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We provide a successful fit for proton–neutron scattering below pion production threshold up to LAB
energies of 350 MeV. We use seven high-quality fits based on potentials with different forms as
a measure of the systematic uncertainty. We represent the interaction as a sum of delta shells in
configuration space below the 3 fm and a charge-dependent one-pion exchange potential above 3 fm
together with magnetic effects. Special attention is payed to estimate the errors of the phenomenological
interaction.

© 2013 Elsevier B.V. Open access under CC BY license.
The study of the NN interaction has been a central and recur-
rent topic in Nuclear Physics for many years (see e.g. [1,2] and
references therein). The standard approach to constrain the in-
teraction is to analyze NN scattering data below pion production
threshold and to undertake a partial wave analysis (PWA), the
quality of the fit being given by the χ2/d.o.f. value. Only by the
mid 90s was it possible to fit about 4000 selected NN scatter-
ing data after discarding about further 1000 of 3σ inconsistent
data with a χ2/d.o.f. � 1 and incorporating charge dependence
(CD) for the One Pion Exchange (OPE) potential as well as mag-
netic and vacuum polarization effects [3]. This benchmark partial
wave analysis (PWA) was carried out using an energy-dependent
potential for the short range part for which nuclear structure
calculations become hard to formulate. Thus, energy-independent
high-quality potentials were subsequently produced with almost
identical χ2/d.o.f. ∼ 1 for a gradually increasing database [4–7].
While any of these potentials provides individually satisfactory fits
to the available data there are no published error estimates of the
potential parameters. Moreover it should also be noticed that the
existing high-quality potentials are different in their specific form;
they range from local to non-local in different versions of non-
locality. Thus, scattering phase shifts and observable amplitudes
are not identical and in fact the existing set of high-quality po-
tentials as a whole provides a distribution of scattering observ-
ables accounting for systematic uncertainties in addition to the
statistical uncertainties obtained from the fitted data for each in-
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dividual potential. Given the fact that these interactions are just
constrained to the elastic scattering data (and eventually to the
deuteron) which go up to the pion production threshold, one is
physically probing the interaction with a resolution not finer than
the shortest de Broglie wavelength �λ = h̄/

√
MNmπ ∼ 0.5 fm.

Thus, for practical purposes it may be advantageous to consider
coarse grained interactions. This is actually the physics underlying
the so-called V lowk approach [8] in which an effective interac-
tion in a restricted model space is built. By starting from different
high-quality potentials with a common charge-dependent OPE in-
teraction the CM-momenta above Λ ∼ √

MNmπ are eliminated by
a suitable transformation and a remarkable universal interaction is
obtained for p � Λ. Many of the applications of such an appealing
interaction have recently been reviewed [9].

On the other hand, when switching from the NN problem to
the many body nuclear problem the features and the form of the
interaction are relevant in terms of computational cost and feasi-
bility (see e.g. [10] and references therein). The lack of knowledge
of a precise potential form with finer resolution than �r ∼ 0.5 fm
suggests to search for a description of scattering data directly
in terms of a coarse grained potential sampled at some sensible
“thick points”. Any sampling procedure necessarily redistributes
the interaction strength and smooths the potential as compared
to the zero resolution limit �r → 0 implicit in most potential
approaches and generating the troublesome short distance cores.
This requires short distance correlations in the wave function to
ensure the finiteness of the energy [10]. A desirable way to sam-
ple the interaction is to provide an acceptable χ2-fit with the
minimal number of sampling points [11]; by implementing this
minimal sampling we just try to avoid statistical dependence be-
tween the strengths of the potential at the chosen sampling points.
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Our motivation to proceed in this fashion is to make error prop-
agation in nuclear structure calculations more direct since in the
absence of statistical correlations errors may just be added in
quadrature [12].

In the present work we report a first-stage form of a high-
quality potential accommodating these desirable features, namely
complying with existing high-quality fits and at the same time
accounting for the systematic uncertainties. Our “coarse grained”
potential is simple enough to undertake an analysis of the errors
in its parameters as well as in the resulting phase shifts from a
global fit to the experimental data. Our research is conveniently
done in two stages. First we compile the phase shifts provided by
the partial wave analysis (PWA) and by the high-quality poten-
tials of Refs. [3–7] for a discrete set of energies Ei . By averaging
those phase shifts for each energy and partial wave, we gener-
ate a set of “pseudodata” and “pseudo-errors” that we will use
to perform a fit of our potential parameters for each partial wave,
with their uncertainties. Since the pseudodata have been generated
from high-quality potentials, our first-stage model, after fitting,
will be a faithful representation of the experimental knowledge.
A second stage of our research [14] will be to use the first-stage
parameters as a starting point for a global partial wave analysis to
pp and np scattering data below pion production threshold up to
LAB energies of 350 MeV.

In this Letter we present the results of the first-stage fit which
is interesting in its own right, since the existing systematic errors
relevant for Nuclear Physics can already be extracted. Actually, the
second-stage fit is currently being done and will be presented in a
forthcoming publication [14] where the specific statistical errors
will be considered. Note that the first-stage parameters are not
checked against the experimental database, but to the pseudodata.
Therefore calling it already “high-quality” could seem not justified
a priory. At this point we should anticipate that, as presented in
Refs. [13,14], a χ2/d.o.f. value can be computed with the exper-
imental data and the first-stage optimal parameters. The optimal
value turns out to be very close to one (χ2/d.o.f. = 1.12), when
about 4-digits are taken into account, although errors deduced di-
rectly from experimental data turn out to be much smaller than
the systematic errors addressed here. The reason is that here we
are fitting pseudodata constructed from a family of high-quality
potentials, and the resulting potential inherits some of its charac-
teristics. This fact makes the first-stage fit to pseudodata highly
interesting and useful despite its simplicity. Our procedure allows
to undertake an analysis of the systematic errors in the first-stage
parameters. We do this by assuming that the systematic error in-
herent to any specific choice of the potential form corresponds
to individual uncorrelated pseudodata.1 Hence we may invoke the
central limit theorem to undertake the traditional statistical treat-
ment to the mean average and the corresponding standard de-
viation of Refs. [3–7] without any further ado. We will use this
compilation as our pseudo-database.

A convenient representation to sample the short distance com-
ponent of the NN interaction was already suggested by Aviles [15]
almost 40 years ago in terms of delta shells which for any partial
wave 2S (l′, l) J we take as

V JS
l,l′(r) = 1

2μnp

N∑
n=1

(λn)
JS
l,l′δ(r − rn) r � rc (1)

1 We have actually checked that, within the corresponding statistical uncertainty,
the absence of correlations among the different partial waves of the six high-quality
potentials by a direct evaluation of the correlation coefficient (see Ref. [11] for a
definition) holds for every single LAB energy below 350 MeV.
with μnp the reduced np mass and rc = 3 fm. In the spirit of
Refs. [3–7] for r � rc we use the well-known long-distance tail of
the NN potential

V (�r) = V EM(�r) + V OPE(�r), r > rc, (2)

where V EM is the electromagnetic potential of Ref. [5], and V OPE is
the one-pion exchange potential.

The solution of the corresponding Schrödinger equation in cou-
pled channels is straightforward; for any rn < r < rn+1 with rN < rc

we have free solutions and log-derivatives are discontinuous at
the rn-points so that one generates an accumulated S-matrix at
any sampling point providing a discrete version of Calogero’s vari-
able phase equation [16]. Although this potential is formally local,
the fact that we are coarse graining the interaction enables to
encode efficiently nonlocalities operating below the finest reso-
lution �r. Of course, once we admit that the interaction below
rc is unknown there is no advantage in prolonging the well-
known charge-dependent OPE tail and other electromagnetic ef-
fects for r < rc . The low energy expansion of the discrete vari-
able phase equations was used in Ref. [17] to determine threshold
parameters in all partial waves. The relation to the well-known
Nyquist theorem of sampling a signal with a given bandwidth
has been discussed in Ref. [18]. Some of the advantages of using
this simple potential for nuclear structure calculations as well as
the connection to the V lowk approach have been spelled out al-
ready [19].

To generate the pseudodata we use the standard LAB en-
ergy values usually listed in the high-quality potentials, namely
ELAB = 1,5,10,25,50,100,150,200,250,300,350 MeV and fit to
the mean phase-shift values at those energies with an error equal
to the standard deviation. In this way we account for the sys-
tematic errors due to the different representations of the po-
tentials [3–7]. We find that they are generally larger than those
quoted by the original PWA where only statistical uncertainties
where explicitly discussed for a fixed potential form [3]. With these
pseudodata sets and the given energies we undertake a phase-
shift fit and determine errors using the standard covariance ma-
trix.

As expected from Nyquist theorem, we need at most N = 5
sampling points which for simplicity are taken to be equidistant
with �r = 0.6 fm between the origin and rc = 3 fm. This is the
minimal number which provides an acceptable fit to the pseu-
dodata compiled from Refs. [3–7]. Our results for the np phase
shifts for all partial waves with total angular momentum J � 5 are
depicted in Fig. 1. The fitting parameters (λn)

JS
l,l′ entering the delta-

shell potentials, Eq. (1), are listed in Table 1 with their deduced
uncertainties. Of course, a definitive assessment on systematic er-
rors would require testing all possible potential forms. Thus, the
errors will generally be larger than those estimated here. We find
that correlations among the different (λn)

JS
l,l′ values within a given

partial wave channel are unimportant, and hence these parame-
ters are essentially independent from each other. This is a direct
consequence of our strategy to minimize the number of sampling
points. We find that introducing more points or equivalently reduc-
ing �r generates unnecessary correlations. Also, lowering the value
of rc below 3 fm, requires overlapping the short-distance poten-
tial, Eq. (1), with the OPE plus em corrections. Note that in order
to encompass all different forms of potentials, 48 parameters are
needed in contrast to the about 40 independent parameters found
in the original 1990 and subsequent models.

We determine the deuteron properties by solving the bound
state problem in the 3 S1–3 D1 channel using the corresponding pa-
rameters listed in Table 1. The predictions are presented in Table 2
where our quoted errors are obtained from propagating Table 1.
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Fig. 1. np phase shifts in degrees for J � 5 as a function of the LAB energy. The curves have been calculated with the fitted potential. The points with error bars represent
the pseudodata obtained as the mean value and standard deviation of the phase shifts provided by the PWA [3] and the six high-quality potentials [4–7]. We fit the energies
ELAB = 1,5,10,25,50,100,150,200,250,300,350 MeV.

Table 1
Fitting delta-shell parameters (λn)

JS
l,l′ (in fm−1) with their errors for all states in the JS channel and the corresponding χ2-value for J � 5 in np scattering. We take N = 5

equidistant points with �r = 0.6 fm. A dash symbol “−” indicates that the corresponding parameter has been fixed to (λn)
JS
l,l′ = 0.

Wave λ1 λ2 λ3 λ4 λ5 χ2/D.o.f.
1 S0 2.12(7) −0.987(7) – −0.087(2) – 0.3476
3 P0 – 1.26(4) −0.43(1) – −0.037(2) 0.6589
1 P1 – 1.23(2) – 0.079(4) – 0.0088
3 P1 – 1.33(2) – 0.053(2) – 0.4323
1 D2 – – −0.252(3) – −0.0163(9) 0.6946
3 D2 – – −0.596(8) −0.08(1) −0.050(4) 0.6144
1 F3 – – 0.34(1) – 0.010(2) 0.3812
3 F3 – – – 0.060(2) – 0.4177
1G4 – – −0.22(2) – −0.0137(9) 0.8090
3G4 – – – −0.267(3) – 1.8670
1 H5 – – – 0.071(8) – 0.6577
3 H5 – – – 0.04(1) – 0.4193
3 S1 1.57(4) −0.40(1) – −0.064(3) –
ε1 – −1.69(1) −0.379(4) −0.216(5) −0.027(3)
3 D1 – – 0.52(2) – 0.041(3) 0.4313
3 P2 – −0.415(6) – −0.0384(9) –
ε2 – 0.65(1) – 0.106(2) –
3 F2 – – 0.14(3) −0.076(6) – 0.3881
3 D3 – – – – –
ε3 – – −0.47(3) −0.24(1) −0.020(4)
3G3 – – – 0.101(6) – 0.6806
3 F4 – – −0.163(4) – −0.0101(4)

ε4 – – – 0.108(3) –
3 H4 – – – – −0.010(1) 0.2659
3G5 – – – 0.025(4) –
ε5 – – – −0.35(1) –
3 I5 – – – – – 0.5354
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Table 2
Deuteron static properties compared with empirical values and high-quality potentials calculations.

Delta shell Empirical [20–25] Nijm I [4] Nijm II [4] Reid93 [4] AV18 [5] CD-Bonn [6]

Ed(MeV) 2.2(2) 2.224575(9) Input Input Input Input Input
η 0.025(2) 0.0256(5) 0.02534 0.02521 0.02514 0.0250 0.0256
A S (fm1/2) 0.88(3) 0.8781(44) 0.8841 0.8845 0.8853 0.8850 0.8846
rm(fm) 1.97(8) 1.953(3) 1.9666 1.9675 1.9686 1.967 1.966
Q D (fm2) 0.272(9) 0.2859(3) 0.2719 0.2707 0.2703 0.270 0.270
P D 5.7(2) 5.67(4) 5.664 5.635 5.699 5.76 4.85
〈r−1〉(fm−1) 0.45(1) 0.4502 0.4515

Fig. 2. Some np scattering observables for several energies in the laboratory system as a function of the CM angle. The short-dashed line denotes the predictions by our
delta-shell model. The band represents the compilation the six high-quality potentials [3–7] which provided a χ2/d.o.f. � 1. For references to the experimental data see
[29–31]. We show the following set of observables: I0 (differential cross section), P (polarization), D (depolarization), R (rotation parameter), At , Dt , and Rt (polarization
transfer parameters), and Cnn (spin correlation parameter). For notation and further explanations see Refs. [26,27].
The comparison with experimental values or high-quality poten-
tials where the binding energies are used as an input is satisfac-
tory. This is partly due to the fact that theoretical errors are about
10%. Of course, one may improve on this by using the deuteron
binding energy as an input as in Refs. [3–7].

Fitting phase shifts to some accuracy do not necessarily pro-
vides angle-dependent scattering amplitudes to the same accuracy
because errors are finite and the relation between phase shifts and
observables is non-linear. This is often the case when the form
of the potential is kept fixed, so that the channel by channel fit
is usually taken as a first step which is afterwards refined by a
full fledged analysis of differential cross section and polarization
data [3–7]. To check our strategy of fitting first pseudodata (phase
shifts) and determining observables afterwards we proceed as fol-
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Fig. 3. np Wolfenstein parameters for different energies in the laboratory system as a function of the CM angle. Upper panel: ELAB = 50 MeV. Lower panel: ELAB = 200 MeV.
The band represents the compilation of the PWA and six high-quality potentials [3–7] which provided a χ2/d.o.f. � 1.
lows. The complete on-shell np scattering amplitude contains five
independent complex quantities, which we choose for definiteness
as the Wolfenstein parameters

M(k f ,ki) = a + m(σ 1,n)(σ 2,n)

+ (g − h)(σ 1,m)(σ 2,m)

+ (g + h)(σ 1, l)(σ 2, l)

+ c(σ 1 + σ 2,n), (3)

where a,m, g,h, c depend on energy and angle, and could in
principle be determined directly from experiment as shown in
Ref. [26,27] (see also [28] for an exact analytical inversion). We
follow an alternative procedure by arranging the parameters as a
10-dimensional real vector (a1, . . . ,a10), and defining a new set
of pseudodata out of the high-quality analyzes, given by the cor-
responding mean value of the Wolfenstein parameters, āi(ELAB, θ),
with their corresponding standard deviations, �ai(ELAB, θ). For any
given LAB energy and scattering angle θ we then compute

χ2(ELAB, θ) =
10∑

i=1

[
āi(ELAB, θ) − ai(ELAB, θ)

�ai(ELAB, θ)

]2

. (4)

The total χ2 value is obtained as an average over the chosen
reference energies, ELAB = 1,5,10,25,50,100,150,200,250,300,
350 MeV, and a dense sampling of θ -values in one degree steps.2

The result is

χ2/d.o.f. = 0.78,

which is equivalent to carry a complete χ2-fit to the mean average
scattering amplitude. In Fig. 2 we illustrate the situation for a set
of observables as a function of the CM angle and for representative
energies. One sees that our model (1) describes the data, and (2) it
differs from the six high-quality potentials [3–7] mainly when no
data are available.

Similar results are obtained for the Wolfenstein parameters
themselves [32] as can be seen by direct inspection of Fig. 3 for
the sampling energies of ELAB = 50 MeV and ELAB = 200 MeV.

To summarize, we have determined a high-quality neutron–
proton interaction which is based on a few delta shells for the
lowest partial waves, in addition to charge-dependent electromag-
netic interactions and one pion exchange, and provides a good
starting point for Nuclear Physics applications. We provide er-
ror estimates on our fitting parameters accounting both for sys-
tematic and statistical uncertainties from pseudodata provided by
present day high-quality analyzes of neutron–proton scattering
data. Deuteron properties are compatible with experimental or rec-
ommended values. Our method allows to coarse grain long-range

2 We have tried finer energy grids and the χ2/d.o.f. remains stable and below
unity.
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Coulomb interactions in a rather natural way and hence to discuss
proton–proton scattering data.
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