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Let %(n, p) denote the probability space of the set D of graphs G = (V,,, E) with vertex set 
V, = (1, 2, , n} and edges E chosen independently with probability p from %‘= 

{{u, u}: u, u E V”, u #u}. 
A graph G E %(n, p) is defined to be pancyclic if, for all s, 3 s s s n there is a cycle of size s 

on the edges of G. We show that the threshold probability p = (log n + log log n + c,)/n for the 
property that G contains a Hamilton cycle is also the threshold probability for the existence of 
a 2-pancyclic Hamilton cycle, which is defined as follows. Given a Hamilton cycle H, we will 
say that H is k-pancyclic if for each s (3 <s s n - 1) we can find a cycle C of length s using only 

the edges of H and at most k other edges. 

1. Introduction 

Let %((n, p) denote the probability space of the set % of graphs G = (V,, E) 

with vertex set V, = (1, 2, . . . , n} and edges E chosen independently with 

probabilityp from 8= {{u, v}: U, IJ E V,, u#v}. 
A graph G E %(n, p) is defined to be pancyclic if, for all s, 3 6 s < 12 there is a 

cycle of size s on the edges of G. We show that the threshold probability 

p = (log IZ + log log n + c,)/n for the property that G contains a Hamilton cycle is 

also the threshold probability for the existence of a 2-pancyclic Hamilton cycle, 

which is defined as follows. Given a Hamilton cycle H, we will say that H is 

k-pancyclic if for each s (3 6 s <n - 1) we can find a cycle C of length s using 

only the edges of H and at most k other edges e,, e2, . . . , ek 4 E(H). We shall 

refer to the edges ej as chords of H and such a cycle C as a k-cycle. 

The threshold for the existence of Hamilton cycles in %((n, p) was established 

by Komlos and Szemeredi [5] and is the same as that for minimum vertex degree 

at least 2 (Erdiis and RCnyi [3]). The question of the threshold for pancyclic 
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graphs was raised by Korshunov [6] and has been studied by Luczak [7] and 
Cooper and Frieze [2], and was found to be the same as the threshold for the 
existence of Hamilton cycles. We now show this is also the threshold for the 
2-pancyclic property. 

Theorem 1.1. Let 

P= 
log n + log log n + c, 

n 

then 

0 cn* -m, 

lim Pr(G E %(n, p) is 2-pancyclic) = epe-’ c,+ c, 
n-m 

1 cn+m 
(1.1) 

(= lim,,, Pr(G E %(n, p) has minimum degree 32)). 

We conjecture that with p as given in Theorem 1.1, then p is the threshold 
probability for G to be 1-pancyclic. 

2. Proof of Theorem 1.1 

2.0. Construction of a multigraph 

Our proof is based on constructing a set of multigraphs for which the set of 
underlying graphs is ‘3(n, p). 

We start with %(n, pr) where pr = (log n + 6 log log n)/2n. In order to map 
S(n, pr) onto %(n, p) we go from %(n, pr) into a space of multigraphs by 
generating a second set of edges from 8 with independent edge probability 
Ed = 1 - (1 -p)/(l -pl.), and then fuse multiple edges to give the underlying set 
of graphs. For some edges we do this directly, whilst for others we generate a set 
of edges with probability equivalent to z 

Step 1. Given G E %(n, p,) with edge set E, let A = {v: d(v) < 2) be the set of 
vertices of G of degree less than 2. Let 8 = 8i U ‘i& be the set of potential edges 
from which selections are to be made independently with probability JG, and let 
$= {{u, v}: u EA, 21 E V,} and &= {{u, v}: u, n $A}. Let each edge in 8, be 
chosen independently with probability n and call the set of edges so selected E’. 
Let Red = E, U E’ be the edges of the resulting multigraph M(Red) where we 
regard the edges as coloured red. We will write GM(Red: 6 2 2) if the underlying 
graph GM(Red) has minimum degree at least 2. 

Step 2. For each e = {u, V} E & we choose A = 8 log 2(n/log n) independent 
copies of e, (e(l), . . . , e(A)) with probability pb = 100(logn/n2), and call the set 
of selected edges Blue. The multigraph at this stage will be referred to as M(Red, 
Blue). 
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Step 3. We now choose independently a green edge for each e E 6 with 
probability pg and call the set of chosen edges Green, where 

1-P 
pg = l- (1 -p,)(l -pb)As 

logn-6loglogn-16O0log2-2c, 

2n 

The proof of the next lemma follows standard lines and is given in the 

Appendix, A. 

Lemma 2.1. Almost every (a.e.) GM = GM(Red: 6 2 2, Blue) contains a Humil- 

ton cycle. 

We now prove that a.e. multigraph found to have the Hamilton cycle property 
has the pancyclic Hamilton cycle property. In order to do this we fix our red-blue 
Hamilton cycle and relabel the vertices clockwise round the cycle as 

Ul, v2, . . * , %a starting from vertex 1. Provided vi, v~+~ E V, -A then 
{vi, v~+~} E %‘* and is thus potentially an edge of the green subgraph ({Vi, v~+~} E 
Green). We will call such an edge a k-chord with initial vertex vi and terminal 
vertex vi+k. 

There are various constructions available for finding 2-cycles of a suitable size. 
We use two; the first based on ‘triangles’ works well for the smaller cycles, and 
the second based on ‘rectangles’ for the larger ones. 

Type A cycles (triangles). For fixed Vi (i c n - 2~ + 3) and fixed cycle size S, 
partition the vertices Vi+21 . . . , v, on the Hamilton cycle into [(n - i - 1)/(2.s - 
4)] sets of size 2s - 4 running sequentially from vertex vi+*. Thus the first such 
set is {v~+~, . . . , I_++~-~}. On th’ is set we can construct s - 2 potential triangular 
cycles using the chord pairs 

(bi7 vi+2)1 iv;9 vi+sl), ({vi9 vi+3J, lvi7 vi+s+l>)9 . . . 7 

(tvi, vi+s--lI, tvi, vi+2.-3))* 

The existence of any pair ({vi, Vi+j}, {vi, Vi+j+s-_t}) forms a cycle 

(vi, vi+j, vi+j+l, . . . ? vi+j+s-3, vi+j+s-2, vi). 

For fixed i each pair of edges is examined only once, and as i runs from 1 to 
n - 2s + 3 no edge is ever reused for fixed S. Thus for fixed s we examine 

n-a+3 n-i+1 

= L i=l 

2r_4 (s-22)+n-2@ 
J 

independent pairs of edges, of which at most 3na will have either an initial or 
terminal vertex in A, ([AI = a). 

Type B cycles (rectangles). Let j E (1, 2, . . . , [(k - 1)/2]}. For fixed k and 
fixed j, consider the pairs of potential green j- and (k - j)-chords ({vi, v;+~}, 

{ vI, v,+~-~}) where the index i + j is understood to be i + j - n whenever i + j > n 

and tE{i+j,. . . , n + i - k + j}. The existence of such chords forms the follow- 
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ing cycle of length n - k + 2 

(uivi+jui+j+l, . . . J vtvt+k--jvt+k--j+l~ . . . 9 Vi-lVi), 

Let Xk,j be the number of cycles of length s = n - k + 2 we can form for fixed j, k. 
We note that for j #j’ Xk,j and Xk,j’ are independent random variables. For fixed 
j, k we have n(n - k) potential chord pairs of which at most 2a(n - k) + 2an will 
have a vertex in A. 

Conditional on IAl < Gllogn which by Lemma A.1 holds for a.e. 
GM(Red: 6 2 2, Blue, Green) we have 

Lemma 2.2. For Type B cycles where 10nllog n G s s n - 1 and s = n - k + 2 

5n 
Pr(XW = ‘) G (n _ k)log n 

Proof. Let Xk,j = X for fixed kJ. We first note that 

(n - fi)(n - k)pi s E(X) G n(n - k)pi. 

To calculate E(X(X - 1)) consider all ordered pairs of chord pairs indexed by the 
initial vertices of the j, (k -j)-chords, and written ((v,, us), (v,,, us,)). Let Y 
count pairs where LY # (Y’, /3 # /3’ and 2 all others. Then 

(n - fi)&r - k)k@ s E(Y) s (n)& - k)&i)’ 

allowing for A and also for the case when up E {vn,, . . . , V,,+j} and thus does not 
restrict the choice of vBr. In the case where not all the chords are distinct we have 

E(Z) s n(n - k)pi + n(n - k),pi + (n)2(n - k)pi 

and thus Var(X) s (2 + o(l))n’(n - k)pi. Applying P(X = 0) S Var(X)/E(X)’ 
the lemma follows. 0 

Proof of Theorem 1.1. We prove that a.e. G E %(n, p) of minimum degree 2 
contains a 2-pancyclic Hamilton cycle. 

We first note that the equivalence classes of GM(Red, Blue, Green), where the 
equivalence relation is ‘the same uncoloured graph’ are exactly a G E %(n, p) as 
each edge is chosen independently with probability p. 

Case 1:3SsSn/3. 
Using type A cycles we have 

Pr(3s: G does not contain a type A cycle of length s, 3 s s s n/3) 
c 43(1 _p;)a(n-NZo--o(l)) < ne-(hn/13Y - 

- 41) 
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We use type B cycles for n f =S k 6 2n/3 and s = n - k + 2. 
Let I$ be defined as follows: 

q = 1 if X,,, > 0, 
5 = 0 otherwise. 

Thus C 5 is a lower bound for the number of cycles of size s. The inequality of 
Hoeffding [4] gives the following probability bound for sums of independent 
random variables taking values in the interval [0, 11, 

pr(C y 6 (1 - e)E(C q)) S e-(E2’2)E(c ?) E E (0, 1) 

Thus 

1-J 
Pr 6 j=l 

~~(1-a~~~](~-~))~e-l&z~4)*rl-o(1)) 

which holds simultaneously over the range of k. 
Case3:n-n+SsSn-1. 
A simple construction using single (s - 1)-chords is adequate here. Any such 

chord divides the Hamilton cycle into a cycle of length s, and one of length n - s. 
Pr(No(s - 1)-chord exists for some s, 

Appendii A. Proof of Lemma 2.1 

The proofs in this appendix follow standard lines, (see for example Bollobas 
[l]) save for slight differences in the edge probabilities used. 

Lemma A.l. (a) Almost every (a.e.) G E ‘S(n, pr) satisfies the following: 
(i) G contains a path of length n(1 - (8 log 2)/lag n). 

(ii) ZfA, = {v: d(v)=i} i=O, 1 then IAOUAIl = IAl ~fi/logn. 
(iii) G = C U A,, where C is a connected ‘giant’ component. 

(b) lim,,, Pr(G(GM(Red)) > 2) is given by (1.1). 
(c) A.e. GM(Red: 6 2 2) is connected. 

Proof. (a)(i) follows from Fernandez de la Vega’s path algorithm [9] which states 
that if n = 9/n, 0 < 8 < log n - 3 log log n, then a.e. G E %(n, n) contains a path 
of a least n(1 - (4 log 2)/e). 

(a)(ii) follows from E(IA,I) = O(fi loge3 n), E(IA,I) = O(fi log-’ n) and the 
Markov inequality. 
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(a)(iii) follows from: 
(1) If Tk is the number of trees of order k, then Tk = 0 in a.e. G E %(n, JC) 

provided 

Jr= 
log n + (k - 1) log log n + w(n) 

kn 
2 o(n)-, 00. 

(2) For ad = o(n)/n, o(n) *w, every component of G with the exception of 
the giant component is a tree, a.e. G E %(n, JG). 
See for example Bollobas [l, p. 94 Theorem 4(v) and p. 136 Theorem lO(iii)]. 

(b) Given G E %(n, p,), let X1 count the vertices of degree 0, and let X2 count 
the vertices of degree 0 in the corresponding GM(Red). 

E(X,) = E(E(X, ( x1 = Xl)) = E((l - rt)“-‘x,) 

= (1 - n)“-‘n(1 -pr)+-l = O(log-in) 

Similarly, let Fi’ (j = 0, 1) count the vertices of degree 1 in GM(Red) coming 
from vertices of degree j in G and let Y, count the vertices of degree 1 in G. 

E(Y$i’ + Y$O’) = E(E(Y$” ( Y, = y1)) + E(E(Y$O’ 1 x1 = Xl)) 

= E(( 1 - JG)“-2Y1) + E((n - l)n( 1 - 7r)“-2X1) 

= (1 - n)“-2n(n - l)p,(l - pr)n-2 

+ (n - 1)7r(l- n)“-2n(l -~~)~--l 

= n(n - l)p(l -p)“-‘= (1 + o(l))e-‘. 

Similar calculations show that the tth factorial moment of Y$” + Y$” is asymptotic 
to (e-c)r thus providing the required Poisson parameter of Cc for (l.l), 

(c) Let B GA,, IBI = b. 

$(b) = E(E(number of sets B not connected to V, - B 1 X1 =x1)) 

=E b(n--b) = (1 _ Jd)b(n-b) ; (1 _pr)b(n+W+tk) 
) 0 

where the final part of the above term is the expected number of b subsets of 
vertices of degree zero in G. Thus Cb @(b) = O(log-’ n). Cl 

Lemma A.2. For a.e. GM E {GM(Red: 6 2 2)}, for all U c V,, if lU( s n/4 then 

JUuQU)123IUI h w ere r(U) is the disjoint neighbour set of U. 

Proof. We prove the lemma using pr on the condition that 6 2 2 and note that 
increasing some of the edge probabilities to p will not affect the results as the 
property is monotone increasing. We assume that lr(U)( < 2 I U( and show the 
result follows for a.e. GM by contradiction. 
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Case 1: n:SuCn/4. 
The expected number of such sets 1 U( = u, Ir(U)l = w for fixed u, w is 

au, WI = (I)(” ; “) (l- (1 -p,)“)“(l _p,)“‘“-‘“+“” 

c ( 
ne-e+i+euin)u(U~e~Ueln)~, 

u 

where pr = e/n and 8 = (log n + 6 log log n)/2 and (1 - (1 - pr)“)” 6 (p,u)“. 
Thus 

‘2’ E(u, w) e (++)($ e-e+3+3uein)* as ( ueerue’n)w 
w=l 

is monotone increasing for w E { 1, 2, . . . , 2u - 1). Finally 

Separate the induced subgraph G[U U r(u)] into connected components 
(Ui, I’(Q)) where at least one component T satisfies jr(Q)1 < 2 I U,l. Let ITJ = t 

and by hypothesis I Uij = U, where u 2 [t/31. As T is connected, it must contain at 
least a tree, so the number of edges h in G[T] is at least t - 1. For fixed t, the 
expected number E(u, t) of such components is at most 

h;_l(y)( :>( (f)P!v - PrY(n-f). 

Replacing u by [t/3] and summing over t we have 

;gh;_l(;)( ,tj31)(~~)P:(l -Pr)rt'31(n--t) 

3n3’5 ~ 

G 

w t=7 t 

(1 - pr)‘/3(n --I) 

(,tf3,)/z1(%Y 
3n’/5 

C 2 & (3e2(log n)““n&‘-I’“))’ = o(1). 

For if 

h 

then Ah+1 < (%)A,, a,q (1 +~)-(h+l)<e-l_ 

(A.2.1) 

Thus Ah+1 < ((t log n)/n)A,, for h a t - 1. 

Case3: ts6 
As 6 3 2 the only possible pairs (u, t - u) contradicting t < 3u are {(i, j): 2 6 

i s 5, i + j s 6, 1 ~j < 2i). Using expression (A.2.1) with these feasible values of 
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u and c gives a term of order 

qnfp;-yl - p,)“(“-o) = qn’-““(log 4--) 

which is at most O(log-‘n). Cl 

Lemma 2.1. A.e. GM = GM(Red: 6 2 2, Blue) contains a Hamilton cycle. 

Proof. We assume all longest paths of length I in GM cannot be extended and 
apply P&a [8] type path rotations to obtain a contradiction. Suppose that the 
vertices of the longest path xOZ’xl we have selected are labelled z~rv~, . . . , q and 
v1 =x0. By 6 3 2 there is an edge {v,, w} and w must be a path vertex (vi say) or 
the path will extend by at least one vertex. We rotate on {vI, vi} giving a new 
path ~1~2, . . . . v~v/v/_~, . . . . Vi+l. Fix x0 = v, and let U = {v: rotation endpoints 
of xoPxl}. Let T(U) be the disjoint neighbour set of U in the graph, then by 
maximal path length each v E T(U) is adjacent to some u E ZJ on the path. The set 
of path adjacent vertices is at most 2 1 U( - 1, so 1 UI 2 n/4 by Lemma A.2. Thus 
]U II A’[ 2 n/5 say, where A” = V, - A. A similar argument fixing x1 gives us at 
least n2/50 potential edges, any one of which would close the path into a cycle 
and allow path extension by the connectivity hypothesis. We have to extend the 
path at most A = (8 log 2)n/log n times. Using the ith set of blue edges {e(i)} for 
the ith extension of the path, the probability there is no edge between the 
endpoint sets is (1 -JQ,)““~’ = O(n-‘). We conclude GM contains the required 
Hamilton cycle. 0 
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