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Abstract

In this paper, we consider a regulated logistic growth model. We first consider the linear stability and the existence of a
Hopf bifurcation. We show that Hopf bifurcations occur as the delay t passes through critical values. Then, using the nor-
mal form theory and center manifold reduction, we derive the explicit algorithm determining the direction of Hopf bifur-
cations and the stability of the bifurcating periodic solutions. Finally, numerical simulation results are given to support the
theoretical predictions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the delayed logistic differential equation

n(t) zrn(t)<1 —%) (1.1)

is used to model the evolution of a single species #(¢). Often, the use of this model is not so much that it has any
real microscopic justification. For instance, in some situations, one may need to adjust the size of the positive
equilibrium (see, e.g., [1]). For this purpose, Gopalsamy et al. [2,3] first put forward a mechanism of ‘“‘feedback
regulation” to Eq. (1.1) by considering the following control system:

n(t—

. 7)
n(t)=r(t) |1 ——=— cu(t
0 =rmio)|1 =" - )] )
u(t) = —au(t) + bn(t — 1),
where function u is regarded as a “feedback control” variable, K, r, a, b, t € (0,00).
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Recently, there have been extensive literatures dealing with system (1.2) or systems similar to (1.2), regard-
ing attractivity, global stabilities of positive equilibrium and other dynamics (see, e.g., [2-8] and references
therein). For a long time, it has been recognized that delays can have very complicated impact on the dynamics
of a system (see, e.g., [2,4,9]). For example, delays can cause the loss of stability and can induce various oscil-
lations and periodic solutions. In the present paper, we are interested in the effect of delay on dynamics of Eq.
(1.2). Taking the delay 7 as a parameter, we show that a Hopf bifurcation will occurs as the delay 7 passes
through a critical value, i.e., a family of periodic solutions will be bifurcated from the positive equilibrium.

The rest of this paper is organized as follows. In the next section, we consider the stability and Hopf bifur-
cations. In Section 3, the stability of the bifurcating periodic solutions and the direction of the Hopf bifurca-
tion at the critical values of 7 are determined by using the normal form method and the center manifold
reduction due to Hassard et al. [10]. Finally, a numerical example is given.

2. Stability of the positive equilibrium and existence of Hopf bifurcations

It is easy to verify that (1.2) has a unique positive equilibrium FE, = (n.,u.), where
ak bK

* *

" :aJerc7 “ :aJerc'

We will begin by investigating its linearized stability. For the simplicity of notations, we define x(¢), y(¢), u, o,
B, v as follows:

x(t)—n’z)—l, y(t)_%)—h @.1)
bcK r
VZT, a:1—|—y’ p=a. (2.2)

Then (1.2) are transformed into

{fe(r) — —ax(t — ) — oopy(e) — oee(t)x(t — ) — orpx(E)y (o), 03
y(t) = Bx(t —7) — y(1).
Then, the origin (0,0) is a fixed point of Eq. (2.3), and the linearization of (2.3) about it is
{{c(f) — —o(t — 7) — ayy(0), 04
y(t) = Px(t — 1) = py(0).
The characteristic equation resulting from (2.4) is
P+ Biall+ Bl +7)e ™ =0. (2.5)

It is well known that the zero steady state of system (2.4) is asymptotically stable if all roots of Eq. (2.5) have
negative real parts, and unstable if Eq. (2.5) has a root with positive real part. In the sequel, we shall inves-
tigate the distribution of the roots of Eq. (2.5).

If iw (w > 0) is a root of Eq. (2.5), then

—® + foi + afA + B(1 +7)je " = 0.
Separating the real and imaginary parts, we obtain

{a)2 = af(1 + 7) cos wt + aw sin w1,
P = af(l 4+ y)sinwt — aw cos wr,

from which we have

ot + (B — oP)w? — (1 +7) =0. (2.7)
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Clearly, Eq. (2.7) has only one positive root mq defined by

wwzB(f_ﬁA*VW”+Wf+4ww%2+”>T' (2.8)
Define

_ 1 - oo(0p + B +7y) . o

T = o0 (arcsm w(wn 1 /32(1 n y)z) + 2]7:), j=0,1,2,.... (2.9)

Then (1;,w) solves Eq. (2.6). This means that when t = 7; Eq. (2.5) has a pair of purely imaginary roots iwy.
Now let us consider the behavior of the roots of Eq. (2.5) near 7,. For the purpose of this, denote

Alt) = a(t) +iw(7)
the root of Eq. (2.5) such that
o(t;) =0, (1)) = wy.

Substituting A(t) into Eq. (2.5) and differentiating both sides of it with respect to 7, we have

Faﬁ*_ (27 + B)e™ o 1
de | Aed+ap(l+7y)  Aei+ap(l+7y) 2
which leads to
da! (27 + B)e™ o T
Re|$t| =R R =
eLh_TU G{M@z+aﬁa-%w>}fq‘% e{zwz+-w%1+y» A}TU
:Re{ﬁcoswotf—Zwo sincgor_,-.—&—i[2wocosw0r_,-+ﬁsinworj]} —|—Re{ _ o }
—awj + (1 + y)wy —owi +1of(1 + ) wy

=7 {—aw}[Bcos wyt; — 2wy sin wyt;] + aB(1 + y)wo[2w cos wot; + Bsin wot;] — P}

1 . .
=7 {Baxn[af(1 + 7) sin wot; — oy cos wot;] + 2w [q cos wot; + owy sin wot,] — Pwg}

2

w? o)
=Pk (7 - ) =P o P B )
where we have used Egs. (2.6) and (2.8), and I' = 2w + o2f*(1 + y)*w? > 0. Hence

sign{Re [%] ) } = sign{Re {%} B } = sign{wT(z’ \/(0(2 + )7 + 422 (1 + /)} > 0. (2.10)

T=T1j

Therefore, when the delay t near 1; is increased, the root of Eq. (2.5) crosses the imaginary axis from left to
right. In addition, note that when t = 0, Eq. (2.5) has only the roots with negative real parts. Thus, the well-
known Rouché theorem means the following results about the distribution of roots of Eq. (2.5) hold.

Lemma 2.1. Let 1; (j=0,1,...) be defined as in (2.9). Then all roots of Eq. (2.5) have negative real parts for all
T € [0,79). However, Eq. (2.5) has at least one root with positive real part when t > 1y, and Eq. (2.5) has a pair of
purely imaginary root fiwg when t = 1o. More detail, for t € (1, 1;41] (G=10,1,2,...), Eq. (2.5) has 2(j + 1) roots
with positive real parts. Moreover, all roots of Eq. (2.5) with t = 1;, j= 0,1,2,... have negative real parts except
:i:iw().

Applying Lemma 2.1, the transversality condition (2.10) and Theorem 11.1 [9], we easily obtain the follow-
ing results on stability and bifurcation of system (1.2).
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Theorem 2.1. Let wg and t; (j=0,1,...) be defined by (2.8) and (2.9), respectively.

(1) The positive equilibrium E, of system (1.2) is asymptotically stable for all © € [ 0, to) and unstable for © > 1.
(i) System (1.2) undergoes a Hopf bifurcation at the positive equilibrium E, when t=1;, j=10,1,2,...

3. Direction and stability of the Hopf bifurcation

In the previous section, we obtain that a family of periodic solutions bifurcate from the positive steady state
E, at the critical values of 7. We know that it is interesting to determine the direction, stability and period of
these bifurcating periodic solutions. In this section, we shall derive the explicit formulae determining the prop-
erties of the Hopf bifurcation at the critical value 7; using the normal form theory and center manifold reduc-
tion due to Hassard et al. [10].

Normalizing the delay t by the time-scaling ¢ — /7, system (2.3) is transformed into

{X(t) = —rafx(r = 1) +9p(0) +x(0)x(t = 1) + px(0)y(1)],
y(t) = plx(t = 1) = ¥(0)].
Thus, we can work in the phase space C = C([—1,0], R?). Without loss of generality, denote the critical value T

by 7. Let T =7 + u, then =0 is a Hopf bifurcation value of Egs. (3.1). For the simplicity of notations, we
rewrite (3.1) as

u(t) = L,(u,) + f (1, u,), (3.2)

where u(f) = (u1(t), ux(t)) " = (x(2), ()" € R*, u/(0) € C is defined by u/(0) =u(¢+0), and L,:C — R and
f:Rx C— R are given by

(3.1)

=y ) (o) o (o) () @3
e Flu) = (E 4+ ) ( —oty,(0)uy, (—1) — ocyul,(O)uz,(O)) (3.4)

respectively. By the Riesz representation theorem, there exists a function 5(6,u) of bounded variation for
0 € [—1,0], such that

L,p= /0 dn(0,0)¢(0) for ¢ € C. (3.5)
In fact, we can choose
0 —o 0
o=y 7Yoo - e, (3:6)

where  is the Dirac delta function. For ¢ € C'([—1,0], R?), define

do(6
A(M:{%, 0c[-1,0),
S dn(us)s), 0=0
and
0, 0 €[-1,0),
®0={ g, 0-0
Then system (3.2) is equivalent to
ity = A(pu, + R(pwuy, (3.7)

where x,(0) = x(¢ + 0) for 0 € [—1,0].
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For y € C'([0,1],(R*)"), define

{ _%@7 RIS (Oa 1]7
12 dn" (2,000 (—1), s=0.

and a bilinear inner product

AY(s) =

— 0 0 —
W6).90) =030 = [ [ we=oano)a@dz, (38)

where 5(0) = 5(0,0). Then A(0) and A™ are adjoint operators. By the discussion in Section 2, we know that
+iw,T are eigenvalues of 4(0). Thus, they are also eigenvalues of 4. We first need to compute the eigenvector
of A(0) and 4" corresponding to iweT and —iwy7, respectively.

Suppose that ¢(0) = (1,p) e is the eigenvector of A(0) corresponding to iwZ. Then A(0)q(0) =
imo7q(0). Tt follows from the definition of A(0) and (3.5), (3.6) that

_ [ 1wy + ae=io0? oy 0
T —iwyT 3 q(o) = ’
—pe " dwg + 0

from which we have

q(0)=(1,p)" = (1 Bei(“o%)T.

"B+ iy

On the other hand, suppose that ¢*(s) = D(a,1)e*® is the eigenvector of A* corresponding to —im,. By
direction computation we get

¢'(0) = D(1,0) :D<1, il >

B —iwg

In order to assure {¢*(s),q(0)) = 1, we need to determine the value of D. From (3.7), we have

{q"(s), (0)) =D{(1,0)(1,/o)T - [ ? / fo(l,a)ei(f0)”0%dr](0)(1,p)Teif"’O%dé}

0
- 5{1 +oo— [ (Lo an(o)(, p)T} — D{1+ po + 7(fo — e 7).
-1
Thus, we can chose

D 1

1+ po +3(Bo — a)eient

such that

(¢°(s),q(0)) =1,  (q"(s),4(0)) = 0.
Following the ideal of Hassard et al. [10], we first compute the coordinates to describe the center manifold C
at ©=0. Let u, be the solution of Eq. (3.2) with = 0. Define

z(1) =(q",ue),  W(1,0) = u,(0) — 2Re{z(1)q(0)}. (39)
On the center manifold C, we have
w(t,0) =Ww(z(1),2(2),0),

where

2 2

W(zz0) = Wzo(e)%Jr Wi(0)zz + Woz(@)%Jr .
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z and z are local coordinates for center manifold Cy in the direction of ¢* and g*. Note that W is real if u, is

real. We consider only real solutions. For the solution u, € Cy of (3.2), since 4 =0, we have

z=1woTz + (7" (0), £ (0, W(z,z,0) + 2Re{zq(0)}))
= iwoFz + g (0)£ (0, W(z,Z,0) + 2Re{zq(0)}) & iwo?z + §°(0) fo (2, 2).
We rewrite this equation as
z=1woTz + g(z,2)
with

2 52 ZZ z

I _ z _ z
g(z,2) = q'(0)fo(z,2) = 8205"‘&122"‘8025"‘8’21 7"‘
Noticing u,(0) = (u1,(0),u5(0)) = W(t,0) + zq(0) + zg(0) and ¢(0) = (1, p) ™, we have
i (0) = z+2+ Wy (0)5 + W (0)zz + Wi ()2 + -,
u(—1) = eiontz 4 gloniz 4 Wzo( 1)%2_’_ W(lll)(—l)zf-i- ngz)(_l)é"‘ e
u(0) = pz +pz + Wzo (0)7 + W11 (0)zz + W(()Zz)(o)%"’ T
Thus, from (3.4) and (3.10) we have

8(2.2) =4 (0)fo(,2) = D(1,0) ( rnOmd=h “V”"(O)“Z’(O))

2 =2
= —{ (42 WO+ WO+ W0+

(S

Z W ve o w \Z
5+ Wi (=1)z+ W, (_1)54""

% (ei(z)0%2+eiwofz+ W(ZI))(_I) 7

2 =2
+ y(z +z+4 W§‘0>(0)% + wi(0)z + Wf)'z)(o)% +o )

2 52
x <pz + Pz + W3(0) % + w02z + Wi (0) % + - ) }
. 52
= —%Erx{2[e‘“"°I yp] 7 + 2[Re{e' ™} + yRe{p}|zz + 2[e™" + yp]%

+ [ (2 =) + W1 + 2 ) (0) + i) (0))
2’z
+7(2W10) + W5 ) + 2001 (0) + o (0) | T+ }

Comparing the coefficients with (3.10), we get

8 = —2tDa(e™ ™" + 7p);

gn = —2tDu(Re{e"} + Re{p});

8op = —27Da(e"" + /p)

gu = — 2D (21 (=1) + W) (=1) + 26w (0) + e W) (0))

+7(2w70) + W ©0) + 20w 0) + 5 0)) .

Since there are W,o(0) and W;(0) in g»;, we need to further determine them.

(3.10)

(3.11)
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From (3.7) and (3.9), we have
W =i, —2q — zq

_ {AW — 2Re{q"(0)£oq(0)}, 0€[-1,0),
AW —2Re{g*(0)£oq(0)} + fo, 0 =0,
AW + H(z,z,0),

where
52

2
H(Z7270) :H20(0)%+H11(0)ZZ+H02(0>%+

On the other hand, on Cy near the origin
W=W.z+W:z.
It follows from (3.12)—(3.14) that
(4 = 2w0T) Wy (0) = —Ho(0), AW (0) = —H 1 (0), - -
From (3.10) and (3.12), we have, for 0 € [-1,0),
H(z,2,0) = —g"(0)foq(0) — 4"(0)£0q(0) = —gq(0) — gq(0).
Comparing the coefficients with (3.13) yields that for 0 € [-1,0),
Hyo(0) = —g209(0) — 8024(0)
and
Hu(0) = —g14q(0) — g119(0).
From (3.15), (3.17) and the definition of 4 we have
Wao(0) = 2i00TW20(0) + g20q(0) + g02G(0).-
Notice that ¢(60) = ¢(0)e!™, hence

Wzo(e) _ g_qu(O)elwow + q(o)eﬂﬁwor _’_Elehwmﬁ,

WoT 360()7[
where E, = (E(ll),E(lz)) € R? is a constant vector.

In a similar way, combining (3.15) and (3.18) yields

i ot | 18 o
Wi(0) = — j—;%q(O)e‘ow“ + j—;c’](O)e‘l‘)‘”‘” + Es,

where E, = (E(21>7E<22)> € R* is also a constant vector.

1735

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

In what follows, we shall seek appropriate £; and E,. From the definition of 4 and (3.15), we obtain

/0 dﬂ(g) Wz()(e) = 21(1)0’~EW20(0) — Hz()(())

and
0
/ dn(0)W11(0) = —H1,(0),
-1
where #(0) = (0, ). In addition, it follows from (3.10)—(3.12) that

B B ~ efiwof + ,yp
Hn(0) = —g20q(0) — 202 (0) — 2w( )

(3.21)

(3.22)

(3.23)
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and

R{e} +yR{p} > . (3.24)

0
Substituting (3.19) and (3.23) into (3.21) and noticing that

<iw0%1 _ [ ' ei”wofdn(e)>q(0) ~0

1

H1i1(0) = —g119(0) — g119(0) — 2%0‘(

and

0
<—iw0%1 —/ g 0o dn(@))q(O) =0,
-1

we have

(U ~ —iwoT
<2iw0%1 _ / ez‘("”"’dn(e)) B = —24 ( ¢ o+ e ) ,
-1

which leads to

_ﬁelewor 2160() + ﬁ 0
It follows that
a0 + 9p)(2iwy + f)

EWD
! A
and
E(2> _ _2(%[))672iw(ﬁ (efim(ﬁ' + Vp)
1 A )
where

2iwg + og~ 20T oy ‘
_ﬁefﬁmof 21(,00 + ﬁ :
Similarly, it follows from (3.20), (3.22) and (3.24) that
R 1wyt R
( o w)Ez:—za( {e )+ {p})
-5 B 0

and hence,

) imyT
B = g = Z2e : i;viﬁ{p}).

Therefore, from (3.19) and (3.20) we can determine W5o(0) and W, (0). Further, we can determine g,;. There-
fore, each g; in (3.11) is determined by the parameters and delay in system (3.1). Thus, we can compute the
following values:

i 2
a(0) = %wo <gllg20 —2lgy[* —@> +%7
_ M0}
TR 25)
fr = 2%{c1(0)},

Im{c(0)} + wIm{X (3)}
‘T?(,{)()

T, =

b
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which determine the quantities of bifurcating periodic solutions in the center manifold at the critical value 7,
i.e., up determines the directions of the Hopf bifurcation: if i, > 0 (u, < 0), then the Hopf bifurcation is super-
critical (subcritical) and the bifurcating periodic solutions exist for T > 7 (t < 7); ff, determines the stability of
the bifurcating periodic solutions: the bifurcating periodic solutions are stable (unstable) if 5, <0 (S, > 0); and
T, determines the period of the bifurcating periodic solutions: the period increase (decrease) if 75 > 0 (75 <0).

It is worthy noting that when ¢ = 0, the first equation of (1.2) reduces to Eq. (1.1), and we can easily obtain
the following well-known results (see, e.g., [9]) for the delayed logistical equation (1.1).

Theorem 3.1. For Eq. (1.1), we have

(i) the positive equilibrium n = K is asymptotically stable when rt <3, and Eq. (1.1) undergoes a Hopf bifur-
cation at the positive equilibrium n = K when rt = 2+2jm, j=0,1,2,....

(i) When rt =7, the direction of Hopf bifurcation is supercritical and the bifurcating periodic solution is orb-
itally asymptotically.

Proof. Since ¢ =0, it follows from (2.2) that
V = 07 a = r? ﬁ = a?
which, together with (2.8) and (2.9), implies

T
Wy =71, I"‘L'():E.
Thus, we can obtain that
a(r + ai) 1+31
p=-"55.  6=0 D=2
a - +r 1+

From (2.9) we have

g =0, gy = inD, g0, = —inD. (3.26)
Further, we can get

EV=22-1), EY=EY=0.
It follows from (3.20) that W;,(0) =0, and then

5\2 2
where 4 = (1 + “72). Therefore, combining (3.25)—(3.27) leads to

R(c (0)) = m{%} - —%A(%ﬁ - 1) <0.

It follows from (2.10) that
(G 0)
TR (%)

_ - 3 2
gy = —%Da{Wg}Q(—l) + e“’} I (” - 1)/1 + 1?” D (3 + E)A, (3.27)

>0

and
B =2R{c:1(0)} < 0.
This completes the proof. [

3.1. A numerical example
From the above algorithm, we know that if the values of r, K, a, b, ¢ and 7 are given, then we can determine

the stability and direction of periodic solutions bifurcating from the positive equilibrium FE, at the critical
point 7;. In the rest of this section, we shall illustrate the validity of the results by considering the system:
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o S00 1000 1500 o S00 1000 1500 o 0.5 1 1.5
t t >

Fig. 1. The positive equilibrium E, of system (3.28) is asymptotically stable when t = 1.5 <1, = 1.52678. Here the initial value is (0.8,1.1).

1.8 1.8 1.8
1.6 1.6 1.6 | -
1.4 1.4

a
N
a
N

g
n

o0
bD

r —_—

(=) 100 =200 300 400 S00 o 100 =200 3[o0o0 400 S00

Fig. 2. When t = 1.66 > 15 = 1.52678, the positive equilibrium E, of system (3.28) loses its stability and a Hopf bifurcation occurs.
Further, the bifurcating periodic solution is orbitally, asymptotically stable. Here the initial value is (0.8, 1.1).

{ a(t) = n(t)[1 — n(t — 1) — u(1)), (3.28)

u(t) = —u(t) +n(t — 1),

which has a positive equilibrium E, = (3,5). It follows from Section 2 and Theorem 2.1 that
7;=1.52678 + 0_8231%66, the positive equilibrium E, is stable when 1 < 7 (see Fig. 1), and system (3.28) undergoes
a Hopf bifurcation at 7;. Further, from the above process, we can determine the stability and direction of peri-
odic solutions bifurcating from the positive equilibrium at the critical point 7;, For instance, when
T=19 = 1.52678, ¢1(0) = —1.57608 + 1.304611. It follows from (3.25) that u, >0 and f, <0. Therefore,
the bifurcation takes place when t crosses 7, to the right (t > 7¢), and the corresponding periodic orbits are
orbitally asymptotically stable, as depicted in Fig. 2.
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