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Let 
1 

0 =x0 < Xl < . . . < x, = 1, &,+k = x, + 1 (k = z/4,+2,. . .) (1.1) 

be a subdivision of (-co, CO) with max,& - xi-i) = 6. Let C, denote the 
class of l-periodic continuous functions on (--cc, w) and let S,, be the family of 
l-periodic cubic splines with joints (1.1) having two continuous derivatives. 
In an earlier paper [6], we have shown that for every f~ C,, the unique 
a(f) E S, which interpolatesf(x) at the points (1.1) satisfies the inequality 

If- 4.m G (1 + K2) 4f; 8) 

where the norm is the usual uniform norm, w(f; 6) is the modulus of continuity 
off and the mesh ratio K is given by max, (Xi - x,-,)/minj (xj - Xj-1). Later 
Stig Nord showed [5] that there exists a sequence of ioints with unbounded 
mesh ratios and a continuous functionf(x) such that the corresponding o(f) 
do not converge tof although the maximum mesh length tends to zero. The 
question then arises whether the boundedness of the K’s is necessary for the 
convergence of the interpolatory splines. This problem is also related to a 
question raised by Cheney and Schurer [3] who seek to determine conditions 
on the sequence of points which would assure the boundedness of the norms 
of the sequence of interpolatory splines. In Theorem 1, we shall show that for 
the uniform convergence of the interpolatory splines it is sufficient that the 
ratios of consecutive mesh lengths remain between certain bounds. 

Another result of Cheney and Schurer [3] states that for everyfE C,, we have 

dist (f, S,) = mi lif- s/l =G lgw(f; 8). (1.2) 

We shall show in Theorem 2 that the number 18 on the right side of (1.2) can 
be replaced by 5. This number can be further reduced if instead of S, we 
consider the class S of twice continuously differentiable cubic splines with 
nodes (1.1) without periodic end conditions. In this case we have for every 
f E CP,ll 

dist (A S) G (2 + &) w(f; 8). (1.3) 
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If moreover f E CT,,, then there exists s 3 s(f) E S such that s and s’ are L- 
periodic and 

IF- a-Ill G (2 + 23 4°C 6). WV 

This result is the subject of Theorem 3 where we use a recent result of Hall 

2 

THEOREM 1. Let f E C, and let (1.1) be a subdivision of@, l] with h, = xi - xfel 
(i== I,..., n)- Suppose 

max hi h;’ = P < d2, (2.1) 
Ii-j/=1 

Then for the interpolatory cubic spline CT(X) = u(f;x) we have 

Proof. Let xkpl G x < X, for a certain k and let 

LM = {X*(x - k-l) +fk--l Gc - xNhicl 
It was shown in [6] that 

wherefi =f(xi), 

[u(x)-L(x)] <+hk2max(/aL-,l, /a,“/> (2.3) 

wbere CT~” = CJ”(X[). If max,h,2/uy”j = h,*jo,“l, and rna~,h,~jc~~-~j = h,2jo~-1E, 
then on using (3.0) of [6], we easily have 

2(h,*+h,h,+,)lqJ <hJolC_jl +k$,+J&i 

+6(h,*+h,h,+~)jTx,-,,x,,x,+,;fli 
<P*h**IuJ +P*hqhq+lI~qqn~ 

+6(h,*+h,h,+~)l~~~-~,x,,~,+~;fll. 62.4 

Observing that I [x~-~,x~,x~+~ ;f] j G w(f; 6)/hq2,h,+l, we have from (2.4) after 
simplification 

k2h”l G & 4f; a> 

and so, afoutioori, for all k, 

h~21dl G g$w9. 

Similarly we obtain for all k the inequality 

h,*lu;-ll < & 4-i a 
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Hence from (2.3) we have for xkPl G x < x,, 

I44 -fb->I G H-4 -Lk(X)I + ILkW -fWl 

which proves (2.2). 

Remark 1. This theorem throws light on the test case 3 treated by Cheney 
and Schurer in [3], p. 95. 

3 

We now formulate the following 

LEMMA. For any subdivision (1.1) with maxi (xi - Xi-l) = 6 < 3 there exist 
points 0 G to < [I < . . . < &,,-l -c &,, = 1 + Eo, 5m+h = 1 + 51, (k = ?&G.. .> 
such that 

(i) the tj's form a subset of the XI’S, 
(ii) 6 < maxj(cj - tj-,) G 26. 

Proof. Let v be the smallest positive integer for which X, - xVml = 6 and 
define [,, = x,. Assume that to < [, < . . . < tj-r have been defined and that 
fj..., G 1 + & - 26. Then we define 

fj=lllill(X,l~j-1+ 6 <XkC fj-I+ 26). (3.1) 

If m - 1 is the first suffix for which &-i > 1 + & - 28 then we define &,, = 
1 + t,,. Observe that because of (3.1), &-i G x,+,-~ = 1 + to - 6 and so 
6 G .&-- &,+, G 26. Setting &+k= 1 + & for k = 11,%2 ,... the lemma 
follows. 

As a consequence we shall prove 

THEOREM 2. For any given subdivision (1.1) of (-W,+CD) there exists a linear 
operator L: C, -+ S, such that for f E C,,, 

llL(f) -fllG 5~(f;9 (3.2) 

Proof. ForfG C,, we define L( f; X) to be the unique interpolatory l-periodic 
cubic spline interpolating f at the joints {&}E,. Then obviously L(f;x) is a 
spline on the original given joints (1.1). By a theorem of Nord [5] (Theorem 6, 
p. 1411, 

If(x)--L(f;x)I <(l+$K’)w@‘) (3.3) 
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where K’ and 6’ are the mesh ratio and maximum mesh length for the points 
(tj}. But from (ii) of the above lemma K’ G 2 and 6’ G 26 so that (3.2) follows 
from (3.3). 

4 

Let 

0 = xg <Xi < . . . < x, = 1 (4.1) 

be a subdivision of [0, l] and denote by S2m-1 the set of splines of order 2m - 1 
on 10, l] with interior joints x1,x2,. . ., x,+. Recently Birkhoff [I] and subse- 
quently de Boor [2] have obtained estimates for the distance of a contirmous 
functionffrom the set of splines of order 2m - 1 with joints (4.1). They show 
that if fg C2m5 then dist(f, S2m--1) = 0(82m) where 6 is the maximum mesh 
length. The more precise estimate (1.3) when f E CEO, l] and S = S3 is a 
consequence of 

THEOREM 3. FOP any given subdivision (4.1) of [O, 1] there exists a linear 
operator A: C --f S3 such that for all f E C [0, I], 

Iff is l-periodic, then A(f, x) and its derivative are periodic. 

For the proof we shall use the following result of Hall [4] : 
Let g E C”[O, 11 and let s(g;x) E C’[O, l] be the cubic spline interpolating g 

at the joints (4.1) and satisfying the end conditions s’(0) = g’(O), s’(1) = g’(l). 
Then 11s - gl/ G & Ilg(iv)[I a4. 

We shall also need the following 

LEMMA. Let g E C(-m, m) and let go(x) = g(x), 

Then g, E Ck(-m, CQ) and 

ilgp’[l < 2k-’ 6-kw(g; 6) 

The proof follows by easy induction. 
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Proof of Theorem 3. Given f e C[O, 11, set 

g(x) =f(4 O<XXl, 

=fc% x s 0, 
=f U), x> 1, 

and define for 0 < x < 1, (1( f; x) = s(g4 ; x) where g&x) is given by (4.3) and 
s(x) = s(g,;x) is the cubic spline interpolating g4(x) as in Hall’s theorem. 
Obviously, (1 is a linear operator on C[O, l] and we have 

lvKf> -fll = Ilhd -fll 
s lIdg4) - g411 + llg, - gll. 

Since g = f for 0 < x < 1, it follows from (4.4), (4.5) and Hall’s theorem that 

ll~(f)-flls~~w(f;~>+w(f;2S) 
which yields (4.2). 
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ADDED IN PROOF: From a personal communication of Cheney and 
Schurer we learn that they have been able to improve our Theorem 1 on 
using their earlier results in [3] and ous Theorem 2 above. In our notation 
their result reads : If P < 2, then for every f E C, we have 

(0 //o.(f) II G &!lf1l and (ii) Ijf-o[l<&,(f;8). 


