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We study solutions to the eleven-dimensional supergravity action, including terms quartic and cubic 
in the Riemann curvature, that admit an eight-dimensional compact space. The internal background is 
found to be a conformally Kähler manifold with vanishing first Chern class. The metric solution, however, 
is non-Ricci-flat even when allowing for a conformal rescaling including the warp factor. This deviation 
is due to the possible non-harmonicity of the third Chern-form in the leading order Ricci-flat metric. 
We present a systematic derivation of the background solution by solving the Killing spinor conditions 
including higher curvature terms. These are translated into first-order differential equations for a globally 
defined real two-form and complex four-form on the fourfold. We comment on the supersymmetry 
properties of the described solutions.
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1. Introduction and summary

The study of M-theory on eight-dimensional compact mani-
folds is of both conceptional as well as phenomenological inter-
est. On the one hand, this compactifications allow the dynam-
ics of three-dimensional effective theories with various amounts 
of supersymmetry to be investigated. On the other hand, the M-
theory to F-theory limit can be used to lift the three-dimensional 
theories to four space–time dimensions for a certain class of 
eight-dimensional manifolds [1]. From a phenomenological point 
of view, compactifications in which the effective theory preserves 
only small amounts of supersymmetry are of particular interest. 
For example, compactifications of M-theory and F-theory preserv-
ing four supercharges allow for background fluxes that can induce 
a four-dimensional chiral spectrum.

The aim of this note is to study vacua of eleven-dimensional su-
pergravity on compact eight-dimensional manifolds M8 including 
the known higher derivative terms to the action. More precisely, 
our starting point will include terms admitting eight derivatives 
and are fourth and third order in the eleven-dimensional Riemann 
curvature R̂, i.e. schematically of the form R̂4 and R̂3Ĝ2, where Ĝ
is the field strength of the M-theory three-form. The terms fourth 
order in R̂ are known since the works [2–8], while recently the 
third order terms involving Ĝ have been analyzed in [9]. Given 
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this action we introduce an Ansatz for the background metric and 
fluxes capturing corrections expanded in powers of α ∝ �3

M , where 
�M is the eleven-dimensional Planck length. This Ansatz includes 
a warp-factor as well as a shift of the internal metric at order 
α2 [10]. The field equations pose second order differential con-
straints on the shifted internal metric which we are able to solve 
explicitly. The internal manifold turns out to have still vanishing 
first Chern class, but the metric background has to be chosen to no 
longer be Ricci flat. At order α2 the deviation from Ricci-flatness 
is measured by the warp-factor and the non-harmonic part of the 
third Chern form c(0)

3 on M8 evaluated in the zeroth order, Ricci-
flat metric.

In order to systematically find an explicit solution and an-
alyze its supersymmetry properties we also study the eleven-
dimensional supersymmetry variations. Unfortunately, these are 
not known to the required order to give a complete check of the 
preservation of three-dimensional N = 2 supersymmetry corre-
sponding to four supercharges. It was, however, argued in [11,12]
that the eleven-dimensional gravitino variations have to include 
certain seven-derivative couplings involving three Riemann cur-
vature tensors. Evaluated for the background Ansatz this induces 
modified Killing spinor equations for a globally defined spinor on 
M8 that has to exist in order to have a supersymmetric solution. 
We show that the integrability condition on these Killing spinor 
equations yields the modified Einstein equations at order α2. Fur-
thermore, we use the globally defined spinor to introduce a glob-
ally defined real two-form J and complex four-form �. The Killing 
spinor equations translate into first order differential constraints 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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on these forms, which imply that the metric is (conformally) Käh-
ler. In fact, this formulation allows us to give a simple derivation of 
the α2 correction to the internal metric found by solving the Ein-
stein equations. Our results can also be reformulated in terms of 
torsion classes on an SU (4) structure manifold. We find that, upon 
separating the conformal rescaling of the internal metric, only the 
torsion form W5 in d� = W5 ∧ � is non-vanishing but exact. At 
the two-derivative level eleven-dimensional supergravity on SU (4)

structure manifolds has recently been studied in [13].
It should be stressed that the first part of our analysis closely 

parallels the seminal papers [14,10]. In particular, the derivation of 
the equations of motion satisfied by the background is in accor-
dance with [10]. We are, in addition, able to explicitly solve these 
conditions and give a geometric interpretation of the result. The 
fact that the metric is no longer Ricci flat when higher derivative 
couplings and α′-corrections are taken into account is a classical 
result for Calabi–Yau manifolds without background fluxes in string 
theory [15] and has been recently investigated for Spin(7) and G2
compactifications [16]. It is gratifying to observe that this result in-
deed carries over to warped Calabi–Yau fourfold compactifications 
with fluxes of eleven-dimensional supergravity. To fully check su-
persymmetry, however, it would be interesting to show that the 
proposed gravitino variation is complete. Furthermore, it is still 
an open problem to derive the three-dimensional effective action 
including fluctuations around the presented background. If the re-
sulting three-dimensional action carries the properties of an N = 2
supergravity theory, this would give a further test for the super-
symmetry of this background. We hope to present the derivation 
of the effective action in a forthcoming publication [17] extending 
the results of [18–20].

The paper is organized as follows. In Section 2 we present 
the Ansatz for the metric and the background fluxes and give the 
equations satisfied by the appearing functions. We then solve the 
internal Einstein equations finding corrections to the metric. The 
gravitino variations are analyzed in Section 3. We derive the mod-
ified Killing spinor equations and translate the conditions into first 
order differential equations for J , �. We comment on the compat-
ibility with the Einstein equations and the implications for super-
symmetry. Useful identities and a summary of our conventions are 
supplemented in Appendix A.

2. Warped background solutions to eleven-dimensional 
supergravity

In the following we will determine a bosonic solution to eleven-
dimensional Einstein equations in the presence of higher curvature 
corrections and background fluxes. We will explicitly solve the Ein-
stein equations finding a correction to the internal Calabi–Yau met-
ric. Supersymmetry properties of this solution will be discussed in 
Section 3.

2.1. The eleven-dimensional action

Recall that the bosonic spectrum of eleven-dimensional N = 1
supergravity consists only of the metric ĝMN and a three-form Ĉ . 
We denote the field strength of Ĉ by Ĝ = dĈ and note that the 
hats on the symbols indicate that we are dealing with eleven-
dimensional fields, with indices raised and lowered with ĝ MN .

The dynamics of the fields is determined by the bosonic part of 
the N = 1 supergravity action given by

S(11) = Sclass + α2 S R̂4 + α2 S R̂3 Ĝ2 + α2 S R̂2(∇ Ĝ)2 + . . . . (2.1)

Here we have introduced the expansion parameter α given by
α2 = (4πκ2
11)

2
3

(2π)432213
, (2.2)

which is proportional to sixth power of the eleven-dimensional 
Planck length. For the following analysis the relevant terms in (2.1)
are, firstly, the classical two-derivative action [21]

Sclass = 1

2κ2
11

∫
R̂∗̂1 − 1

2
Ĝ ∧ ∗̂Ĝ − 1

6
Ĉ ∧ Ĝ ∧ Ĝ , (2.3)

where R̂ is the Ricci scalar. Secondly, S R̂4 denotes the terms quartic 
in the Riemann curvature and given by [2–8]

S R̂4 = 1

2κ2
11

∫
(t̂8t̂8 − 1

24
ε̂11ε̂11)R̂4∗̂1 + 32213Ĉ ∧ X̂8 . (2.4)

The explicit form of the various terms in (2.4) is given in Ap-
pendix A. It is believed that these are all terms quartic in the 
Riemann tensor at this order in α. The terms at higher order in Ĝ
and α, such as S R̂3 Ĝ2 and S R̂2(∇ Ĝ)2 , will not be needed in what fol-
lows as their contribution is higher order in α when evaluated on 
the ansatz we will make. In particular we will see that the ansatz 
for Ĝ contains only O(α) and higher pieces, which put these terms 
beyond the order we will study.

2.2. Ansatz for the vacuum solution

We now consider solutions for which the internal space is a 
compact eight-dimensional manifold M8 and the external space 
is R2,1. At lowest order in α the solution takes the form

dŝ2 = ĝMNdxMdxN = ημνdxμdxν + g(0)
mndymdyn +O(α) ,

Ĝ = 0 +O(α) , (2.5)

where μ = 0, . . . , 2 and m = 1, . . . , 8. The Einstein equations im-
ply Ricci-flatness of the internal space R(0)

mn = 0. In fact, together 
with the supersymmetry conditions requiring the preservation of 
four supercharges, one infers that the internal manifold is Calabi–
Yau and thus admits a nowhere vanishing Kähler form J (0)

mn and a 
holomorphic (4, 0)-form �(0)

mnrs that are harmonic.
Having deduced this lowest order solution we can then work to 

second order in α by considering the field equations of the α cor-
rected action. To solve the corrected Einstein equations we make 
an Ansatz for the metric1

dŝ2 = eα2
(2)

(e−2α2 W (2)

ημνdxμdxν + eα2 W (2)

gmndymdyn)

+O(α3), (2.6)

where

gmn = g(0)
mn + α2 g(2)

mn +O(α3) . (2.7)

Here 
(2) , W (2) , g(0)
mn and g(2)

mn depend only on the internal coordi-
nates ym in the background. The function 
(2) is an overall Weyl 
rescaling that we will discuss in more detail below, while W (2) is 
known as the warp-factor. At this order in α a background four-
form field strength must also be included. Following [10] we make 
the Ansatz

Ĝmnrs = αG(1)
mnrs +O(α3) ,

Ĝμνρm = εμνρ∂me−3α2 W (2) +O(α3) , (2.8)

1 Note that an alternative ansatz with AdS external space can also be analyzed. 
However, this is not compatible with the lowest order supersymmetry conditions 
on the flux combined with the second order equations of motion.
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where G(1) is a background four-form flux on the internal man-
ifold M8 that is harmonic with respect to g(0)

mn . Let us note that 
the term linear in α appearing in Ĝmnrs has the correct mass 
dimensions such that the background flux G(1)

mnrs integrates to a 
dimensionless number. In fact TM2

∫
C4

Ĝ has to be dimensionless 
and the inverse M2-brane tension T −1

M2 is proportional to α. We do 
not include an α2 term in the Ansatz for Ĝmnrs , since it can be 
shown to either decouple or to give contributions at only O(α3)

in the following evaluations.

2.3. Equations determining the solution

The functions appearing in our ansatz may then be constrained 
by substituting into the eleven-dimensional equations of motion. 
The solution is found by expanding each of the equations of mo-
tion in powers of α and inferring the respective constraints [10].

To begin with, we note that the equations of motion of Ĉ and 
the eleven-dimensional Einstein equations derived from (2.1) do 
not decouple at first. However, combining the Ĉ equation with the 
external Einstein equations one infers that G(1) in the Ansatz (2.8)
is self-dual in the Calabi–Yau background, i.e.

αG(1) = α ∗(0) G(1) +O(α3) , (2.9)

where one uses that M8 is compact. By using (2.9) the second 
order equation of motion of Ĉ implies the warp-factor equation

e3α2 W (2) + 1
4!2α2G(1)

mnrsG(1)mnrs − 32213

8! α2εm1...m8 X8 m1...m8

+O(α3) = 0 , (2.10)

where the Laplacian  = ∇m∇m , the X8, and the contractions of 
G(1)

mnrs are evaluated using gmn given in (2.7). We stress that with 
the above Ansatz (2.8) the corrections to the Ĉ equation of mo-
tion (2.9) and (2.10) from S R̂3 Ĝ2 in (2.1) give contributions at least 
of order α3. At this order not all higher curvature contributions 
are known. Therefore, these conditions give constraints only to or-
der α2. This indicates consistency of our Ansatz for the warp-factor 
and implies that lower α powers in the solution to (2.10) would be 
constants. Moreover, at this order in α the metric used in (2.10) is 
only g(0)

mn . Integrating (2.10) over the internal manifold M8 one 
infers that, in the absence of localized sources, a non-trivial back-
ground flux G̃(1)

mnrs is required by consistency for a manifold with ∫
M8

X (0)
8 �= 0.

Next we use the Ansatz (2.6) and (2.8), along with the con-
straints (2.9) and (2.10), to rewrite the Einstein equations into a 
simple form. Firstly, we expand

Rmn ≡ R(g(0)
rs + α2 g(2)

rs )mn = R(0)
mn + α2 R(2)

mn (2.11)

which defines R(2)
mn . Using this abbreviation the internal part of the 

eleven-dimensional Einstein equations can be rewritten as

R(2)
mn − 1

2 g(0)
mn g(0) rs R(2)

rs + 768 J (0)
m

r J (0)
n

s∇r∇s Z − 9
2 ∇m∇n


(2)

+ 9
2 g(0)

mn g(0) rs∇r∇s

(2) = 0 , (2.12)

where J (0)
m

n = J (0)
mp g(0)pn is the complex structure on the underly-

ing Calabi–Yau manifold. The conditions (2.9) and (2.10) are used 
to cancel all flux dependence in (2.12) and ensure that the Einstein 
equations involving R̂mμ are automatically satisfied at the order 
considered. The external part of the Einstein equations takes the 
form

R(2)
mn g(0) mn − 9g(0) mn∇m∇n


(2) = 0 . (2.13)
The derivation of (2.12) and (2.13) is rather lengthy and requires 
the use of the identities summarized in Appendix A. Furthermore, 
we have used Ricci-flatness R(0)

mn = 0 for the lowest order part of 
the Riemann tensor to simplify the result. In these expressions the 
scalar Z is proportional to the six-dimensional Euler density and 
is given by

Z = ∗(0)( J (0) ∧ c(0)
3 )

= 1
12 (R(0)

mn
rs R(0)

rs
tu R(0)

tu
mn − 2R(0)

m
r

n
s R(0)

r
t

s
u R(0)

t
m

u
n) , (2.14)

where c(0)
3 the third Chern form evaluated in the metric g(0)

mn given 
explicitly in (A.7). Tracing the internal part of the Einstein equation 
and demanding compatibility with the external part then fixes


(2) = − 512
3 Z ,

R(2)
mn = −768( J (0)

m
r J (0)

n
s∇r∇s Z + ∇m∇n Z) . (2.15)

In other words, the solution indeed requires the presence of a 
non-trivial eleven-dimensional Weyl rescaling involving the higher 
curvature terms.

2.4. Solving the modified Einstein equation

In order to solve (2.15) we follow a technique equivalent to 
that shown in [15]. We begin by noting that as c(0)

3 is real and 
closed but not co-closed with respect to the Kähler metric g(0)

mn . 
This means that it may be expanded as

c(0)
3 = Hc(0)

3 + i∂(0)∂̄ (0) F (2.16)

where H indicates the projection to the harmonic part with 
respect to the metric g(0)

mn . This equation defines a co-closed 
(2, 2)-form F that will be key to the following discussions.2 Then 
by using (2.14) we see that

Z = ∗(0)( J (0) ∧ Hc(0)
3 ) + 1

4 (0) ∗(0) ( J (0) ∧ J (0) ∧ F ) (2.17)

where ∗(0)( J (0) ∧ Hc(0)
3 ) is constant over the internal space as a re-

sult of the harmonic projection. We are now in the position to use 
these quantities to solve (2.15) for a metric correction at order α2. 
The explicit solution is given by

g(2)
mn = 384( J (0)

m
r J (0)

n
s∇(0)

r ∇(0)
s + ∇(0)

m ∇(0)
n ) ∗(0) ( J (0) ∧ J (0) ∧ F ) ,

(2.18)

where F is the four-form introduced in (2.16). Clearly, one can now 
explicitly check that (2.18) solves (2.15).3 In the next section we 
will show by introducing globally defined forms on M8 how one 
is naturally lead to the solution (2.18).

3. Killing spinor equations and globally defined forms

In this section we comment on the supersymmetry properties 
of the solution introduced in Section 2. This is a challenging task, 
since the supersymmetry variations are not fully known at the de-
sired order α2. Following a strategy used in [11,12] we will be 

2 The harmonicity of Chern forms has been also discussed in the mathematical 
literature and lead to the introduction of the Bando–Futaki character [22], which is 
however trivially vanishing in the Calabi–Yau case.

3 Recently, it was pointed out in [20] that a redefinition of the metric background 
gmn = g(0)

mn − 768α2 J (0)
m

r(∗(0)c(0)
3 )rn trivializes the kinetic terms for the vectors ob-

tained from Ĝ in the three-dimensional effective action. This interesting observa-
tion, however, has to be contrasted with the fact that this shift is not a solution to 
the Einstein equations at order α2.
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able to extract at least partial information about the supersymme-
try properties by studying the Killing spinor equations at order α2. 
Furthermore, we will then translate these equations into differen-
tial conditions on the globally defined forms J and � on M8. This 
will lead to a stepwise derivation of the correction (2.18).

To set the stage of our study, let us note that we assert that at 
quadratic order in α the eleven-dimensional gravitino variation is 
given by

δψ̂M = ∇̂M ε̂ − 1
288 Ĝ N R ST �̂M

N R ST ε̂ + 1
36 Ĝ MN R S �̂

N R S ε̂

+ 128
3 α2∇̂N Ẑ �̂M

N ε̂

− 48α2∇̂N R̂ M RN1 N2 R̂ N S N3 N4 R̂ R S
N5 N6 �̂

N1...N6 ε̂

+O(α2) , (3.1)

where the remaining order α2 terms vanish on the backgrounds 
we consider. Here Ẑ is proportional to the six-dimensional Euler 
density in eleven dimensions and is given by

Ẑ = 1
12 (R̂ MN

R S R̂ R S
T U R̂T U

MN − 2R̂M
R

N
S R̂ R

T
S

U R̂T
M

U
N) . (3.2)

This form of the gravitino variation is compatible with the terms 
that are necessary in [11,12]. In other words, we will see below 
that the Killing spinor equations derived from (3.1) are compati-
ble with the Einstein equations up to order α2. Remarkably, the 
terms in (3.1) also appear in the gravitino variations deduced by 
eleven-dimensional Noether coupling in [23].

3.1. Dimensional reduction of the supergravity variations

We next dimensionally reduce the supersymmetry variations 
(3.1) on the background introduced in Section 2. To begin with, 
we decompose the eleven-dimensional supersymmetry parameter 
and gamma matrices in a way that is compatible with our Ansatz 
as

ε̂ = e− 1
2 α2 W (2)

ε ⊗ η , �̂μ = e
1
2 α2
(2)−α2 W (2)

γμ ⊗ γ 9 ,

�̂m = e
1
2 α2
(2)+ 1

2 α2 W (2)

1 ⊗ γm , (3.3)

where ε is a spinor in the three-dimensional external space and η
is a no-where vanishing spinor on M8. The spinor η is chosen to 
satisfy γ 9η = η, η†η = 1 and ηT η = 0.

Substituting this decomposition along with the reduction ansatz 
(2.6) and (2.8) into (3.1) we find for the internal gravitino variation

δψ̂m = e− 1
2 α2 W (2)

ε ⊗ ∇mη − 1
288αG(1)

nrstε ⊗ γm
nrstη

+ 1
36αG(1)

mnpqε ⊗ γ npqη

− 48α2∇n Rmrm1m2 Rnsm3m4 Rrs
m5m6ε ⊗ γ m1...m6η

+ 128
3 α2∇n Zε ⊗ γm

nη + 1
4α2∇n


(2)ε ⊗ γm
nη

+O(α3) = 0 , (3.4)

and for the external gravitino variation

δψ̂μ = e− 1
2 α2 W (2)∇με ⊗ η − α 1

288 G(1)
mnpqγμε ⊗ γ mnpqη

− 128
3 α2∇n Zγμε ⊗ γ nη − 1

4α2∇n

(2)γμε ⊗ γ nη

+O(α3) = 0 . (3.5)

These equations can then be satisfied if at lowest order in α the
background is Calabi–Yau, as already noted at the beginning of Sec-
tion 2.2, and one has ∇με = 0. At linear order in α one finds the 
condition

G(1)
mnrsγ

nrsη = 0 (3.6)
Finally, at second order in α one finds that (2.15) has to be satis-
fied and η obeys the Killing spinor equation

∇mη = −384α2 J (0)
m

n∇n Zrsγ
rsη +O(α3) , Zrs = 1

2 (∗c(0)
3 )rs

(3.7)

where J (0)rs Zrs = Z .

3.2. Differential conditions on the globally defined forms

Using the spinor η one can introduce a globally defined no-
where vanishing real two-form J and a complex four-form �. This 
is a familiar strategy for manifolds with reduced structure group. 
The case of having SU (4) structure was discussed in [13,24]. Con-
cretely, we use η to construct the forms

Jmn = iη†γmnη , �mnrs = ηT γmnrsη . (3.8)

By using Fierz identities we see that these forms satisfy

J ∧ � = 0 , J ∧ J ∧ J ∧ J = 3
2 � ∧ �̄ . (3.9)

The Kähler form J (0)
mn corresponding to the Ricci flat metric g(0)

mn is 
then the lowest order part of Jmn .

We can now rewrite the supersymmetry conditions (3.6) and 
(3.7) using J and �. The constraint on the flux (3.6) implies that

G(1) ∧ J (0) = 0 , G(1) is of type (2,2) in J (0) n
m (3.10)

where J (0) n
m is the complex structure of the underlying Calabi–Yau 

fourfold. Furthermore, the Killing spinor equation (3.7) satisfied by 
η translates to the differential conditions

∇m Jnr = 0 +O(α3) ,

∇m�nrst = 6144α2 J (0)
m

p∇(0)
p Z[nq�

(0)
rst]q +O(α3) (3.11)

Antisymmetrizing in the indices then gives

d J = 0 +O(α3) , d� = −768α2dZ ∧ �(0) +O(α3) . (3.12)

We can thus infer that the metric gmn including α2 corrections is 
still Kähler. In fact, the higher curvature terms only amount to in-
troducing the non-closedness of � with a result proportional to �
itself. In fact, translated into torsion forms for an SU (4)-structure 
manifold (see, for example, [13,24]), the only non-trivial torsion 
form is W5 = −768α2∂̄ (0) Z , which is exact.

Let us stress that the derivation of the Killing spinor equation 
makes use of the full internal space metric ĝMN . However, the 
overall Weyl rescaling and warp-factor terms precisely cancel and 
the resulting equation (3.7) depends only on the metric gmn ap-
pearing in (2.6). The J and � appearing (3.12) are thus related to 
the metric gmn . Clearly one could introduce an alternative J̃ and �̃
related to rescaled metric ĝmn . This would induce new terms pro-
portional to J̃ in d J̃ and �̃ in d�̃ will then be induced, since the 
gamma-matrices in (3.8) are rescaled.

We can now use the condition that gmn is a Kähler metric and 
study the integrability condition of (3.7). Here the commutator 
[∇m, ∇n]η = 1

4 Rmnrsγ
rsη can be compared with the result obtained 

form (3.7). This simply results in the condition

1

4
Rmnrsγ

rsη − 768α2 J (0)[mr∇(0)
n] ∇(0)

r Z pqγ
pqη +O(α3) = 0 .

(3.13)

Contracting with η† we see that this implies

1 Rmnrs J rs − 768α2 J (0)[mr∇(0)∇(0)
r Z +O(α3) = 0 . (3.14)
4 n]
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As we know that Rmnrs J rs = 2Rmrns J rs by the first Bianchi iden-
tity and that for a Kähler manifold Jm

p R pnrs = Jn
p Rmprs we then 

see that (3.14) implies R(0)
mn = 0 at zeroth α order and the Einstein 

equations (2.15) at order α2.

3.3. Solving the equations for J and �

We now wish to solve Eqs. (3.12) subject to the algebraic con-
straints (3.9). To do this we begin by expanding these equations in 
α to find

d J (2) = 0 , d�(2) = −768dZ ∧ �(0) . (3.15)

We may solve the constraint on �(2) by letting

�(2) = φ�(0) + ρ , where dφ = −768dZ , dρ = 0 . (3.16)

The (4, 0) part of ρ can be absorbed into φ�(0) so we may assume 
that ρ ∧ �̄(0) = 0. Similarly as J (2) is a real d-closed 2-form on a 
Kahler manifold

J (2) = σ + i∂(0)∂̄ (0)ψ , where dσ = d(0)†σ = 0 . (3.17)

Then considering the expansion of (3.9) we see that

4 J (2) ∧ J (0) ∧ J (0) ∧ J (0) = 3

2
(�(2) ∧ �̄(0) + �(0) ∧ �̄(2)) , (3.18)

and substituting (3.16) and (3.17) into (3.18) we find

1

3
∗ (σ ∧ J (0) ∧ J (0) ∧ J (0)) − (0)ψ = 2(φ + φ̄) , (3.19)

which implies that d(0)ψ = 3072dZ . Considering this along with 
(3.16) and using the expansion of Z given by (2.17) we see that we 
are lead to a solution for J (2) and �(2) where

J (2) = i786 ∂(0)∂̄ (0) ∗(0) (F ∧ J (0) ∧ J (0)) ,

�(2) = −192(0) ∗(0) (F ∧ J (0) ∧ J (0))�(0) . (3.20)

This shows that the internal space Kähler potential is shifted by a 
term proportional to F . The remaining forms ρ and σ correspond 
to moduli which will be studied in [17]. Expanding the relationship

gmn = i
48�(m|rpt�̄|n)squ J rs J pq J tu , (3.21)

which may be demonstrated by using the results of Appendix A, 
we find

g(2)
mn = − J (0)

(m
r J (2)

n)r + 1

2
J (0)rs J (2)

rs g(0)
mn − 1

48
�

(2)
(m|rst�̄

(0)
|n)

rst

− 1

48
�̄

(2)
(m|rst�

(0)
|n)

rst , (3.22)

and using this we see that the correction to J and � implies the 
metric correction (2.18) that solves (2.15).

The analysis presented here shows that the first order equa-
tions (3.12) on J and �, which are derived from the Killing spinor 
equations (3.7) are economically solved by (3.20). This then pro-
vides a solution to the second order equations (2.15) arising from 
the internal space Einstein equations. While we have no complete 
proof of the supersymmetry of this solution this result provides 
a necessary condition. Furthermore, as we expect that the low-
est order supersymmetry carries over to the higher order analysis 
and we have made a general analysis of the corrections to the 
eleven-dimensional field equations, it seems natural to expect that 
further corrections to the gravitino variation (3.1) vanish in the 
background presented. It would be interesting to continue to de-
velop the Noether coupling analysis of [23] to find the complete 
expression for the gravitino variation at order α2.
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Appendix A. Conventions, definitions and identities

We denote the total eleven-dimensional space indices by capital 
Latin letters M, N, R, S, . . . , the external ones by μ, ν = 0, 1, 2 and 
real indices of the internal space by m, n, r, s = 1, . . . , 8. Quantities 
for which the indices are raised and lower with the total space 
metric carry a hat e.g. Ĝ , R̂ . Furthermore, the convention for the 
totally antisymmetric tensor in Lorentzian space in an orthonormal 
frame is ε012...10 = ε012 = +1. The epsilon tensor in d dimensions 
then satisfies

εR1···R p N1...Nd−p εR1...R p M1...Md−p

= (−1)s(d − p)!p!δN1 [M1 . . . δNd−p
Md−p] , (A.1)

where s = 0 if the metric has Riemannian signature and s = 1 for 
a Lorentzian metric.

We adopt the following conventions for the Riemann tensor of 
the internal space

�r
mn = 1

2
grs(∂m gns + ∂n gms − ∂s gmn) , Rmn = Rr

mrn ,

Rm
nrs = ∂r�

m
sn − ∂s�

m
rn + �m

rt�
t

sn − �m
st�

t
rn ,

R = Rmn gmn , (A.2)

with equivalent definitions for the Riemann tensor on the to-
tal and external spaces. Perturbing the internal metric by gmn =
g(0)

mn + α2 g(2)
mn the correction to the internal Ricci tensor at O(α2)

is then given by

R(2)
mn = α2∇(0)

r ∇(0)
(m g(2)r

n) − α2 1

2
∇(0)r∇(0)

r g(2)
mn

− α2 1

2
∇(0)

m ∇(0)
n g(2)r

r . (A.3)

The scalar functions t̂8t̂8 R̂4 and ε̂11ε̂11 R̂4 are given by

ε̂11ε̂11 R̂4 = εR1 R2 R3 N1...N8ε
R1 R2 R3 M1...M8 R̂N1 N2

M1 M2 R̂N3 N4
M3 M4

× R̂N5 N6
M5 M6 R̂ N7 N8

M7 M8 ,

t̂8t̂8 R̂4 = t̂8N1...N8 t̂8
R3 M1...M8 R̂N1 N2

M1 M2 R̂N3 N4
M3 M4 R̂ N5 N6

M5 M6

× R̂N7 N8
M7 M8 , (A.4)

with

t̂N1...N8
8 = 1

16

( − 2
(

ĝN1 N3 ĝN2 N4 ĝN5 N7 ĝN6 N8

+ ĝN1 N5 ĝN2 N6 ĝN3 N7 ĝN4 N8 + ĝN1 N7 ĝN2 N8 ĝN3 N5 ĝN4 N6
)

+ 8
(

ĝN2 N3 ĝN4 N5 ĝN6 N7 ĝN8 N1

+ĝN2 N5 ĝN6 N3 ĝN4 N7 ĝN8 N1 + ĝN2 N5 ĝN6 N7 ĝN8 N3 ĝN4 N1
)

− (N1 ↔ N2) − (N3 ↔ N4) − (N5 ↔ N6)

− (N7 ↔ N8)
)
. (A.5)

While the 8-form X8 is given by

X8 = 1
[

Tr(R̂4) − 1 (
Tr(R̂2)

)2
]

, (A.6)
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where R̂M
N = 1

2 R̂ M
N R SdxR ∧ dxS and the 3rd Chern form on the 

internal space may be expressed as

c3 = − 1

48
Rm1m2n1n2 Rm3m4n3n4 Rm5m6n5n7 Jn2n3 Jn4n5

× Jn6n1dxm1 ∧ . . . ∧ dxm6 .

From the spinor bilinear J we may form the projectors

�±
m

n = 1

2

(
δm

n ∓ i Jm
n) , where

�−
m

i�inrs = �mnrs , �+
m

i�inrs = 0 , (A.7)

which satisfy

�mnrs�̄
tuv w = 4!24�−[mt�−

n
u�−

r
v�−

s]w (A.8)

as may be shown by using Fierz identities [25]. Using these tech-
niques we can also show that the remaining spinor bilinears on 
the internal space can be written as

η†γmnrsη = −3 J [mn Jrs] , η†γmnrstuη = 15i J [mn Jrs Jtu] ,
η†γmnrstuv wη = 105 J [mn Jrs Jtu J v w] ,
ηT γp1...pdη = 0 where d �= 4 ,

η†γp1...pdη = 0 where d = odd . (A.9)
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