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Abstract

We discuss the summation of certain series defined by counting blocks of digits in the B-ary ex-
pansion of an integer. For example, if s2(n) denotes the sum of the base-2 digits of n, we show that∑

n�1 s2(n)/(2n(2n+1)) = (γ + log 4
π )/2. We recover this previous result of Sondow and provide several

generalizations.
© 2006 Elsevier Inc. All rights reserved.

MSC: 11A63; 11Y60

1. Introduction

A classical series with rational terms, known as Vacca’s series [17] or in an equivalent integral
form as Catalan’s integral [7] (see also [6,16]), evaluates to Euler’s constant γ :

γ =
∑
n�1

(−1)n

n

⌊
logn

log 2

⌋
=

1∫
0

1

1 + x

∑
n�1

x2n−1 dx.
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In a recent paper [15] Sondow gave the following two formulas:

γ ± =
∑
n�1

N1(n) ± N0(n)

2n(2n + 1)

where γ + = γ is the Euler constant, γ − = log 4
π

is the “alternating Euler constant” [14], and
N1(n) (respectively N0(n)) is the number of 1’s (respectively 0’s) in the binary expansion of the
integer n. The series for γ + = γ is equivalent to Vacca’s. The formulas for γ ± show in particular
that

∑
n�1

s2(n)

2n(2n + 1)
= γ + log 4

π

2

where s2(n) is the sum of the binary digits of the integer n.
This last formula reminds us of one of the problems posed at the 1981 Putnam competition [9]:

Determine whether or not

exp

( ∑
n�1

s2(n)

n(n + 1)

)

is a rational number. In fact,
∑ s2(n)

n(n+1)
= 2 log 2. A generalization was proven by Shallit [13],

where the base 2 is replaced by any integer base B � 2. A more general result, where the sum of
digits is replaced by the function Nw,B(n), which counts the number of occurrences of the block
w in the B-ary expansion of the integer n, was given by Allouche and Shallit [2].

The purpose of the present paper is to show that the result of [15] cited above can be deduced
from a general lemma in [2]. Furthermore, we sum the series

∑
n�1

Nw,2(n)

2n(2n + 1)
and

∑
n�1

Nw,2(n)

2n(2n + 1)(2n + 2)
,

thus generalizing Corollary 1 in [15] and a series for Euler’s constant in [1,5,11] (dated Febru-
ary 1967, August 1967, February 1968), respectively. Finally, we indicate some generalizations
of our results, including an extension to base B > 2, and a method for giving alternate proofs
without using the general lemma from [2].

2. A general lemma

The first lemma in this section is taken from [2]; for completeness we recall the proof. We
also give two classical results presented as lemmas, together with a new result (Lemma 4).

We start with some definitions. Let B � 2 be an integer. Let w be a word on the alphabet of
digits {0,1, . . . ,B − 1} (that is, w is a finite block of digits). We denote by Nw,B(n) the number
of (possibly overlapping) occurrences of w in the B-ary expansion of an integer n > 0, and we
set Nw,B(0) = 0.

Given w as above, we denote by |w| the length of the word w (i.e., if w = d1d2 · · ·dk , then
|w| = k). Denote by wj the concatenation of j copies of the word w.
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Given w and B as above, we denote by vB(w) the value of w when w is interpreted as the
base B-expansion (possibly with leading 0’s) of an integer.

Remark 1. The occurrences of a given word in the B-ary expansion of the integer n may overlap.
For example, N11,2(7) = 2.

If the word w begins with 0, but vB(w) �= 0, then in computing Nw,B(n) we assume that the
B-ary expansion of n starts with an arbitrarily long prefix of 0’s. If vB(w) = 0 we use the usual
B-ary expansion of n without leading zeros. For example, N011,2(3) = 1 (write 3 in base 2 as
0 · · ·011) and N0,2(2) = 1.

Lemma 1. [2] Fix an integer B � 2, and let w be a non-empty word on the alphabet
{0,1, . . . ,B − 1}. If f : N → C is a function with the property that

∑
n�1 |f (n)| logn < ∞,

then

∑
n�1

Nw,B(n)

(
f (n) −

∑
0�j<B

f (Bn + j)

)
=

∑
f

(
B |w|n + vB(w)

)
,

where the last summation is over n � 1 if w = 0j for some j � 1, and over n � 0 otherwise.

Proof. (See [2].) As Nw,B(n) � � logn
logB

� + 1, all series
∑

Nw,B(un + v)f (un + v), where u

and v are nonnegative integers, are absolutely convergent. Let � be the last digit of w, and let
g := B |w|−1. Then

∑
n�0

Nw,B(n)f (Bn + �) =
∑

0�k<g

∑
n�0

Nw,B(gn + k)f (Bgn + Bk + �)

and

∑
n�0

Nw,B(Bn + �)f (Bn + �) =
∑

0�k<g

∑
n�0

Nw,B(Bgn + Bk + �)f (Bgn + Bk + �).

Now, if either n �= 0 or vB(w) �= 0, then for k = 0,1, . . . , g − 1 we have

Nw,B(Bgn + Bk + �) − Nw,B(gn + k) =
{

1, if k = � vB(w)
B

�;
0, otherwise.

On the other hand, if n = 0 and vB(w) = 0 (hence � = 0), then the difference equals 0 for every
k ∈ {0,1, . . . , g − 1}. Hence

∑
n�0

Nw,B(Bn + �)f (Bn + �) −
∑
n�0

Nw,B(n)f (Bn + �) =
∑

f

(
Bgn + B

⌊
vB(w)

B

⌋
+ �

)

=
∑

f
(
B |w|n + vB(w)

)
, (∗)

the last two summations being over n � 0 if w is not of the form 0j , and over n � 1 if w = 0j

for some j � 1. We then write
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∑
n�0

Nw,B(n)f (n) =
∑

0�j<B

∑
n�0

Nw,B(Bn + j)f (Bn + j)

=
∑

j∈[0,B)\{�}

∑
n�0

Nw,B(Bn + j)f (Bn + j) +
∑
n�0

Nw,B(Bn + �)f (Bn + �)

which together with (∗) gives

∑
n�0

Nw,B(n)

(
f (n) −

∑
0�j<B

f (Bn + j)

)
=

∑
f

(
B |w|n + vB(w)

)
.

Since Nw,B(0) = 0, the proof is complete. �
Now let � be the usual gamma function, let Ψ := �′/� be the logarithmic derivative of the

gamma function, let ζ(s) be the Riemann zeta function, let ζ(s, x) := ∑
n�0(n + x)−s be the

Hurwitz zeta function, and let γ denote Euler’s constant.

Lemma 2. If a and b are positive real numbers, then

∑
n�1

(
1

an
− 1

an + b

)
= 1

b
+ γ + Ψ (b/a)

a
.

Proof. We write

∑
n�1

(
1

an
− 1

an + b

)
= lim

s→1+

∑
n�1

(
1

(an)s
− 1

(an + b)s

)
= 1

a
lim

s→1+

∑
n�1

(
1

ns
− 1

(n + b
a
)s

)

= 1

a
lim

s→1+

(
ζ(s) − ζ

(
s,

b

a

)
+

(
a

b

)s)

= 1

b
+ 1

a
lim

s→1+

((
ζ(s) − 1

s − 1

)
−

(
ζ

(
s,

b

a

)
− 1

s − 1

))

= 1

b
+ 1

a

(
γ + �′(b/a)

�(b/a)

)
= 1

b
+ γ + Ψ (b/a)

a

(see, for example, [18, p. 271]). �
Lemma 3. For x > 0 we have

∑
r�1

(
x

r
− log

(
1 + x

r

))
= logx + γ x + log�(x).

Proof. Take the logarithm of the Weierstraß product for 1/�(x) (see, for example, [8, Sec-
tion 1.1] or [18, Section 12.1]). �

The next lemma in this section is the last step before proving our theorems.
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Lemma 4. Let a and b be positive real numbers. Then

∑
n�1

(
1

an
− log

an + 1

an

)
= log�

(
1

a

)
+ γ

a
− loga

and

∑
n�0

(
1

an + b
− log

an + b + 1

an + b

)
= log�

(
b + 1

a

)
− log�

(
b

a

)
− Ψ (b/a)

a
.

Proof. The proof is straightforward. The first formula follows directly from Lemma 3. To prove
the second, write the nth term of the series for n � 1 as the following sum of nth terms of three
absolutely convergent series:

1

an + b
− 1

an
− b

an
+ log

(
1 + b

an

)
+ b + 1

an
− log

(
1 + b + 1

an

)
;

then use Lemmas 2 and 3. �
3. Two theorems

In this section we give two theorems that are consequences of Lemma 1, and that generalize
results in [15] and [1,5,11].

Theorem 1. Let w be a non-empty word on the alphabet {0,1}, and let Ψ denote the logarithmic
derivative of the gamma function.

(a) If v2(w) = 0, then

∑
n�1

Nw,2(n)

2n(2n + 1)
= log�

(
1

2|w|

)
+ γ

2|w| − |w| log 2.

(b) If v2(w) �= 0, then

∑
n�1

Nw,2(n)

2n(2n + 1)
= log�

(
v2(w) + 1

2|w|

)
− log�

(
v2(w)

2|w|

)
− 1

2|w| Ψ
(

v2(w)

2|w|

)
.

Proof. Let

An := 1

n
− log

n + 1

n

for n � 1. Noting that An − A2n − A2n+1 = 1
2n(2n+1)

, the theorem follows from Lemma 1 with
B = 2, and f (n) := An for n � 1, together with Lemma 4. �
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Example 1. Taking w = 0 and w = 1, and recalling that �(1/2) = √
π and Ψ (1/2) = −γ −

2 log 2 by Gauß’s theorem (see, for example, [8, p. 19] or [10, p. 94]), we get

∑
n�1

N0,2(n)

2n(2n + 1)
= 1

2
logπ + γ

2
− log 2

and

∑
n�1

s2(n)

2n(2n + 1)
=

∑
n�1

N1,2(n)

2n(2n + 1)
= −1

2
logπ + γ

2
+ log 2.

These equalities imply the formulas in the introduction:

∑
n�1

N1,2(n) ± N0,2(n)

2n(2n + 1)
= γ ±

where (following the notations of [15]) γ + := γ and γ − := log 4
π

, which is Corollary 1 of [15].

Remark 2. The formulas in Theorem 1 are analogous to those in [2, p. 25]. The analogy becomes
more striking if one uses Gauß’s theorem to write all expressions of the form Ψ (x), with x a
rational number in (0,1], using only trigonometric functions, logarithms, and Euler’s constant.

Theorem 2. Let w be a non-empty word on the alphabet {0,1}.

(a) If v2(w) = 0, then

∑
n�1

Nw,2(n)

2n(2n + 1)(2n + 2)
= log�

(
1

2|w|

)
+ γ

2|w|+1
− |w| log 2 − 1

2|w|+1
Ψ

(
1

2|w|

)
− 1

2
.

(b) If v2(w) �= 0, then

∑
n�1

Nw,2(n)

2n(2n + 1)(2n + 2)
= log�

(
v2(w) + 1

2|w|

)
− log�

(
v2(w)

2|w|

)

− 1

2|w|+1

(
Ψ

(
v2(w)

2|w|

)
+ Ψ

(
v2(w) + 1

2|w|

))
.

Proof. Noting that 1
2n(2n+1)

− 1
4 · 1

n(n+1)
= 1

2n(2n+1)(2n+2)
, it suffices to use Theorem 1 and the

following result, deduced from [2, top of p. 26] in the case B = 2.

(a) If v2(w) = 0, then

∑
n�1

Nw,2(n)

n(n + 1)
= 1

2|w|−1

(
Ψ

(
1

2|w|

)
+ γ + 2|w|

)
.
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(b) If v2(w) �= 0, then

∑
n�1

Nw,2(n)

n(n + 1)
= 1

2|w|−1

(
Ψ

(
v2(w) + 1

2|w|

)
− Ψ

(
v2(w)

2|w|

))
. �

Example 2. Taking w = 0 and w = 1, we get

∑
n�1

N0,2(n)

2n(2n + 1)(2n + 2)
= 1

2
logπ + γ

2
− 1

2
log 2 − 1

2

and

∑
n�1

s2(n)

2n(2n + 1)(2n + 2)
=

∑
n�1

N1,2(n)

2n(2n + 1)(2n + 2)
= −1

2
logπ + γ

2
+ 1

2
log 2.

Hence

∑
n�1

N1,2(n) ± N0,2(n)

2n(2n + 1)(2n + 2)
= δ±

where δ+ := γ − 1
2 and δ− := 1

2 − log π
2 , which are respectively a formula given in [1,5,11] and

a seemingly new companion formula.

Remark 3. As mentioned, all expressions of the form Ψ (x), with x a rational number in (0,1],
can be written using only trigonometric functions, logarithms, and Euler’s constant.

4. Generalizations

Several extensions or generalizations of our results are possible. We give some of them in this
section.

4.1. Variation on An

Instead of applying Lemma 1 with f (n) = An = 1
n

− log n+1
n

for n � 1, we could replace An

with

A(k)
n := 1

n + k
− log

n + 1

n

for n � 1, where k is a nonnegative integer. Defining the (rational) function Q(k) by

Q(k)(n) := A(k)
n − A

(k)
2n − A

(k)
2n+1

and noting that summing
∑

n�1 A
(k)
an+b boils down to summing

∑
n�1(

1
an+b+k

− 1
an+b

), which
as in the proof of Lemma 2 involves the Hurwitz zeta function, we obtain explicit formulas for
the sum of the series

∑
n�1 Nw,2(n)Q(k)(n).
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4.2. Extension to base B > 2

Lemma 1 has been used above only for base B = 2. There are applications to other bases
in [2]. We also note that the relation among the An’s,

An = 1

2n(2n + 1)
+ A2n + A2n+1

for n � 1, can be generalized to base B . Namely,

An = Q(n,B) + R(n,B)

where

Q(n,B) := 1

Bn(Bn + 1)
+ 2

Bn(Bn + 2)
+ · · · + B − 1

Bn(Bn + B − 1)

and

R(n,B) := ABn + ABn+1 + · · · + ABn+B−1.

This allows us to use Lemmas 1 and 4 to sum, for example, the series

∑
n�1

Nw,3(n)
9n + 4

3n(3n + 1)(3n + 2)
,

since

Q(n,3) = An − A3n − A3n+1 − A3n+2 = 9n + 4

3n(3n + 1)(3n + 2)
.

4.3. Weighted An’s

In this section we consider a weighted form of the An’s. First we need to study a relation
between sequences of real numbers.

Lemma 5. Let (rn)n�1 and (Ri)i�1 be sequences of real numbers. Set r0 := 0 and R0 := 0. Then
the following two properties are equivalent:

(1) for i � 1

Ri =
∑
k�0

r� i

2k � = ri + r� i
2 � + r� i

4 � + · · ·

(note that this is actually a finite sum);
(2) for n � 1

rn = Rn − R� n
2 �.
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Proof. The implication (1) ⇒ (2) is easily seen by considering the cases n even and n odd.
Likewise, for (2) ⇒ (1) take i even and i odd. �
Remark 4. See [4, Theorem 9] for more about this relation.

Theorem 3. Assume that r1, r2, . . . and R1,R2, . . . are real numbers related as in Lemma 5. Then
the series

∑ |rn|n−2 converges if and only if the series
∑ |Ri |i−2 converges, and in this case we

have

S :=
∑
n�1

rn

(
1

n
− log

n + 1

n

)
=

∑
i�1

Ri

2i(2i + 1)
.

Proof. First note that if the series
∑ |Ri |i−2 converges, then so does the series

∑ |rn|n−2: use
the expression for rn in terms of the Ri ’s in Lemma 5. Now suppose that the series

∑ |rn|n−2

converges. As before, let An := 1
n

− log n+1
n

. Then 0 < An < 1
n

− 1
n+1 . This implies that the

series S := ∑
rn(

1
n

− log n+1
n

) is absolutely convergent. Now

An = 1

2n(2n + 1)
+ A2n + A2n+1

implies

An = 1

2n(2n + 1)
+ 1

4n(4n + 1)
+ 1

(4n + 2)(4n + 3)
+ A4n + A4n+1 + A4n+2 + A4n+3.

Hence, repeating K times,

An =
∑

1�k�K

∑
0�m<2k−1

1

(2kn + 2m)(2kn + 2m + 1)
+

∑
0�q<2K

A2Kn+q .

Using the bounds 0 < An < 1
n

− 1
n+1 and telescoping, the last sum is less than 2−K . Letting K

tend to infinity, we obtain the (rapidly convergent) series

An =
∑
k�1

∑
0�m<2k−1

1

(2kn + 2m)(2kn + 2m + 1)
.

Substituting into the sum defining S yields the double series

S =
∑
n�1

∑
k�1

∑
0�m<2k−1

rn

(2kn + 2m)(2kn + 2m + 1)
,

which converges absolutely. Thus we may collect terms with the same denominator, and we
arrive at the series

S =
∑ R′

i

2i(2i + 1)
,

i�1
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where

R′
i :=

∑
n∈E i

rn

with Ei := {n � 1, ∃k � 1, ∃m ∈ [0,2k−1), 2k−1n + m = i}. On the one hand, this proves that

the series
∑ R′

i

2i(2i+1)
is absolutely convergent (hence the series

∑ |R′
i |i−2 is convergent). On the

other hand, R′
i can also be written as

R′
i :=

∑
1�k� log i

log 2 +1

r� i

2k−1 � =
∑
k�0

r� i

2k �

(recall that we have set r0 := 0). Thus R′
i = Ri by the hypothesis, and the proof is complete. �

Example 3. Theorem 3 yields in particular the series for γ and log 4
π

in the introduction, in
Example 1, and in [15, Corollary 1]. Namely,

If r1 = r2 = · · · = 1, then the series defining S sums to γ from Lemma 4, and the formula
defining R′

i = Ri reduces to Ri = � log 2i
log 2 � = N1,2(i) + N0,2(i).

If rn = (−1)n−1, then S = log 4
π

(see [14] or decompose S into
∑

(odd terms) − ∑
(even

terms) and apply Lemma 4), and the formula defining R′
i = Ri implies Ri = N1,2(i) − N0,2(i).

To see this equality, first note that if it holds for i � 1, then using Lemma 5 and looking at the
cases n odd and n even,

rn = Rn − R� n
2 � = (−1)n−1

for n � 1 (compare [15, Lemma 2]). Now recall that properties (1) and (2) in Lemma 5 are
equivalent.

Remark 5. Example 3 shows that it is possible to deduce the formula

∑
n�1

N1,2(n) − N0,2(n)

2n(2n + 1)
= log

4

π

from Theorem 3 and Lemma 4 without using Lemma 1: this yields a proof of the formula that is
different from those in [15] and Example 1. Similar reasoning applies for any ultimately periodic
sequence (rn)n�1. In particular, it is not hard to see that the relations giving r2n and r2n+1 in terms
of the Ri ’s imply that the sequence (rn)n�1 is periodic whenever Ri = Nw,2(i) for some fixed w

and for every i � 1. Hence Theorem 1 can be deduced from Theorem 3 and Lemma 4 (along with
the method for decomposing series employed in Example 3), without using Lemma 1. In the same
vein, the generalization in Section 4.2 can be proved using a generalization of Theorem 3 to base
B together with Lemma 4.
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5. Future directions

Lemma 1 is the main tool for summing series in [2] and in the present paper. It might be
possible to use the lemma to obtain the base B accelerated series for Euler’s constant in [15,
Theorem 2], and to sum more general series with Nw,B(n). On the other hand, it might also be
possible to extend the results of [2] and the present paper, and sum series where (Nw,B(n))n�1
is replaced by a more general integer sequence (an)n�1, using the decomposition in [12] of
a sequence (an)n�1 into a (possibly infinite) linear combination of block-counting sequences
(Nw,B(n))n�1 (see also [3]). Of course, since this may replace a series with an infinite sum, for
the method to work the new series must be summable in closed form.
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