^*|
\]

with \(1 \leq s^* \leq 2 \) and \(s^* + 2(t^* - t) = s' - 2t = r' \), and

\[
K_C - (\sigma(Z) + tg_k^1) = \tau g_k^1 + X_0
\]

with \(\tau := t^* - t = \frac{1}{2}(r' - s^*) \geq 0 \) (recall \(r' \geq 1, s^* \leq 2 \)).

We have already observed that \(\dim(\sigma(Z) + tg_k^1) - \rho_g(\delta, s) + (s - (k - 3))(s' - 1) \), and some easy calculation shows that the latter number equals \(\rho_g(d, r) + (r - (k - 3))(r' - 1) \). Finally, to see that \(\sigma(Z) + tg_k^1 \) is an irreducible component of \(W^r_d \) we have, by Theorem 1 and the Corollary of Lemma 3, only to check that its general element \(L \) is not of type 2. But by the above \(|K_C - L| \) is a base point free; if it were compounded of the \(g_k^1 \), i.e. if \(|K_C - L| = \lambda g_k^1 (r' \leq \lambda \in \mathbb{Z}) \), we would obtain that \(|(\lambda - \tau)g_k^1| \) were of type 3 (note that \(\lambda \geq r' > \tau \) which is impossible. \(\square \)

We noticed in Section 2 that the irreducible component \(V_{k-1} \) of \(W^r_d \) (made up by series of type 2 if \(r' \geq 1 \)) is coupled, via dualization, with \(V_1 = r'g_k^1 + W_{d'-r_k} \) in \(W^r_{d'} (d' = 2g - 2 - d, r' = g - 1 - d + r) \). According to Theorem 3, the irreducible component \(V_{k-2} \) of \(W^r_d \) is coupled with \(V_2 \) in \(W^r_{d'} \) (pro-
vided that \(k - 2 \) divides \(r \) or \(r + 1 \). One may wonder if such a correspondence continues to hold. Nevertheless, if \(V_{\alpha'} \) denotes the irreducible component of \(W'_{d_4} \) found in the Corollary of Theorem 2, the variety \(W'_{d_4} \) contains the irreducible components \(V_{\alpha} \) for positive divisors \(\alpha < k \) of \(r \) or \(r + 1 \) and the irreducible components \(K_C - V_{\alpha'} \) for positive divisors \(\alpha' < k \) of \(r' \) or \(r' + 1 \), and \(\dim(K_C - V_{\alpha'}) = \dim V_{\alpha} \) if \(\alpha' = k - \alpha \). The main question is if there still are components of \(W'_{j} \) of other dimensions, for \(k \geq 6 \). If \(r = k - 3 \) we have, by Theorem 3, the following partial answer likewise answering, in this special case, a question asked in [CM2], Section 2.

Corollary. \(W'_{d_4}^{k-3} \) has the expected dimension \(\rho_g(d,k-3) \) away from \(W_{k_1}^{1} + W_{d-k}^{k} \).

Proof. Let \(V \) be an irreducible component of \(W'_{d_4}^{k-3} \) not contained in \(W_{k_1}^{1} + W_{d-k}^{k} \). Then there is an irreducible component \(Z \) of \(V_{d}^{d-(k-3)}([K_C]) \) satisfying (C1) such that \(\sigma(Z) = V \). Taking \(n = t = 0 \) in the Theorem 3 we obtain \(\dim V = \rho_g(d,k-3) \) (also for \(r' < 1 \)).

Assume that the general \(k \)-gonal curve \(C \) admits 'unexpected' linear series, i.e. \(g'_d \) such that \(\rho_g(d,r) < 0 \). Then \(\rho_g(k,1) < 0 \), and \(C \) has only one pencil \(g^1_k \) of degree \(k \) ([AC]). One may wonder ([CM2]) if this unique pencil \(g^1_k \) occurs in any unexpected series on \(C \). (This question asks for a more general version of the Conjecture 4.1 in [CKM] which has been proved almost completely in [K].) Since any series \(g'_d \) of dimension \(r \geq k \) contains the \(g^1_k \) this question is of interest only for \(r < k \), and the answer is known to be affirmative for \(r \geq k - 2 \) ([CM2]) and \(r = 1 \) ([AC]). The Corollary of Theorem 3 implies that it is affirmative for \(r = k - 3 \), too.

ACKNOWLEDGEMENT

The first author likes to thank for the pleasant time in Erlangen both from the mathematical and the hospitable side. The second author wants to thank E. Ballico and the University of Trento for the pleasant stay at Trento where part of this work has been compiled.

REFERENCES

(Received June 2001)