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In this paper a structure theory for 0-bisimple inverse semigroups is given 
in terms of groups and semilattices. The semilattices concerned are O-uniform; 
that is, they are of the form E = EO, where any two nonzero principal ideals 

of E are isomorphic. 
Let S* be a 0-bisimple inverse semigroup with semilattice E and let ok 

denote the greatest congruence on Sx contained in 2. Then S = S*/p 
is a 0-bisimple inverse semigroup with semilattice isomorphic to E and with 
no nontrivial congruences contained in ,%? (Theorem 1.1). Moreover, E is 
O-uniform and 5’ can bc expressed as a certain semigroup of partial isomor- 

phisms of E (Theorems 1.2, 1.3). These results are taken from an earlier 
paper [IO]. r\;ow let G be any p-class of S” containing a nonzero idempotent. 
Then G is a subgroup of S*. The main problem is to express the structure of 
S* in terms of G and S. A solution is provided by Theorem 2.2, which 
generalises the Schrcier extension theorem for groups. To conclude, the 
theory is applied to a class of 0-bisimple inverse semigroups characterised 
by a particular type of semilattice (Theorem 4.2). 

From the results for 0-bisimplc inv-et-se semigroups we can easily deduce 
corresponding results for bisimple inverse semigroups. An alternative 
structure theory for the latter has already been developed by Reilly and 
Clifford [14]; this rests on the notion of an RP-system introduced by Reilly 
[12], in a paper generalising the work of Clifford [2] on bisimple inverse 
semigroups with an identity. The principal result of [ 141 gives a representation 
of the elements of a bisimple inverse semigroup S* by equivalence classes 
of H x G x I?, where G is a group consisting of any idempotent p-class of S* 
and Ii is a certain RI’-system. I\Zorcovcr, these equivalence classes are 
singletons if and only if p -- # on S” 

Finally, Reilly [13] makes explicit the connection between the approach 
of [14] and that of the present paper. 
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I. FUNDAMENTAL 0-BISIXIPLE INVERSE SEMIGROUPS 

We shall follow the notation and terminology of [3]. 

By an inverse semigroup we mean a semigroup S in which to each element a 
there corresponds a unique element a-l (the inverse of a) such that 

a a-la = a, a-la .-l = .-I 

[3, Section 1.91. Any two idempotents of S commute and so the set of all 
idempotents is a subsemigroup of S; we call this the semilattice ofS and denote 
it by E, . For a, b E S and e E Es we have that 

(u-l)-’ = a, (ub)-l = b&la-‘, e-l = e. 

It is easy to verify that an inverse semigroup S = So is 0-bisimple if and only 
if, to each pair (e,f) E Es\%0 x Es;,O, there corresponds a E S such that 

au-l = e, a-la z f. 

Let p be a congruence on an inverse semigroup S. Then every idempotent 
p-class contains an idempotent of S and so S/p is an inverse semigroup; 
moreover, (q-1 = x-‘p for all x E S [3, Theorem 7.361. We shall be con- 
cerned only with those congruences p such that p C 2; these are precisely the 
idempotent-separating congruences on S. There is a greatest such congruence p, 
which can be described as follows [4]: 

(a, b) E p o u-l eu = b-l eb for all e t E, 

As in [ 101, we say that S is fundumentu2 if and only if the only congruence on 
S contained in 2 is the identity congruence L. Thus S is fundamental if and 
only if p = L. 

In this section we restate several results from [lo] concerning fundamental 
0-bisimple inverse semigroups. Green’s relations 9, 9, 2 on a semigroup S 
will be denoted by %!‘s, zs, 8” w h en we want to emphasise the particular 
semigroup involved. Likewise, the identity relation L on S will sometimes be 

denoted by Lo. 
The first theorem lists some of the basic properties of idempotent- 

separating congruences. 

THEOREM 1.1. Let S* be an inverse semigroup, let p be an idempotent- 
separating congruence on S* and let p be the greatest such congruence. Let S 
denote the inverse semigroup S*/p. Then 

(i) E, z E,,; 
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(ii) (ap, bp) E Bs[Zs] 0 (a, b) E 3,*[&](a, b L S*); 

(iii) S is fundamental u p = p; 

(iv) %s = Lo 0 p = ris*(=p); 

(v) S is 0-bisimple o S* is 0-bisimple. 

Proof. (i) This is immediate from [3, Lemma 7.341. 

(ii) It is clear that if (a, b) E ss* , then (up, bp) E dp, . Assume, conversely, 
that (up, bp) E sis . Then there exist x,y E S* such that (ax)p = bp, up = (by)p. 
Hence, since p C Z$ C 9’,* , there exist U, v  E S* such that (ax)u = b, 
a = (by)v and this shows that (a, b) E 9,* . il similar argument applies to 9 
and the result for A? then follows. 

(iii) I f  p = p, then S is fundamental [4, p. 75; 10, Theorem 2.41. Xou 
suppose, conversely, that S is fundamental. Since p C p we can define a 
congruence p/p on S by the rule that 

(UP, bp) EP/P - (a, 6) ECL (a, b t S*). 

Let (up, bp) E p/p. Then (a, b) E p C J&* and so, from (ii), (ap, bp) E Zs . 
Thus p/p C Xs and so p/p = ts , since S is fundamental. Hence p = p. 

(iv) This is readily deduced from (ii). 

(v) Let S* be 0-bisimple. Since the homomorphism pS is O-restricted, it 
follows that S is also 0-bisimple. Conversely, let S be 0-bisimple and let 
(e,f) E I?,*‘$,0 x E,*\O. Then ep, fp are nonzero idempotents of S and so 
there exists a E S* such that 

Hence 

(af)hY = ep7 @pJ-'(a~) =fk 

(au-l, e) 6 p, (u-‘a,f) t p. 

Thus, since p is idempotent-separating, we have that aa -r = e, a-la ~- f  and 

this shows that S* is 0-bisimple. 
Note, in particular, that if S * is a 0-bisimple inverse semigroup, then 

S*/p is a fundamental 0-bisimple inverse semigroup with semilattice 
isomorphic to ES* . 

A semilattice E = E” is said to be O-uniform if and only if Ee z Ef for 
any two nonzero idempotents e,f of E. The connection between such semi- 
lattices and 0-bisimple inverse semigroups is given by the following result 
[lo, Theorem 3.11. 

THEOREM 1.2. A semilattice is O-uniform if and only if it is isomorphic to 
the semiLattice of a 0-bisimple inverse semigroup. 
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The proof of Theorem 1.2 depends on the following concept. Let .E be 
a semilattice and let TE denote the subset of 9E, the symmetric inverse 

semigroup on E [3, p. 291, consisting of all isomorphisms between principal 

ideals of E. Then Te is an inverse subsemigroup of 9, and ErE g E; more- 
over, if E is O-uniform, then TE is 0-bisimple [7, Lemma 2.1; 10, 
Theorem 3.11. 

Let E = Eo. An inverse subsemigroup S of Tn is said to be O-transit& [lo] 
if and only if the following two conditions hold: 

(i) S contains the zero of TE (the identity mapping of the zero ideal of E), 

(ii) for all (e,f) E E\,O x E\O there exists an element (Y in S whose domain 
is Ee and whose codomain is Ef. 

It is clear that if Te contains a O-transitive inverse subsemigroup, the,n Te 
itself is O-transitive and E is O-uniform. 

The following theorem provides a characterisation of fundamental 

0-bisimple inverse semigroups in terms of mappings [IO, Theorem 3.11. 

THEOREM 1.3. Let S = So be an inverse semigroup. Then S is fundamental 
and 0-bisimple if and only if it is isomorphic to a O-transitive inverse subsemigroup 

of TEy . 

Let E be any O-uniform semilattice. Then, in particular, TE itself is a 
fundamental 0-bisimple inverse semigroup. The problem of finding all 
fundamental 0-bisimple inverse semigroups with semilattices isomorphic 
to E is reduced, by Theorem 1.3, to that of finding all O-transitive inverse 

subsemigroups of T,. A sufficient condition for Te to contain no proper 
inverse subsemigroups of this type is that X’ = L on Te : for two elements of 
TE are %-equivalent if and only if they have the same domain and the same 
codomain [lo, Lemma 1.21; hence if X = c and (e, f) E E\O x E\O then 
there exists exactly one element of TE with domain Ee and codomain Ef,, 

A semilattice F is said to be inversely well-ordered if and only if, with respect 
to the natural ordering on F (e > f o ef = f ), every subset of F has a greatest 
element. Such a semilattice is necessarily a chain. 

A slightly modified version of the proof of [7, Theorem 3.21 then establishes 
the following result. 

THEOREM 1.4. Let S+ be an inverse semigroup and let E = Es+ . Suppose 
that every principal ideal of E is inversely well-ordered. Then 2 = L on TE 
and p :m= A! on S*. Moreover, if S* is 0-bisimple, then S*/2 E TE . 

It follows, in particular, that, if S is a fundamental 0-bisimple inverse 
semigroup such that Es contains a nonzero inversely well-ordered principal 
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ideal, then S g 71,, ; for, since Es is O-uniform (Theorem 1.2), every 
principal ideal of Es is inversely well-ordered and so $P = p = I on S. An 
example is given in Section 4. 

2. THE EXTENSION THEOREM 

LVe turn now to the problem of recovering a 0-bisimple inverse semigroup 
S* from the fundamental 0-bisimple inverse semigroup S’*/p and the group 

e*p, where e* is any nonzero idempotent of S*. An answer is provided by 
Theorem 2.2 below. This differs from the extension theorem of D’Alarcao [l] 
in that we do not require to use the whole kernel of p. 

Let S be a 0-bisimple inverse semigroup, let e be a nonzero idempotent of 
S and let X be a transversal (cross-section) of the ,%-classes of S that are 

contained in R, . For each a E S\O let a, denote the unique element of X 
lying in L,,-1 . Since a, ai1 E R, and a,’ a, E &,-I it follows that 

a 0-l _ e 
11 

a;l a 
1 

= au--l. 

Hence 

a,aa-1 := aI, u am1 al1 = all. 

These properties of a, will be used without further comment. 
Let P, be defined by 

P, = R, CT eSe = (x E R, : xe = x>. 

This is the right unit subsemigroup of eSe [12, Lemma 1.21. It is therefore 
a right cancellative subsemigroup of S. 

The following technical lemma (first given in [9], Appendix) is required 
for the proof of Theorem 2.2. 

LEMMA 2.1. Let a, b be elements of 5’ such that ab # 0. Definep, q by 

P = W), a;‘, q = (ab), ~6;‘. 

Then 

(9 paI = (ab), , (ii) qb, = (ab),a, (iii) p, q E P, . 

Proof. We first note that (ab), = (ab),(ab)(ab)~l = (ab), abbbk1; this is 

used in all three parts below. 

(i) pa, = (ab), a?’ a, = (ab), ab b-la-’ aa-’ = (ab), ab b-la-1 == (cd), . 

(ii) qb, = (ab), ab;‘b, = (ab), ab b-la-1 . abb-1 = (ab), ab b-la-la = (ab),a. 

(iii) From (i), pp-1 = pa,(ab)y’ = (ab),(ab)y’ = e. 
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Also 44-l = (ub), ab;l b,u-l(ub);l = (ub), abb-W(~b)~~ = (ab),(~b);~ = e. 

Hence p, q E R, . Further, e = ala;’ = b,b;’ and so pe = p, qe = q. ‘Thus 

P> 4 E pe . 
ITe now state the main result of this section. 

THEOREM 2.2. (A) Let S be a 0-bisimple inverse semigroup and let G! be a 
group. Let e be a nonzero idempotent of S and let P, = R, n eSe, the right unit 
subsemigroup of eSe. Let X be a transversal of the Z-classes of S that are 

contained in R, and, for all a E SO, let a, denote the unique element of X in 
L (20 1 . For allp E P, let eD be an endomorphism of G andfor all (p, r) E P, x R, 
let fnBr be an element of G. Suppose, further, that the %?, and the fvs7. sat@ the 
following.four conditions: 

(Cl) fP.82 = fmlf*tJ,Tf;;, (P, q E P,; r E R,), 

(‘7 sOA =f,,,W,,)f;;;; (P, 4 ~p<,;g E Gh 

(C3) go, = g (g E G), 

(C4) fD,, = fp,? = 1, the identity of G (p E P,; r E R,). 

Let S” == (G x S\O) u 0 and define a multiplication in S* by the rule that, 
for all (g, a), (h, b) E G x S\O, 

O(g, a) = (g, a)0 = 02 = 0, 

and 

if ubf0, 

where p = (ub), a;’ end q = (ub), a bT1. (By Lemma 2.1 (iii), p, q t P, .) 
Then S* is a 0-bisimple inverse semigroup. Moreover, there exists an idempotent- 

separating congruence p on S* such that S*/p s S and e*p s G for any 
nonzero idempotent e* in S*. 

(B) Conversely, if S* is a 0-bisimple inverse semigroup and p an idempotent- 
separating congruence on S* then, to within isomorphism, S* has the structure 
described above, where S = S*lp and G = e*p for any nonzero idempotent e* 
of s*. 

Proof. (A) We first show that S* is a semigroup under the prescribed 
multiplication. Consider the elements (g, a), (h, b), (h, c) of G x S\O. To 
establish associativity it is enough to show that 

Kg, Gt 41@, c) = (g, 4[(h, W ~11. 

Clearly this holds if ubc = 0; hence we assume that abc # 0. 



The G-component of [(g, a)(h, b)](k, c) is 

.f%~ab),[.fYfal(g~p)f~.al”f,lhl(~~*)f,,blbl e,fi.(ub)*nbf~~,(KB,)fs.,l, 7 

where 

(J ) 

P = (ub), uyl, 9 = (ab), ub;l, r = (ubc), (aby, s = (abc), ub rl-1. 

From (Cl), (C2) and Lemma 2.1 (i), (ii) we have that 

Substituting the expressions on the right in (I) we find that the 
G-component of [(g, a)(h, b)](k, c) reduces to 

Similarly it can be shown that the G-component of (g, a)[(!~, b)(k, c)] is 

f;,:,(@h)ftw,af ~~,b~(hSIL.t)f~,,t,blbf.u)t,,,(ke,,,)f,,,,l, > 

where 

I = (bc), by’, IA = (bc), bc;l, z’ = (abc),u;‘, zu = (ubc), u(bc);l. 

The proof of associativity will therefore be complete if we can show that 

rp = 7‘1, rq = zc’t, s = zcu. 

Now, by Lemma 2.1 (i), r(ub), = (ubc), . Hence 

up = r(ub), al1 = (ubc), u;l = a. 

Similarly, 

YQ = u(ub), ab;l = (ubc), ab;l. 
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But, by Lemma 2.2 (ii), “(bc), = (abc), a. Hence 

Furthermore, 

wt = W(bC), b;l = (abc), ah;’ = rq. 

wu = w(bc), bc;l = (ubc), ubc,l = 5. 

Thus S* is a semigroup. 
Next we show that S* is regular. Consider the element (g, a)(h, upl)(,g, a), 

where g, h E G and a E S\O. Taking b = u-l, c = a above, we have that 

rp = (au-lu)lu~l = a, u’;l = e, 

rq = (au-bz), u(a-‘);I = u1 u(u-I),‘, 

s = (UC’a), a a-%~;~ = u, a;’ alai1 = e. 

Hence, using (C3) and (C4), we see from (2) that the G-component of 

(n, a)(k a-‘)(g, a) is 

gf&wdfd.q& 

where b = u-l, d = arub;‘. Thus to show that (g, u) is a regular element of 
SX it will be enough to prove that we can choose h such that 

Now d E P, and 

ho, = fci,tJ1f ,‘t+ . (3) 

d Id = b, u-l a;’ a lub;l =61u-1ua--1ab;1 = b,b,‘= e; 

hence d E H, and so d-l E H, . Define h hv- 

Then from (C2) and (C3) we see that (3) holds. Hence S* is regular. 
Ii-e now examine the idempotents of S*. Let (g, a) E S* ,O and suppose 

that (g, u)” = (g, u). Then a2 = a (=,-ml) and 

where 

p = (u”), u;l = ula;l = e, q  = (u*)luu;l = u,(uu-~)u;~ = ala;1 = e. 

Hence, from (C3) and (C4), we have that pa = g and so g = 1. Conversely, 
if u2 = a, then (1, u)~ = (1, u). Thus 

Es*\0 = {( 1, a) : u2 = a>. 



We prove next that the idempotents of S* commute. Let a, b E E,,,O. Suppose 
first that ab # 0. Then 

(1, UN 2 6) I- (f ~$,f~,n,nf~,~~:,,f~.o,b > ab), 
where 

p = (ab), a;‘. q --~ (ab), a b;‘. 

Since u2 : a it follows that u,u = a, uupr =: a, . Similarly b,b :- b, Hence 
(1, u)( 1,b) = (1, ab). But the idempotents of S commute and so bu = ab .+ 0. 
A similar argument then shows that (I, b)( I, u) = (1, bu). Thus (1, a)(l, b) --= 
(1, b)( 1, u). Further, this result still holds if ub = 0. Hence S* is an inverse 
semigroup. Note if (g, u) E S”‘\O, then the SO-component of (g, u)-r must 
be u-l. 

To see that S” is 0-bisimple, consider any two nonzero idempotents 
(I, a), (1, b) of S”. It will suffice to show that there is an element (1, c) E S* 

for which 

(l,c)(l, w ~= (1, a), (I, c)-l(l, c) =- (1, b). 

Since a, b E B,\,O and S is 0-bisimple we can find c t $0 such that 

cc- 1 ~~ a, r ‘c -: b. 

Now (1, c)( 1, c))r is a nonzero idempotent of SW and its S:,O-component is 

cc--l. Hence 

Similarly, 

(1, c)(l, c)-l = (1, cc-l) _ (1, u). 

(I, c))‘(l, c) = (1, cmm’c) = (I, 6). 

Thus S” is 0-bisimple. 
D&me an equivalence p on S*\O by the rule that 

((g, a), 6% b)) E P -=> a = b 

and extend this to an equivalence on S* by taking (0) to be a p-class. Clearly p 
is a congruence on S*. Also, if (( 1, a), (1, 6)) t p, then (1, u) = (1, b); that is, 
p is idempotent-separating. Further, S*/p g S. 

Let e.’ =:- (1, u) E E,*\,O. Then 

e”p _ {(g, a) : g t Gj. 

Then since u2 = a, it follows, as in the discussion of the idempotents of S”, 
that 
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Hence the mapping g w (g, u) is an isomorphism from G to e*p. This 
completes the proof of (A). 

(B) Let S* be a 0-bisimple inverse semigroup and let p be an idempotent- 

separating congruence on S*. Denote S-/p by S. By Theorem 1.1 (VII S is 
a 0-bisimple inverse semigroup. Let e* be any nonzero idempotent of S*. 
For brevity, write R* = R,, , H* = H,,, (the 9’- and Z-classes of S* 
containing e*). Since p C X”* it follows that e*p is a normal subgroup of the 
group H*. Write 

We shall denote e*p by e when we regard it as an element of S and by G when 

we regard it as a subgroup of S*. 
Now select a transversal of those p-classes of S* that are contained in R*. 

By Theorem I .l (ii) we can label the elements of this transversal by the 
elements of R, . Let U, denote the representative of the p-class Y f,or all 

Y E R, . We also adopt the convention that u,, = e*. Note that u,u;r = e* 
for all Y E R, . 

Let P,, = R, n eSe = {X E R, : xe = X} and let p E P, , Y E R, . Then 

pv (py)-’ = pY Y-l p-l = p-l ep = pp-l = e 

and so pr E R,; thus up,. is defined. Hence 

(uu u,) #oh = pr = u,, ph. 

But p C Xs* and so there is an element h: in S* such that u, U, = xup, . 
Write ,f,., = se*. Then, since XU,, = x(e*zdp,) = f, r uD7, we have that 

UD U? = fP,T upr ’ 

Moreover, fn,r = f,,r e* == f,,r u,, u$ := up u, u;: and so 

(4) 

f,,r ph = $v(p~)-~ = e. 

Thus, f,,,~ E G. 
\%:e now show that (C4) holds. First let r E R, . Then u, = U, U, = 

.fPJ u,., = fc.r u, and so 

f8,v = fu,,iq u,’ = 21, u,’ = e*. 

Next let p E P, . Then u, e* = ug u, = fv,e u,, = fpse u, . Hence ~a,~ = 
uD e* u;‘, which is an idempotent. Thus fnae = e*, the identity of G. There- 
fore (C4) holds (with 1 = e*). 
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Let P* = R* n e”S*e* = {x E R* : xe* = x} and let p E P, . Then, 
from above, 

u D e* =fi).? 5, = u, 

and so u, E P*. It follows that u, G C G u, [ 14, Section 2; also 8, Lemma 31; 
moreover, we can define an endomorphism or, of G by the rule that, for all 

g E G, 

Ud = W,) u,, . 

We now verify that (Cl), (C2) and (C3) hold. Let p, 4 E P, and let r E R, . 
Then 

Hence, equating these expressions and postmultiplying by uuifr , we find that 

(fP.T %)f*m = .f&dcw.T * Thus (C I) holds. In the same way, from the 

equation U, (u,g) = (un up) g (p, 4 t P,.; g E G) we deduce that (C2) holds. 
Further, for all g E G, 

ge, = (gee) 24,. = u,, g = g 

and this establishes (C3). 
Let X be a transversal of those Z-classes of S that lie in R, . For each 

a in S\O define ai to be the (unique) element of X in L,,-1 . Since 

ulu(ulu)-1 = a, au-1 a;’ = u, u,l a, a;1 = (’ 

it follows that a,a E R, and so u,~, is defined. The next stage in the proof 
consists of showing that each element of S*\,O is uniquely expressible in the 

form 

-G; g %1a (a t: S’i,O; ,F E G). 

Let a E S\O, g E G. Then 

(ua;‘g uala)ph = u;l e ala = a,’ a, u = a a-la = a. (5) 

Hence, in particular, u;: g u,~, f  0. This enables us to define a mapping 
4 : G x S\O -+ S*\O by the rule that 

(g, UW = 6: ‘2” %,a . 

We now show that 4 is bijective. 
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First let (g, a)+ = (k, b)$ Then, taking images under pb, we see from (5) 

that a = b. Hence 

and so 4 is injective. 
Let a* E S*\O. Since X is a transversal of the s-classes of S in R, it 

follows from Theorem 1 .l (ii) that {u, : x E X} is a transversal of the &?-classes 

of S* in R”. Hence, by [3, Theorem 3.41, 

a* = u,’ k u, 

for some x, 3) E X and some k E H*. Now, by Theorem 1.1 (ii), {u, : x E H,} 
is a transversal of those p-classes of S* that are contained in H*, that is, a 
transversal of the cosets of G in N*. Thus k = h u, for some h E G, .a EC H, . 

Hence 

a* = u-l 2 h u, u, = u,‘h fi,, uzu = u;lg uzl,, 

where g = Izfz,,, E G. Write a = x-‘ZJJ. Then au-l = .x-l zy y-l x1x = 
x-12 e z-*x =z x-12 z- lx = x-%x = x-?Y. Since x-lx # 0 is follows that 
a f  0 and so aa-r = ayl a, . Thus x-lx = a;’ a, and so x = q , since both 

x and a, lie in S. Furthermore, 

zy = (e.z)y = (xcl)zy = x(x-*zy) = u,a . 

Hence a* = u;,‘g u,~, . This shows that 4 is surjective. 
Now extend + to a bijection from (G i< S\O) u 0 to S* by taking 04 = 0. 

Define a multiplication on (G x S\O) u 0 as in (A). We complete the proof 
of (B) by showing that + is an isomorphism. Let (g, a), (h, b) E G x S\O. 
It will be enough to show that 

(gj ~14 (k b)$ = [(g, a)@, b)]4. 

We separate two cases. 

Suppose first that ub = 0. Then 

b4z111 ui,l)ph = a, a&l = a, a bb-l b,l = 0 

and so uala UT’ 1 = 0 since pQ is O-restricted. Thus 

k, 44 (k 44 = 0 = 04 = Kg, a)@, Qd. 



Now suppose that ab :,‘- 0. Then 

a a 6-l = a 11 1 uu -52 66-l 6-l 
1 

= u, ubb-1 .--la by’ 

= u1 ab (d-l ab,’ 

= u, (ub); l (ab), ab,’ 

= P-k 

where p = (ub), a, I, q = (ab), a b;‘. By Lemma 2.1 (iii), p, q E P, and so 
u, , uQ are defined. Hence 

Then since p C ZS* there exist elements X, y  in S* such that u,,~,, u;’ -= 
u,l u, x = y  u,l 

1 
u, . It follows that 

(6) 

since pa,a = gb, by Lemma 2.1 (i), (ii). Further, 

g 4 = (upg-l)-l = [(g-‘0,) uu] -I z u,’ (g-lo,)-” = u,‘(gB,). (7) 

Finally, 

since pa, = (ab), , qb, = (ub),a by Lemma 2.1 (i), (ii). Thus 

k, UW (h, 44 = Kg, a)(4 b&A 

as required. This completes the proof of(B). 
We call S* an extension of G by 5’. 
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Remarks on Theorem 2.2 

(2.3). In part (A) let S = K”, where K is a group, and let e be the identity 
of K. Then P, = R, = El, = K. Choose X = {e}; thus a, = e for all a E K. 
Since S is a group with zero so also is S*, by Theorem 1.1 (i). ‘Write 
K* = S*\O. For all a, b E K we have that 

p = (ab), al1 = e, (I = (ab),a by1 = a 

and so the multiplication in K* is according to the rule that 

(g, a)(& b) = (g Wa).frr,b , ab). 

In this case K* is an extension of G by K in the usual group-theoretic sense 
[5, Section 481. Conversely, every extension of G by K is, to within isomor- 

phism, of this type. 

(2.4). Let S be a fundamental 0-bisimple inverse semigroup and let E 
be a semilattice isomorphic to Es. By Theorem 1.2, E is O-uniform and by 

Theorem 1.3 we can regard S as a O-transitive inverse subsemigroup of TE . 
For all e E E let E, denote the identity mapping of Ee. Then E, = I?,~ = 
(ce : e E E} [7, lo]. Denote the domain and codomain of an element 01 of S 
by ii(a) and r(a), respectively. Choose e E EO. Then it is easily verified 
[lo, Lemma I.21 that 

R,? = {CY E S : d(a) = Ee}, 

HE, = (CX ES : d(a) = Ee, C(a) = Ee), 

P,* =(a:~S’:d(i~) = Ee,C(a)CEeJ. 

Take S as above in part (A) and let E, be the chosen nonzero idempotent of S. 
For each x in E\O select one element 5, of S such that d( 6,) := Ee, Y([,) == Ex. 
(This is possible since S is O-transitive.) Then the set 

X = {f, : x E E\O] 

is a transversal of the Z-classes of S that are contained in Rce and every such 
transversal can be obtained in this way. We now interpret the malpping 
a H q , where 01 is a nonzero element of S. Let d(cr) = Ey (y E E\O); then 
(~01~l = cy and so a1 = y  5 . Finally, the congruence p defined in (A) must 
coincide with CL, since S is fundamental [Theorem 1.1 (iii)]. Note that if we 
make the further assumption that J& = Lo , then p = Ps* [Theorem 1.1 
(iv)]: in this case the set X coincides with R, . 



3. THE SPLITTING CASE 

A considerable simplification occurs in Theorem 2.2(A) if we choose each 
.fD,r to be the identity of G. The conditions (Cl) and (C4) become redundant, 
while (C2) asserts that the mapping 0 : p H 0, of P, into end G, the semigroup 
of endomorphisms of G, is an antihomomorphism. The multiplication in S* 

then reduces to the following: for (g, a), (h, b) E S*\,O, 

and 
O( g, a) = (g, a)0 = 02 -= 0, 

i 

\W, 4 , ab) 
k> 4(k b) = ,. 

if nb F: 0, 
if ab = 0, i 

(3.1) 

/ 

where p, Q are defined as before. In this case the set 

S’ == {( 1, u) : a F; S\Oj U 0 

is a transversal of the p-classes of S* and is clearly a subsemigroup of S* 
isomorphic to S. 

Conversely, if we add to the hypotheses of Theorem 2.2(B) the additional 
requirement that there exists a transversal S’ of the p-classes of S* which 

is also a subsemigroup of S* then, by selecting the set {u, : r E R,} to be a 
subset of S’, we see that Eq. (4) in the proof can be replaced by 

It follows that f,,r = 1 for all p t P, , r t R, and so 5’” is isomorphic to 
(G x S’\O) u 0, with multiplication defined as in (3.1). 

In this case we say that S” splits over p and that S* is a split extension of G 
by S. The result corresponding to the above for bisimple inverse semigroups 
is given in [9, Theorem 71. 

(3.2). It is clear that a necessary and sufficient condition for S* to split 
over p is that there exists a transversal {u? : r E K,) of the p-classes of S* 
contained in R* with the property that u,pb == r and uI, U, := ~~~~ for all 
p E P, and r E R, . 

4. AN APPLICATION 

In this final section we apply the foregoing results to a particular class of 
0-bisimple inverse semigroups first discussed in [6]. The set of all non- 
negative integers will be denoted throughout by N. 
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DEFINITION. Let Z be a nonempty set. A semilattice E = E” will be said 

to be of type (w, Z) if and only if E\O = {e,,, : m E N, i E Z} and 

e,,, , i e 
if i =i, 
if i # i, 

where t = max{m, n}. 

Such a semilattice is O-uniform and each of its principal ideals is inversely 
well-ordered. 

DEFINITION. An inverse semigroup S = So is an (w, I) inverse sem@roup 
if and only if its semilattice Es is of type (w, Z). 

In particular, if S = So is an (w, Z) inverse semigroup with / Z 1 == 1, 
then ES is a chain and so 5’ has no proper divisors of zero; in this c:ase S 
is an inverse o-semigroup (in the sense of Reilly [I 11) with a zero element 

adjoined. 
The structure of 0-bisimple (w, I) inverse semigroups has been determined 

by Lallement and Petrich [6, Corollary 5.7, also Section 61. Their method 
makes use of Reilly’s structure theorem for bisimple inverse w-semigroups 

[1 11. In Theorem 4.2 below we give a proof based on Theorem 2.2. Reilly’s 
theorem can then be deduced by taking / Z j = 1. 

\f’e require a lemma. 

LEMMA 4.1. Let Z be a nonempty set and let E = E” be a semilattice qf type 
(w, I). Then TE is a fundamental 0-bisimple (w, I) inverse semigroup on which 
2 is trivial. Further, to within isomorphism, TE = [(IV x N) x (I x Z)] u 0, 
with multiplication according to the following rule: 0 is the zero element and the 
product of nonzero elements isgiven by 

\[(m - n -t t, s - r + t), (i, 111 Km, 4, (i,i)lP. 4 (k 01 = ,. 
if j=R, 

if j#k, 

where t = max{n, r}. 

Proof. Let E\O = (e,,i : m E LV, i EZ}, as in the definition. Since E is 
O-uniform it follows from Theorem 1.3 that TE is a fundamental 0-bisimple 
(w, I) inverse semigroup. Moreover, every principal ideal of E is inversely 
well-ordered and so, by Theorem 1.4, 2 = L on TE . There is therefore one 
and only one element of TE with domain EemSi and codomain Ee,,j; d.enote 
this by [(m, n), (i, i)]. Let 0 denote the identity mapping of the zero ideal of E. 
It is then easy to verify that the multiplication in TE is as stated. 

Note that ETE\,O = [[(m, m), (i, i)] : m E N, i E Z} and that [(m, n), (i, j)]-1 = 

Kn, ml, (j, 91. 
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We then have 

THEOREM 4.2. (-4) Let G be a group, let z be an endomorph&n of G and 
let I be a nonempty set. Let S* = [G x (.V x IV) ;< (I x I)] u 0 and dejine 
a multiplication in S* by the following rule: 0 is the zero element and the product 

qf nonzero elements is given by 

k, Cm, n), (~,j)ll% (7, ~1, (k 41 

\ [golf-” hCyt+“. 

= io 
(nz ~ 72 + t, s ~~ Y -1 t), (i, l)] if j=k 

if .i#k 

where t = max{n, Y> and c@ denotes the identity automorphism of G. Then S* 
is a 0-bisimple (w, I) inverse semigroup. 

(B) Conversely, every 0-bisimple (~0, I) inverse semi@oup is, to within 
isomorphism, of the type described in (-4). 

Proof. (-1) Let E == E” be a semilattice of type (w, I). By Lemma 4.1, 
T, is a fundamental 0-bisimple (w,l) inverse semigroup on which 2 is 
trivial. Take S ~~ TE and suppose that it is represented in terms of N and I as 

in the lemma. JVc shall establish the result by showing that S* is a split 
extension of G by S (Section 3). 

Choose an clement 0 in I and keep it fixed. Let e = [(0, 0), (0, 0)] t 5”. 
Then e’ = e and it is easily seen that I?,. == {[(O, n), (0, i)] : n E N, i E I), 
P,> 7 ([(O, n), (0, 0)] : n E IV]. Since 2’Fs 7 1s it follows that the only trans- 
versal A1W of the X-classes of S in R, is R, itself; hence if a E S\O, then a, is 
the unique element of R, such that a;’ a, = au-‘. 

Ll’rite y  [(0, I), (0, 0)] and take y” : e. Then y” m= [(0, n), (0, 0)] for 
all n t :V and so P,. == {y” : y  E IVj. Define 0 : p +-* 01, of P, into end G by 
the rule that 

Then 0 is an antihomomorphism and 0, =~= N 0, the identitv automorphism of 

G. To complete the proof of (A) we show that the multiplication in S* is as 
in (3.1). Let 

a === [Cm, II), (i, j)l, b = [(Y, s), (j, k)] t $0 

and let p = (ab), a;‘, q = (ab), a 6;‘. We need only prove that 
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where t = max{n, Y}. First, au-l = [(m, m), (i, i)] and so a, = [(0, m), (0, i)]. 
In the same way we obtain b, , (ab), and a simple calculation then show:s that 

p = [(O, t - n),(O, WI = t n, 
q=[(O,t-r),(O,O)] =1":-. 

This gives the required result. 

(B) Let S* be a 0-bisimple ( W, I) inverse semigroup. Write E = Es*. 
By Theorem 1.4, X is a congruence on S* and S*/Z g TE. Take S = S*/% 
and assume that S is represented in terms of N and I as in Lemma 4.11. We 
show that S* splits over X. 

Let e, y  be defined as in part (A) above. Write zi = [(0, 0), (0, i)] for all 
i E I; in particular, zU = e. Then 

YRZi = [(O, n), (0, OMO, Oh (0,4 = WA n), (O>i)l 
and so 

R, ={ynxi:n~N,i~I}, P, = {y?z” : n E N]. 

Now let e* be that idempotent of S* whose image under 2” is e. Let 

R* = R,, . Choose elements v, wi in R* such that 

vs4?” = y, w&f~ = zi (i EI) 

and take w,, = e*. Then 

(vnwi)c# = ynzi E R, . 

Hence {vnwi : n E N, i E I} is a transversal of the Z-classes of S* contained in 

R* and {VW” : n E N} is the subset of this transversal that maps onto P, 
under Zb. But 

(7PWO)(V~Wi) = vU”+n wi 

for all m, n E N and all i E I. Hence, by (3.2), S* splits over Z’. Let G = lfe* . 
It follows that S* is isomorphic to (G x S\O) u 0 with multiplication defined 
as in (3.1), where 0 : p ++ es is an antihomomorphism of P, into end G! with 
the property that 19~ is the identity automorphism of G. Write 01 == 0, , 
01~ = 8, . Then 8,, = CP for all n E N. Further, for a E S\O, a, is the unique 
element of R, such that a;’ a, = au-l. Finally, let 

a = [(m, 4, (i, j)l, lJ = [(f-, 4, (i, 41 E s\o 

and let p = (~6)~ a;‘, 9 = (ub), a b;‘. Then, as in (A), it follows that 

eD = =t--n, e, = e, 

where t = max(n, r}. This completes the proof. 
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