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In this paper a structure theory for 0-bisimple inverse semigroups is given
in terms of groups and semilattices. The semilattices concerned are 0-uniform;
that is, they are of the form £ = E°, where any two nonzero principal ideals
of E are isomorphic.

Let S* be a 0-bisimple inverse semigroup with semilattice E and let u
denote the greatest congruence on S* contained in 5. Then S = S*/u
is a O-bisimple inverse semigroup with semilattice isomorphic to E and with
no nontrivial congruences contained in # (Theorem 1.1). Moreover, E is
O-uniform and S can be expressed as a certain semigroup of partial isomor-
phisms of £ (Theorems 1.2, 1.3). These results are taken from an earlier
paper [10]. Now let G be any p-class of $* containing a nonzero idempotent.
Then G is a subgroup of S*. The main problem is to express the structure of
S* 1n terms of G and S. A solution s provided by Theorem 2.2, which
generalises the Schreter extension theorem for groups. To conclude, the
theory is applied to a class of O-bisimple inverse semigroups characterised
by a particular type of semilattice (Theorem 4.2).

From the results for 0-bisimple inverse semigroups we can easily deduce
corresponding results for bisimple inverse semigroups. An alternative
structure theory for the latter has already been developed by Reilly and
Clifford [14]; this rests on the notion of an RP-system introduced by Reilly
[12], in a paper generalising the work of Clifford [2] on bisimple inverse
semigroups with an identity. The principal result of [14] gives a representation
of the elements of a bisimple inverse semigroup .S* by equivalence classes
of R % G x R, where G is a group consisting of any idempotent p-class of S*
and R is a certain RP-system. Morcover, these equivalence classes are
singletons if and only if 4 — 2 on S*.

Finally, Reilly [13] makes explicit the connection between the approach
of [14] and that of the present paper.
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0-BISIMPLE INVERSE SEMIGROUPS 571
1. FunpDaMENTAL 0-BisiMPLE INVERSE SEMIGROUPS

We shall follow the notation and terminology of [3].
By an inverse semigroup we mean a semigroup S in which to each element a
there corresponds a unique element a1 (the inverse of @) such that

aala = a, alaa = a?!

[3, Section 1.9]. Any two idempotents of .S commute and so the set of all
idempotents is a subsemigroup of S; we call this the semilattice of S and denote
it by Eg. For a, be S and e € Eg we have that

(a )t = q, (ab)™t = b la), el =—e.

It is easy to verify that an inverse semigroup S = S? is 0-bisimple if and only
if, to each pair (e, f) € E5\0 X E'\0, there corresponds a € S such that

aa ™t = e, ala =f.

Let p be a congruence on an inverse semigroup S. Then every idempotent
p-class contains an idempotent of S and so S/p is an inverse semigroup;
moreover, (xp)! = x~%p for all x& .S [3, Theorem 7.36]. We shall be con-
cerned only with those congruences p such that p C J#; these are precisely the
idempotent-separating congruences on S. There is a greatest such congruence u,
which can be described as follows [4]:

(e, D)ep<=alea=>b"1leb forall ecEg.

As in [10], we say that S is fundamental if and only if the only congruence on
S contained in # is the identity congruence «. Thus S is fundamental if and
only if p = «.

In this section we restate several results from [10] concerning fundamental
0-bisimple inverse semigroups. Green’s relations #, %, # on a semigroup S
will be denoted by Z, £, #¢ when we want to emphasise the particular
semigroup involved. Likewise, the identity relation ¢ on .S will sometimes be
denoted by 5.

The first theorem lists some of the basic properties of idempotent-
separating congruences.

TaeOREM 1.1. Let S* be an inverse semigroup, let p be an idempotent-
separating congruence on S* and let p be the greatest such congruence. Let S
denote the inverse semigroup S*[p. Then

(i) Es >~ Eg
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572 MUNN

(ii) (ap, bp) € RS H5] < (a, b) € As[Hl(a, b e S*);
(ui) Sis fundamental <> p = p;

(V) Hs = 15 < p = Hg(=p);

(v) S is O-bisimple < S* is O-bisimple.

Proof. (i) This is immediate from [3, Lemma 7.34].

(i) Itis clear that if (a, b) € Z« , then (ap, bp) € A5 . Assume, conversely,
that (ap, bp) € # . Then there exist x, y € S* such that (ax)p = bp, ap = (by)p.
Hence, since p C #%« C Zgv , there exist u, v e S* such that (ax)u = b,
a = (by)v and this shows that (a, b) € #5. . A similar argument applies to ¥
and the result for # then follows.

(1) If p = p, then S is fundamental [4, p. 75; 10, Theorem 2.4]. Now
suppose, conversely, that S is fundamental. Since p C u we can define a
congruence p/p on S by the rule that

(ap, bp)e pfp = (a,b) e (a,be S5™).

Let (ap, bp) € ufp. Then (g, b) € p C H# and so, from (i), (ap, bp) € Hs .
Thus ufp C H#gand so p/p = tg, since S is fundamental. Hence p == p.

(iv) This is readily deduced from (ii).

(v) Let S* be 0-bisimple. Since the homomorphism p% is O-restricted, it
follows that S is also O-bisimple. Conversely, let S be 0-bisimple and let
(e,f) € Es0 X Eg)\0. Then ep, fp are nonzero idempotents of S and so
there exists @ € S* such that

(ap)(ap) ™t = ep, (ap)~'(ap) = fp.
Hence

(aa ', e} ep, (ala, f)Ep.

Thus, since p is idempotent-separating, we have that aa~! = ¢, a~la -+ fand
this shows that S* is 0-bisimple.

Note, in particular, that if S* is a OQ-bisimple inverse semigroup, then
S*/u is a fundamental O-bisimple inverse semigroup with semilattice
isomorphic to Eg« .

A semilattice £ = E° is said to be O-uniform it and only if Ee ~ Ef for
any two nonzero idempotents e, f of £. The connection between such semi-
lattices and O-bisimple inverse semigroups is given by the following result

[10, Theorem 3.1].

TrheorEM 1.2. A semilattice is O-uniform if and only if it is isomorphic to
the semilattice of a O-bisimple inverse semigroup.
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The proof of Theorem 1.2 depends on the following concept. Let E be
a semilattice and let 7 denote the subset of £, the symmetric inverse
semigroup on E [3, p. 29], consisting of all isomorphisms between principal
ideals of E. Then Ty is an inverse subsemigroup of .# and Ep =~ E; more-
over, if E is O-uniform, then Ty is O-bisimple [7, Lemma 2.I; 10,
Theorem 3.1].

Let E = E° An inverse subsemigroup S of Ty is said to be 0-transitive {10]
if and only if the following two conditions hold:

(i) S contains the zero of T (the identity mapping of the zero ideal of E),

(ii) for all (e, f) € E\0 x E\O there exists an element « in S whose domain
is Ee and whose codomain is Ef.

1t is clear that if 7 contains a O-transitive inverse subsemigroup, then T¢
itself is O-transitive and E is O-uniform.

The following theorem provides a characterisation of fundamental
0-bisimple inverse semigroups in terms of mappings [10, Theorem 3.1].

TueoREM 1.3. Let S = S° be an inverse semigroup. Then S is fundamental
and O-bisimple if and only if it is isomorphic to a O-transitive inverse subsemigroup

of Tk, .

Let E be any O-uniform semilattice. Then, in particular, T itself is a
fundamental O-bisimple inverse semigroup. The problem of finding all
fundamental O-bisimple inverse semigroups with semilattices isomorphic
to E is reduced, by Theorem 1.3, to that of finding all O-transitive inverse
subsemigroups of Tr. A sufficient condition for T to contain no proper
inverse subsemigroups of this type is that 3#° = . on T : for two elements of
T are S -equivalent if and only if they have the same domain and the same
codomain [10, Lemma 1.2]; hence if 5 = and (e, f) € E\O X E\0 then
there exists exactly one element of 7'y with domain Fe and codomain Ef.

A semilattice F is said to be inversely well-ordered if and only if, with respect
to the natural ordering on F (e == f < ef = f), every subset of F has a greatest
element. Such a semilattice is necessarily a chain.

A slightly modified version of the proof of [7, Theorem 3.2] then establishes
the following result.

THEOREM 1.4. Let S* be an inverse semigroup and let E = Eg. . Suppose
that every principal ideal of E is inversely well-ordered. Then # = . on Ty
and . == 3 on S*. Moreover, if S* is 0-bisimple, then S*|H ~ Tp.

It follows, in particular, that, if S is a fundamental O-bisimple inverse
semigroup such that E¢ contains a nonzero inversely well-ordered principal



574 MUNN

ideal, then S o« Ty ; for, since Eg is O-uniform (Theorem 1.2), every
principal ideal of Eg is inversely well-ordered and so 5# =  — ¢ on §. An
example is given in Section 4.

2. THE ExTENSION THEOREM

We turn now to the problem of recovering a 0-bisimple inverse semigroup
S* from the fundamental 0-bisimple inverse semigroup S*/u and the group
e*u, where e* is any nonzero idempotent of S*. An answer is provided by
Theorem 2.2 below. This differs from the extension theorem of D’Alarcao [1]
in that we do not require to use the whole kernel of y.

Let .S be a 0-bisimple inverse semigroup, let e be a nonzero idempotent of
S and let X be a transversal (cross-section) of the #-classes of S that are
contained in R, . For each a € S\0 let @; denote the unique element of X
lying in L, -1 . Since ¢; a;* € R, and a7! @, € L, . it follows that

1 1y e gal
a at =e, ala, = aa”t.
Hence

a . aal = q

1,1 __ o1
L 1 aata =al.

These properties of a; will be used without further comment.
Let P, be defined by
P, =R, NeSe ={xeR,:xe = x}.
This is the right unit subsemigroup of eSe [12, Lemma [.2]. It is therefore
a right cancellative subsemigroup of S.

The following technical lemma (first given in [9], Appendix) is required
for the proof of Theorem 2.2.

Levma 2.1, Let a, b be elements of S such that ab == 0. Define p, q by

p = (ab), a,*, q = (ab), ab;*.
Then
() pay = (ab), (i) g¢b, = (ab)a, (i) p,qeP,.
Proof. We first note that (ab), = (ab),(ab)(ab)™ = (ab), abb~'a~%; this is
used in all three parts below.
(i) pa, = (ab), a;* a; = (ab), abb~la~' - aa! = (ab), ab b~'a~! == (ab), .
(1) gb, = (ab), aby' by = (ab), abb'a™' - abb™' = (ab), abb~'a'a = (ab)a.
(i) From (i), pp! = pas(ab)y® = (ab)(ab);® — e.
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Also gg1 = (ab), abi* bia~Y(ab){* = (ab), abb~'a~Y(ab);' = (ab),(ab);' = e.
Hence p, g€ R, . Further, e = aja7* = b,b7" and so pe = p, ge = q. Thus
P, qepP,.

We now state the main result of this section.

Taeorem 2.2. (A) Let S be a O-bisimple inverse semigroup and let G be a
group. Let e be a nonzero idempotent of S and let P, = R, N eSe, the right unit
subsemigroup of eSe. Let X be a transversal of the 3 -classes of S that are
contained in R, and, for all a< S\0, let a; denote the unique element of X in
Lyo-1 . Forallp € P, let 0, be an endomorphism of G and for all (p,v) e P, X R,
let f,., be an element of G. Suppose, further, that the 0, and the f, . satisfy the
Jollowing four conditions:

(€D foibs = fanfovafire  (Pra€PsTER,),

(C2) £0,6, = fo.u(800n) iy (1€ Pisg ),

(€3 g.=¢ (2cG)

(C4)  foe =For =1, the identity of G (p e Py; 7 € R,).
Let S* = (G x S\0) U 0 and define a multiplication in S* by the rule that,
for all (g, a), (h, ) e G x S\,

0(g,a) = (8, a)0 = 0> =0,
and

-1 -1 h - - ,
(g’ a)(k, b) — gf){p’al(?p)j[;p’a:ﬂjor?'bl( gq)fq,bl ab) lf ab ;é 0

where p = (ab), a7* and q = (ab), aby'. (By Lemma 2.1 (iii), p, g P, .)
Then S* is a 0-bisimple inverse semigroup. Moreover, there exists an idempotent-
separating congruence p on S* such that S*[p >~ S and e¢*p ~ G for any
nonzero idempotent e* in S*.

(B) Conversely, if S* is a O-bisimple inverse semigroup and p an idempotent-
separating congruence on S* then, to within isomorphism, S* has the structure
described above, where S = S*[p and G = e*p for any nonzero idempotent e*

of S*.

Proof. (A) We first show that S* is a semigroup under the prescribed
multiplication. Consider the elements (g, a), (4, b), (k, ¢) of G x $\0. To
establish associativity it is enough to show that

(&, a)(h, Bk, ¢) = (& a)l(h, b)(, O)].

Clearly this holds if abc = 0; hence we assume that abc # 0.



576 MUNN
The G-component of [(g, a)(h, b)l(%, c) is
7t/ 50 800) Foaraf ani(h02) Fun) O v arn,an] efBBs) ferere s (1)
where
p = (ab), a;, q = (ab),ab]', v = (abc) (ab);', s = (abc), abct.
From (C1), (C2) and Lemma 2.1 (i), (i1) we have that
(fo.000 7 = Frnfonarf rina) ™ = Frianroaf 7o -
80,0, = fr,(£0:5) 7 s
Toadlr = Frofrmaaf rivae = Fronfroad ;,l(ab)laa
(fa.bler) = (f7 afrq blfr qbl) ! fr (ab)1afrb by r, (17
W00, = fr.ahb,0) fr

fq,hlbg'r - fr.qfrq,blbf;.lql) b jr qfrq blbf {ab)yab -

Substituting the expressions on the right in (1) we find that the
G-component of [(g, a)(h, b)J(%, ¢) reduces to

f)p a](ggrp)frp alufrq b (herq)fm blbfs (l(kas)fs,clc . (2)

Similarly it can be shown that the G-component of (g, a){(k, b)(k, ¢)] is

] al(gev)fv alafut b (hgut)fwt by bj wu, cl(kgwu)fwu,clc El

where

t == (bc), b, u = (bc), be?, v = (abc), a w = (abc), a{be);’.

197
The proof of associativity will therefore be complete if we can show that
rp = v, rqg = wi, § = wu.
Now, by Lemma 2.1 (i), 7(ab), = (abc), . Hence
rp = r(ab), ait = (abc), a7t = ©.

Similarly,
rq = r(ab), ab! = (abc), ab7l.
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But, by Lemma 2.2 (it), w(bc), = (abc), a. Hence

wt = w(bc), byt = (abc), ab;' = 1q.
Furthermore,

wu = w(bc), be;! = (abe), abe* = s.

Thus S* is a semigroup.
Next we show that S* is regular. Consider the element (g, a)(%, a ')(g, a),
where g, he G and a € 5\0. Taking & = a1, ¢ = a above, we have that
rp = (aata)at = a,at = e,
rqg = (aa1a), a(a )t = a  a(a ™M),

s = (aa'a), aa la;* = a,a;t aat = e.

1 171

Hence, using (C3) and (C4), we see from (2) that the G-component of
(g, a)(h. a”')(g, a) is
&f an(h0a) fun 8

where b = a1, d = a,ab;". Thus to show that (g, a) is a regular element of
S* it will be enough to prove that we can choose A such that

hoy = fd,olg_lfﬁb,h . (3)
Now de P, and

dld =batalaabit =b ataatab =b bl =e
hence d € H, and so d* € H, . Define & by

h = (f;‘ld‘lfd.blgﬁlf(;.lhlbfd.dﬂ) g1 .

Then from (C2) and (C3) we see that (3) holds. Hence S* is regular.
We now examine the idempotents of S*. Let (g, @) € S*,0 and suppose
that (g, a)? = (g, a). Then @*> = a (=a"') and

;}al(gap)fz:.alafq_}zl(ggq)fa.nla =&,
where
P = (a2)1 afl = ala;l =, qg = (02)1 aaII — al(aa“l)afl = ala;1 = p.

Hence, from (C3) and (C4), we have that g = g and so g = 1. Conversely,
if a? = a, then (1, a)®> = (1, a). Thus

Egi\0 ={(1,a): a* = a}.
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We prove next that the idempotents of S* commute. Let a, b € E0. Suppose
first that ab # 0. Then

(17 a)(l B b) = (f';,la,fp,alaf(;.lblfq‘blb P ab)a

where
p = (ab), a;t, q = (ab), a b’

Since a* == a it follows that ;@ = @, aa™! = a, . Similarly 5,6 = b, . Hence
(1, a)(1, &) = (1, ab). But the idempotents of S commute and so ba = ab # 0.
A similar argument then shows that (1, 6)(1, a) = (1, ba). Thus (1, a)(1, ) ==
(1, b)(1, a). Further, this result still holds if @b = 0. Hence S* is an inverse
semigroup. Note if (g, a) € S*\0, then the Si0-component of (g, a)~' must
be al.

To see that S* is O-bisimple, consider any two nonzero idempotents
(1, a), (1, b) of S*. It will suffice to show that there is an element (1, ¢) € S*
for which

(L o)1, e) = (1, a), (L, o)1, ¢) = (1, b).
Since a, b € E\0 and S is 0-bisimple we can find ¢ € S10 such that
cct == a, cle == b.

Now (1, ¢)(1, ¢)! 1s a nonzero idempotent of S* and its S'0-component is
ccl. Hence

(Lo, o)t =1, cc™t) = (1, a).
Similarly,
(Ley il 6) = (1, e7le) = (1, b).
Thus S* is 0-bisimple.
Define an equivalence p on S*\0 by the rule that

((g’ a)’ (h»b))€p¢>a = b

and extend this to an equivalence on S* by taking {0} to be a p-class. Clearly p
is a congruence on S*. Also, if ((1, a), (1, )) € p, then (1, @) = (1, b); that 1s,
p 1s idempotent-separating. Further, S*/p ~ S.
Let e* == (1, @) € E¢/0. Then
ep = {(g,a): g€ G,

Then since @* = a, it follows, as in the discussion of the idempotents of 5%,
that

(. @), @) = (f5(88.) e 25,0100 Foya » @)
= (gh, ).
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Hence the mapping g +> (g, @) is an isomorphism from G to e*p. This
completes the proof of (A).

(B) Let S* be a 0-bisimple inverse semigroup and let p be an idempotent-
separating congruence on S*. Denote S*/p by S. By Theorem 1.1 (v) S is
a 0-bisimple inverse semigroup. Let e* be any nonzero idempotent of S*.
For brevity, write R* = R,», H* = H_, (the #- and s -classes of S*

containing ¢*). Since p C #%. it follows that e*p is a normal subgroup of the
group H*. Write

e =e*p = G.

We shall denote e*p by e when we regard it as an element of S and by G when
we regard it as a subgroup of S*.

Now select a transversal of those p-classes of S* that are contained in R*.
By Theorem 1.1 (ii) we can label the elements of this transversal by the
elements of R,. Let u, denote the representative of the p-class  for all
r& R,. We also adopt the convention that #, = e*. Note that u,u;* = e*
forallreR, .

Let P, =R, NeSe ={xecR,:xe =x} and let pe P,, re R,. Then

pripry? =prript=plep =ppl=e
and so pr € R,; thus u,, is defined. Hence

(u,u,) pf = pr = Uy P

But p C &%« and so there is an element x in S* such that u, u, = xu,, .
Write f, ., = xe*. Then, since xu,, = x(e*u,,) = f, , #,,, we have that

Uy th, = fo . 4)

! and so

/ — E - -1
Moreover, f, , = f,., * == f,  ty, 0,y = u, u, u;;

Fon 8 = pr(pr)t = e.
Thus, f, , € G.
We now show that (C4) holds. First let re R,. Then u, = u, u, =
.fp.l‘ u(”' = e, r ur and S0

_ -1 _. -1
Jesr = Fopttruy = upu,

=¥

Next let pe P,. Then u,e* = u,u, =f, ,u,, = f, . %,. Hence f,, =
u, e* u,", which is an idempotent. Thus f, , = e*, the identity of G. There-
fore (C4) holds (with 1 = ¢*).
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Let P* = R* N e*S*e* = {xe R* : xe* = x} and let pe P,. Then,
from above,

up et =f, , Uy = u,
and so u, € P*. It follows that #, G C G u,, [14, Section 2; also 8, L.emma 3];

moreover, we can define an endomorphism 6, of G by the rule that, for all
g¢eG,

Upf = (ggn) u,.

We now verify that (C1), (C2) and (C3) hold. Let p, g P, and letre R, .
Then

Q(u ur) - uq (fprum’) - (fﬂ T ’I tZ I"" (pr Q)f(l pr qﬂr?
also

(uqup) uy = (fo,p Uep) Ur == fonfapr Uapr -

Hence, equating these expressions and postmultiplying by . , we find that
(For 0D faor =Ffapfapr. Thus (C1) holds. In the same way, from the
equation u, (#, g) = (u, u,) g (p, g P,; g € G) we deduce that (C2) holds.
Further, for all g e G,

g@e = (‘gee) u, —u, g =g
and this establishes (C3).

Let X be a transversal of those J#-classes of .S that lie in R, . For each
a in S\0 define 4, to be the (unique) element of X inL,, -, . Since

1 I 1 1,
ala(ala) =a,aatall =a a7t a a' = ¢

it follows that aja € R, and so #, , is defined. The next stage in the proof
consists of showing that each element of $*\0 is uniquely expressible in the
form

u,;l’g Uga (a= $N0; g€ G).
Letae S\0,g € G. Then

(u;llg uala)ph —aleaa=a'aa=aa'a=a. (5)

Hence, in particular, u;lg g, 7 0. This enables us to define a mapping
¢ : G x S\0 - S*\0 by the rule that

(ga a)¢ = u(;ll g Uaga -

We now show that ¢ is bijective.
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First let (g, )¢ = (h, b)$. Then, taking images under p¥, we see from (5)
that @ = . Hence

-1 -1 -1 -1
& == Uqy (ual 4 uala) Ugje = Up, (g, h ublb) Upp = h

and so ¢ 1s injective.
Let a* € S*\0. Since X is a transversal of the s#-classes of S in R, it

follows from Theorem 1.1 (ii) that {u, : x € X} is a transversal of the /#-classes
of $* in R*. Hence, by [3, Theorem 3.4],

PR §
a* =uy ku,

for some x, y € X and some &k € H*. Now, by Theorem 1.1 (ii), {, : z ¢ H,}
is a transversal of those p-classes of S* that are contained in H*, that is, a
transversal of the cosets of G in H*. Thus k = hu, for some he G, 2 H, .
Hence

* -1 I | Y §
ar = Uy huz U, = U, hfz,y uzy = U, gu:@/ E)
where g = if, ,€ G. Write a = x7zy. Then aa! = xlzyylzlx =
xlzexrtx = xlzzlx = xlex = xx. Since x1x % 0 is follows that

a #0andsoaa! = a;t a; . Thus ¥ 'x = a;' a; and s0 x = @, , since both
x and & lie in X. Furthermore,

2y = (e2)y = (xx)zy = x(x'2y) = a1a.
Hence a* = u;ll 8 Yaya - This shows that ¢ 1s surjective.
Now extend ¢ to a bijection from (G x S\0) U 0 to S* by taking 0¢ = 0.
Define a multiplication on (G x $\0) U 0 as in (A). We complete the proof

of (B) by showing that ¢ is an isomorphism. Let (g, ), (k, &) G x S\0.
It will be enough to show that

(g, @)p (h, b)b = [(g, a)(h, )]¢-

We separate two cases.
Suppose first that ab = 0. Then

(#4,0 u,,_ll)ph =ayabi* = a,abb b =0
and s0 #, o 4, = 0 since pf is O-restricted. Thus

(8 a)p (h, b)p = 0 = 0¢ = [(g, a)(%, b)]¢.
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Now suppose that ab 5+ 0. Then
a,abt = a aalabblb?
= a, abbtala bl
= a, ab (ab)™! ab!
= a, (ab);* (ab), ab;!
=77'g

where p = (ab), a,%, ¢ = (ab), a b". By Lemma 2.1 (iii), p, g€ P, and so
u, , U, are defined. Hence

(ualu ul;ll)ph = a b;) - p_lq - (u;I uQ)Pb'

Then since p C #5. there exist elements v, y in S* such that u, , u, =

ubug v = yu, u, . It follows that

-1 -1
Ugo Uy, = (Up

) Uy, ty) (g 1)
— u;l (fp.alu upula)(uq_bll fqiil) Uy

- -1
- unlfﬂ.alafq,bl uq ) (6)

since pa;a = gb; by Lemma 2.1 (i), (ii). Further,

guy =g ) =g w] " = (g70,) " =w' (g0, (7)
Finally,

Ual § tgya Uy httyy = U foua fai g Bty DY (6),
=1, ;" (80,) franfan (H) g 11 by (7),
= tpa, [ 51, (805) Fo.ana f a0, (A0) Fa,0 e
= Uan),[f pray (€05) Fo.ana Fany (B90) Fantanysan
since pa; = (ab), , gb, = (ab)ya by Lemma 2.1 (i), (ii). Thus

(g @) (h, b)b = {(g, a)(h, b)]$,

as required. This completes the proof of (B).
We call S* an extension of G by S.
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Remarks on Theorem 2.2

(2.3). Inpart(A)let S = K° where K is a group, and let e be the identity
of K. Then P, = R, = H, = K. Choose X = {¢}; thusa; = eforallae K.
Since S is a group with zero so also is S*, by Theorem 1.1 (i). Write
K* = §*0. For all a, b € K we have that

= (ab), a;! =, q = (ab),ab! = a
P 1% 149

and so the multiplication in K* is according to the rule that

(8> a)(h, b) = (g (h00) fa,p » aD).

In this case K* is an extension of G by K in the usual group-theoretic sense
[5, Section 48]. Conversely, every extension of G by K is, to within isomor-
phism, of this type.

(2.4). Let S be a fundamental O-bisimple inverse semigroup and let £
be a semilattice isomorphic to Eg. By Theorem 1.2, E is O-uniform and by
Theorem 1.3 we can regard S as a O-transitive inverse subsemigroup of T .
For all ec E let ¢, denote the identity mapping of Ee. Then Eg = Ey, =
{e, : e E} [7, 10]. Denote the domain and codomain of an element o of S
by A(x) and V(a), respectively. Choose e c E\0. Then it is easily verified
[10, Lemma 1.2] that

R, = {xe S: A(x) = Lej,
H, = {aeS:d(x) = Ee, V() = Eej,
P,

={ae S :d(x) = Ee, V(x) C Ee}.

Take S as above in part (A) and let €, be the chosen nonzero idempotent of S.
For each x in E\Q select one element &, of Ssuch that A(¢,) = Ee, V(€,) = Ex.
(This is possible since S is O-transitive.) Then the set

X ={¢,:xc E\0)

is a transversal of the 5 -classes of S that are contained in R, and every such
transversal can be obtained in this way. We now interprét the mapping
a > oy , where « is a nonzero element of S. Let 4(x) = Ey (y € E\0); then
aol = ¢, and so o = £, . Finally, the congruence p defined in (A) must
coincide with p, since S is fundamental [Theorem 1.1 (iii)]. Note that if we
make the further assumption that #5 = g, then p = g« [Theorem 1.1
(iv)]: in this case the set X coincides with R, .
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3. Tue SpLiTTING CaASE

A considerable simplification occurs in Theorem 2.2(A) if we choose each
f».r to be the identity of G. The conditions (C1) and (C4) become redundant,
while (C2) asserts that the mapping 8 : p > 6, of P, into end G, the semigroup
of endomorphisms of G, is an antihomomorphism. The multiplication in S*
then reduces to the following: for (g, a), (A, b) € $*\0,

0(g,a) = (g,a)0 = 0* =0,
and
i : (3.1)
(g0, Ao, , ab) it ab 0’§
(& @) ) = 15" " i gy — 0,

/

where p, g are defined as before. In this case the set
S ={(l,a):ac S50 V0

is a transversal of the p-classes of S* and is clearly a subsemigroup of S*
isomorphic to S.

Conversely, if we add to the hypotheses of Theorem 2.2(B) the additional
requirement that there exists a transversal S’ of the p-classes of S* which
1s also a subsemigroup of S* then, by selecting the set {u, : r € R,} to be a
subset of S’, we see that Eq. (4) in the proof can be replaced by

Uy Uy =5 Uy, .

It follows that f, ., == 1 for all pe P,, r = R, and so S$* is isomorphic to
(G x §\0) U 0, with multiplication defined as in (3.1).

In this case we say that S* splits over p and that S* is a split extension of G
by S. The result corresponding to the above for bisimple inverse semigroups
is given in [9, Theorem 7].

(3.2). It is clear that a necessary and sufficient condition for S* to split
over p is that there exists a transversal {u, : ¥ € R,} of the p-classes of S*
contained in R* with the property that u,0% = r and u, #, == u,, for all
peP,andreR,.

4. AN APPLICATION

In this final section we apply the foregoing results to a particular class of
0-bisimple inverse semigroups first discussed in [6]. The set of all non-
negative integers will be denoted throughout by N.
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DerFiniTiON.  Let [ be a nonempty set. A semilattice E = E° will be said
to be of type (w, I) if and only if E\0 = {e,, ,: me N,icl} and

e if =y,
em,z en,) - (0 lf Z. ¢],

where ¢ = max{m, n}.

Such a semilattice is 0-uniform and each of its principal ideals is inversely
well-ordered.

DErFINITION.  An inverse semigroup S = 59 is an {w, [) inverse semigroup
if and only if its semilattice Eg is of type (w, /).

In particular, if § = S° is an (w, ) inverse semigroup with || == 1,
then Eg is a chain and so .S hasno proper divisors of zero; in this case §
is an inverse w-semigroup (in the sense of Reilly [11]) with a zero element
adjoined.

The structure of O-bisimple (w, [) inverse semigroups has been determined
by Lallement and Petrich [6, Corollary 5.7, also Section 6]. Their method
makes use of Reilly’s structure theorem for bisimple inverse w-semigroups
[11]. In Theorem 4.2 below we give a proof based on Theorem 2.2. Reilly’s
theorem can then be deduced by taking | 1| = 1.

We require a lemma.

LevMa 4.1. Let I be a nonempty set and let E = E° be a semilattice of type
(w,I). Then Ty is a fundamental O-bisimple (w, I) inverse semigroup on which
H is trivial. Further, to within isomorphism, Ty = [(N x N) x (I x )] U 0,
with multiplication according to the following rule: 0 is the zero element and the
product of nonzero elements is given by

w _Mm—n s —r+0),6 0] if j=*k,
[(m5 n)’ (l,])][(}’, S), (k’ 1)} - '0 lf ] + k,

where t = max{n, r}.

Proof. Let E\Q ={e, : meN,icl}, as in the definition. Since E is
0-uniform it follows from Theorem 1.3 that T is a fundamental O-bisimple
(w, I) inverse semigroup. Moreover, every principal ideal of E is inversely
well-ordered and so, by Theorem 1.4, 3 = . on Ty . There is therefore one
and only one element of T with domain Ee,, ; and codomain Fe, ;; denote
this by [(m, ), (7, j)]. Let O denote the identity mapping of the zero ideal of E.
It 1s then easy to verify that the multiplication in Ty is as stated.

Note that E7,\0 ={[(m, m), (i, 2)] : me N, 1 €1} and that [(m, n), (i, j)] ' =
[(n, m), i, )]
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We then have

Tueorem 4.2, (A) Let G be a group, let « be an endomorphism of G and
let I be a nonempty set. Let S* = [G X (N x N) x (I x )] U 0 and define
a multiplication in S* by the following rule: O is the zero element and the product
of nonzero elements is given by

(&, (m, m), (&, ))]h, (7, 5), (R, D))

([go/ " ha! T m — b tys —r F 1), (0] if j=k

= <

0 if 7~k

where t = max{n, r} and o° denotes the identity automorphism of G. Then S*
25 a 0-bisimple (w, I} inverse semigroup.

(B) Conversely, every 0-bisimple (w,I) inverse semigroup is, to within
1somorphism, of the type described in (A).

Proof. (A) Let E == E° be a semilattice of type (w, ). By Lemma 4.1,
Tr is a fundamental O-bisimple (w, [) inverse semigroup on which 5 is
trivial. Take .S == T'pand suppose that it is represented in terms of N and [ as
in the lemma. We shall establish the result by showing that S* is a split
extension of G' by S (Section 3).

Choose an element 0 in I and keep it fixed. Let e = [(0, 0), (0, 0)] € S.
Then ¢* = e and it is easily seen that R, = {[(0, ), (0,7)] : ne N, i1},
P, = {{(0, n), (0, 0)] : e N}. Since H# = 15 it follows that the only trans-
versal .\ of the # -classes of S in R, is R, itself; hence if a € S\0, then ¢ is
the unique element of R, such that a;! a; = aa™'.

all ne N and so P, == {y" : y€ N}. Define 0 : p+> 0, of P, into end G by
the rule that

8, —or  (neN).

Then 8 is an antthomomorphism and 8, == o, the identity automorphism of
G. To complete the proof of (A) we show that the multiplication in S* is as
in (3.1). Let

a=[(mn), . )], b =1[r7s),0k]eS0
and let p = (ab), a;*, ¢ = (ab), a by'. We need only prove that

0, = ot ", g, = o,
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where t = max{n, r}. First, aa~? = [(m, m), (i, 7)] and so @, = [(0, m), (0, £)].
In the same way we obtain &, , (ab), and a simple calculation then shows that
p =10,z —n),0,0)] =",
g =1[(0,2 —7),(0,0]] =y

This gives the required result.

(B) Let S* be a O-bisimple (w, I) inverse semigroup. Write E = Egx .
By Theorem 1.4, # is a congruence on S* and S*/#" =~ Ty . Take S = 5*/#
and assume that S is represented in terms of N and [ as in Lemma 4.1. We
show that S* splits over J¢.

Let e, y be defined as in part (A) above. Write 2; = [(0, 0), (0, )] for all
i € I; in particular, 5y = e. Then

y 2 = [(0, n), (0, 0)]{(0, 0), (0,7)] = [0, »), (0, )]
and so

R, = {y"z; : ne N,iel}, P, = {y"z,: nec N}.
Now let e* be that idempotent of S* whose image under #% is e. Let
R* = R,. . Choose elements 9, w; in R* such that

vt =y, wH =z (el
and take 2, = e*. Then
(v"w,)H#® = y"z, € R, .
Hence {o"w,; : n € N, iel}is atransversal of the ##-classes of S* contained in

R* and {v"w, : n€ N} is the subset of this transversal that maps onto P,
under ", But

(v"we)(vmw,;) = vt w;

for all m, n € N and all { € I. Hence, by (3.2), S* splits over . Let G = H «.
It follows that S* is isomorphic to (G X S\0) U 0 with multiplication defined
as in (3.1), where 8 : p —> 8, is an antihomomorphism of P, into end G with
the property that 6, is the identity automorphism of G. Write « =46,
o® = 8, . Then 8,, = «* for all n € N. Further, for a € §\0, 4, is the unique
element of R, such that a;' @; = aa'. Finally, let

a = [(m, n), (3, /)], b =[(r,s), (j, k)] € S\0
and let p = (ab), 7", ¢ = (ab); a b7". Then, as in (A), it follows that
0p —_ aiﬂn’ gq — at—r’

where ¢ = max{n, r}. This completes the proof.

481/15/4-10
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