PRIORITY IN WAITING LINE PROBLEMS ${ }^{1}$). I

BY

H. KESTEN and J. Th. RUNNENBURG

(Communicated by Prof. D. van Dantzig at the meeting of November 24, 1956)

1. Introduction

The object of this paper is to give a more detailed account of the situation, discussed in the first part of Cobнam's article [2]. We shall consider here the situation where customers of different priorities arrive at one counter to be served ${ }^{2}$).

2. Description of the system

We distinguish r priorities by the priority numbers $1,2, \ldots, r$, where l stands for the highest and r for the lowest priority. Customers of priority number k will be called k-customers in the sequel. At time zero the counter is opened for servicing. At that moment, with probability $p_{0}\left(a_{1}, \ldots, a_{r}\right)$ a queue consisting of a_{1} l-customers, $\ldots, a_{r} r$-customers is present (with $a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0, p_{0}\left(a_{1}, \ldots, a_{r}\right) \geqslant 0, \sum\left\llcorner a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0 \perp p_{0}\left(a_{1}, \ldots, a_{r}\right)\right.$ $=1)^{3}$). New k-customers arrive $(k \in\{1, \ldots, r\})$ according to the following law: the interval from time zero to the first arrival of a k customer, and the intervals between arrivals of successive k-customers are mutually independent random variables with distributionfunction

$$
G_{k}(x)=\left\{\begin{array}{cc}
0 & \text { for } x<0 \tag{2.1}\\
1-\mathrm{e}^{-\lambda_{k} x} & \text { for } x \geqslant 0
\end{array}\right.
$$

where we assume $\lambda_{k}>0$ for $k \in\{1, \ldots, r\}$. The servicetime is also stochastic and has the same distributionfunction $F_{k}(t)$ (continuous from the right) for all k-customers. All arrival intervals (including the intervals from time zero to the arrival of the first k-customer) and all servicetimes are mutually independent.

Servicing takes place for each priority in the order of arrival. If customers of different priorities are present when the counter becomes free to serve a new customer, that one with highest priority which came first to the counter, is the next to be served. If the counter becomes

[^0]empty the next customer to be served is the first newly arriving customer. Servicing of a customer is never interrupted to make way for another customer.

Following D. G. Kendall [10] we consider the moments at which customers leave the counter at the end of their servicetime. The customers are numbered $(1,2, \ldots)$ in the order in which they leave the counter, and

$$
\begin{equation*}
p_{k, n}\left(a_{1}, \ldots, a_{r}\right) \tag{2.2}
\end{equation*}
$$

is defined as the probability that the $n^{\text {th }}$ departing customer is a k customer and leaves a queue consisting of $a_{1} 1$-customers,..,$a_{r} r$-customers at the counter (for all $k \in\{1, \ldots, r\}, n \in\{1,2, \ldots\}$ and $a_{j} \in\{0,1, \ldots\}$ for $j \in\{1, \ldots, r\}$).

We introduce the generating functions
(2.3) $f_{k, n}\left(X_{1}, \ldots, X_{r}\right) \stackrel{\text { def }}{=} \sum\left\llcorner a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0 」 p_{k, n}\left(a_{1}, \ldots, a_{r}\right) X_{1}^{a_{1}} \ldots X_{r}^{a_{r}}\right.$
for $\left|X_{1}\right| \leqslant 1, \ldots,\left|X_{r}\right| \leqslant 1$, the functions $\varphi_{k}(\alpha)$ and the moments of $F_{k}(t)$, defined by ${ }^{1}$)

$$
\begin{equation*}
\varphi_{k}(\alpha) \xlongequal{\operatorname{def}} \int_{0}^{\infty} \mathrm{e}^{-\alpha t} d \boldsymbol{F}_{k}(t) \tag{2.4}
\end{equation*}
$$

for $\operatorname{Re} \alpha \geqslant 0$ and

$$
\begin{equation*}
\mu_{k}^{(l)} \xlongequal{\text { def }} \int_{0-}^{\infty} t^{l} d F_{k}(t) \tag{2.5}
\end{equation*}
$$

We exclude the case where $F_{k}(0)=1$ for some k, i.e. we have $\mu_{k}^{(l)}>0$ for all k and all real l and $\varphi_{k}(\alpha)<1$ for all k and all $\alpha>0$.

Finally let

$$
\begin{equation*}
H_{k, n}(t) \tag{2.6}
\end{equation*}
$$

be the conditional distributionfunction of the waitingtime of the $n^{\text {th }}$ departing customer, given that the $n^{\text {th }}$ departing customer is a k-customer, and

$$
\begin{equation*}
\psi_{k, n}(\alpha) \xlongequal{\text { def }} \int_{0-}^{\infty} \mathrm{e}^{-\alpha t} d H_{k, n}(t) \tag{2.7}
\end{equation*}
$$

for all $k \in\{1, \ldots, r\}$ and $n \in\{1,2, \ldots\}$.
We distinguish two cases:

$$
\text { the case of nonsaturation, defined by } \sum_{1}^{r} \lambda_{i} \mu_{i}^{(1)}<1
$$

and

$$
\text { the case of saturation, defined by } \sum_{1}^{r} \lambda_{i} \mu_{i}^{(1)} \geqslant 1 .
$$

For the case of nonsaturation we prove that the limits of $p_{k, n}\left(a_{1}, \ldots, a_{r}\right)$ and $f_{k, n}\left(X_{1}, \ldots, X_{r}\right)$ for $n \rightarrow \infty$ exist and that $H_{k, n}(t)$ tends to a distribution-
${ }^{1}$) The integrals are Lebesgue-Stieltjesintegrals over the interval $0 \leqslant t<\infty$.
21 Series A
function $H_{k}(t)$ for $n \rightarrow \infty$. All these limits are independent of the initial situation, i.e. the probability distribution $\left\{p_{0}\left(a_{1}, \ldots, a_{r}\right)\right\} . H_{k}(t)$ is the distributionfunction of the waitingtime of an arbitrary k-customer in the stationary situation.

Using D. van Dantzig's "method of collective marks" ([5], [6] and [7]), we derive recurrence relations (3.12) between the generating functions $f_{k, n}\left(X_{1}, \ldots, X_{r}\right)$ together with relations (3.16) connecting the $f_{k, n}\left(X_{1}, \ldots, X_{r}\right)$, $\psi_{k, n}(\alpha)$ and $\varphi_{k}(\alpha)$. From these relations we derive the relations (5.2) for the

$$
f_{k}\left(X_{1}, \ldots, X_{r}\right) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} f_{k, n}\left(X_{1}, \ldots, X_{r}\right)
$$

which are then solved. From the relation (3.16) we derive (5.3), connecting $f_{k}\left(X_{1}, \ldots, X_{r}\right)$ and

$$
\psi_{k}(\alpha) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \psi_{k, n}(\alpha) .
$$

Once the $f_{k}\left(X_{1}, \ldots, X_{r}\right)$ are solved, they are used, together with the last relation, to compute the first two moments of $H_{k}(t)$ and to derive an expression for $\psi_{k}(\alpha)$, for $k \in\{1, \ldots, r\}$. The first moment of $H_{k}(t)$ was given by Совнам [2], but we did not understand his proof.

For the case of saturation we only state some results without proof.
We shall use some abbreviations to keep the formulae from becoming awkwardly long. With the understanding that on both sides of the equalitysign in (2.8) up to and including (2.14) indices may be added to the function symbols, we write ${ }^{1}$)

$$
\begin{gather*}
f(X) \stackrel{\text { abb }}{=} f\left(X_{1}, \ldots, X_{r}\right) \tag{2.8}\\
g(X) \stackrel{\text { abb }}{=} \sum_{1}^{r} f_{i}(X) \tag{2.9}\\
f\left(u^{k} X v^{l}\right) \stackrel{\text { abb }}{=} f\left(u, \ldots, u, X_{k+1}, \ldots, X_{r-l}, v, \ldots, v\right) \tag{2.10}
\end{gather*}
$$

i.e. the first k variables in (2.10) are equal to u, the last l variables are equal to v and the remaining variables (if any) are equal to the corresponding variables of $f(X)$ (we shall always have $k+l \leqslant r$). In the same way

$$
\begin{gather*}
f\left(U^{(k)} X\right) \stackrel{\text { abb }}{=} f\left(U_{1}, \ldots, U_{k-1}, X_{k}, \ldots, X_{r}\right), \tag{2.11}\\
f\left(U^{(k)} X v^{l}\right) \stackrel{\text { abb }}{=} f\left(U_{1}, \ldots, U_{k-1}, X_{k}, \ldots, X_{r-l}, v, \ldots, v\right), \tag{2.12}\\
f\left(y_{(k)} X\right) \stackrel{\text { abb }}{=} f\left(y_{k, 1}, \ldots, y_{k, k-1}, X_{k}, \ldots, X_{r}\right) \tag{2.13}\\
f\left(y_{(k)} X v^{l}\right) \stackrel{\text { abb }}{=} f\left(y_{k, 1}, \ldots, y_{k, k-1}, X_{k}, \ldots, X_{r-l}, v, \ldots, v\right) . \tag{2.14}
\end{gather*}
$$

We use

$$
\lim _{x \rightarrow 1} f(X) \quad(|X|<1)
$$

[^1]if we want to take
$$
\lim _{X_{1} \rightarrow 1} \lim _{X_{2} \rightarrow 1} \ldots \lim _{X_{r} \rightarrow 1} f(X)
$$
where X_{1}, \ldots, X_{r} must remain inside the unit circle. The order in which the latter limits are taken is irrelevant unless otherwise stated.

Finally ${ }^{1}$)

$$
\begin{equation*}
p X \stackrel{\text { abb }}{=} \sum_{1}^{r} p_{i} X_{i} \tag{2.15}
\end{equation*}
$$

and for all $k, l \in\{1, \ldots, r\}$, with $k+l \leqslant r$,

$$
\begin{gather*}
p\left(u^{k}, X\right) \stackrel{\text { abb }}{=} \sum_{1}^{k} p_{i} u+\sum_{k+1}^{r} p_{i} X_{i}, \tag{2.16}\\
p\left(u^{k}, X, v^{l}\right) \stackrel{\text { abb }}{=} \sum_{1}^{k} p_{i}^{k} u+\sum_{k+1}^{r-l} p_{i} X_{i}+\sum_{r-l+1}^{r} p_{i} v, \tag{2.17}\\
p\left(U^{(k)}, X\right) \stackrel{\text { abb }}{=} \sum_{1}^{k-1} p_{i} U_{i}+\sum_{k}^{r} p_{i} X_{i}, \\
p\left(U^{(k)}, X, v^{l}\right) \stackrel{\text { abb }}{=} \sum_{1}^{k-1} p_{i} U_{i}+\sum_{k}^{r-l} p_{i} X_{i}+\sum_{r-l+1}^{r} p_{i} v, \\
p\left(y_{(k)}, X\right) \stackrel{\text { abb }}{=} \sum_{1}^{k-1} p_{i} y_{k, i}+\sum_{k}^{r} p_{i} X_{i}, \\
p\left(y_{(k)}, X, v^{l}\right) \stackrel{\text { abb }}{=} \sum_{1}^{k-1} p_{i} y_{k, i}+\sum_{k}^{r-l} p_{i} X_{i}+\sum_{r-l+1}^{r} p_{i} v .
\end{gather*}
$$

3. Recurrence relations for the system

In order to apply the method of collective marks of D. van Dantzig [5] and [6], we introduce an event E, which happens with probability $1-X_{k}$ whenever a k-customer arrives, thus

$$
\begin{equation*}
0 \leqslant X_{k} \leqslant 1 \text { for each } k \in\{1, \ldots, r\} . \tag{3.1}
\end{equation*}
$$

The events E are independent for all customers. Any event E is called a "catastrophe" in D. van Dantzig's papers. Its nature, however, is irrelevant. As only probabilities of other events, together with nonoccurrence of any "catastrophe" are considered, it is irrelevant whether under occurrence of an event E the process continues or not.

We can now interprete $f_{k, n}(X)$ as a probability for

$$
\begin{equation*}
p_{k, n}\left(a_{1}, \ldots, a_{r}\right) X_{1}^{a_{1}} \ldots X_{r}^{a_{r}} \tag{3.2}
\end{equation*}
$$

is the probability, that at the $n^{\text {th }}$ departure, $n \in\{1,2, \ldots\}$, one k-customer leaves the counter, a_{1} 1-customers, $\ldots, a_{r} r$-customers remain at the counter

[^2]and with respect to none of the remaining customers the event E happened. Therefore
\[

$$
\begin{equation*}
f_{k, n}(X)=\sum\left\lfloor a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor p_{k, n}\left(a_{1}, \ldots, a_{r}\right) X_{1}^{a_{1}} \ldots X_{r}^{a_{r}} \tag{3.3}
\end{equation*}
$$

\]

is the probability, that at the $n^{\text {th }}$ departure, $n \in\{1,2, \ldots\}$, a k-customer leaves the counter and with respect to none of those remaining at the counter the event E happened. Further

$$
\begin{equation*}
p_{i, n}\left(0, \ldots, 0, a_{k}, \ldots, a_{r}\right) X_{k}^{q_{k}} \ldots X_{r}^{a_{r}} \tag{3.4}
\end{equation*}
$$

is the probability, that at the $n^{\text {th }}$ departure, $n \in\{1,2, \ldots\}$, an i-customer leaves the counter, $a_{k} k$-customers,..,$a_{r} r$-customers remain at the counter and with respect to none of the customers remaining at the counter the event E happened. If $a_{k}>0$ the next customer to be served is a k-customer, therefore for $k \in\{1, \ldots, r\}^{1}$) (using (2.10))

$$
\left\{\begin{array}{l}
f_{i, n}\left(0^{k-1} X\right)-f_{i, n}\left(0^{k} X\right)= \tag{3.5}\\
=\sum\left\llcorner a_{k} \geqslant 1, a_{k+1} \geqslant 0, \ldots, a_{r} \geqslant 0 \downharpoonleft p_{i, n}\left(0, \ldots, 0, a_{k}, \ldots, a_{r}\right) X_{k_{k}}^{a_{k}} \ldots X_{r}^{a_{r}}\right.
\end{array}\right.
$$

is the probability, that at the $n^{\text {th }}$ departure an i-customer leaves the counter, service on a k-customer starts and with respect to none of the customers left by the departing i-customer the event E happened.

Put

$$
\begin{equation*}
\lambda \stackrel{\text { def }}{=} \lambda_{1}+\ldots+\lambda_{r} . \tag{3.6}
\end{equation*}
$$

Now

$$
f_{i, n}\left(0^{r}\right)=p_{i, n}(0, \ldots, 0)
$$

is the probability, that at the $n^{\text {th }}$ departure an i-customer leaves and the counter becomes empty, while

$$
\begin{equation*}
p_{k} \stackrel{\text { def }}{=} \frac{\lambda_{k}}{\lambda} \tag{3.7}
\end{equation*}
$$

is the probability, that the first customer arriving after a given moment is a k-customer, therefore (using (2.9) and (2.10))

$$
\begin{equation*}
p_{k} X_{k} g_{n}\left(0^{r}\right) \tag{3.8}
\end{equation*}
$$

is the probability, that at the $n^{\text {th }}$ departure, $n \in\{1,2, \ldots\}$, the counter becomes empty and the next arriving customer is a k-customer, with respect to which the event E does not happen.

$$
\begin{equation*}
\int_{0-}^{\infty} \mathrm{e}^{-\lambda_{1} t} \frac{\left(\lambda_{1} t\right)^{a_{1}}}{a_{1}!} \ldots \mathrm{e}^{-\lambda_{r} t} \frac{\left(\lambda_{r} t\right)^{a_{r}}}{a_{r}!} d F_{k}(t) \tag{3.9}
\end{equation*}
$$

is the probability, that during the servicetime of a k-customer exactly

[^3]$a_{1} 1$-customers, $\ldots, a_{r} r$-customers arrive, so (using (2.15))

(3.10) $\left\{\begin{array}{l}\varphi_{k}(\lambda(1-p X))= \\ =\sum\left\llcorner a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0 \perp X_{1}^{a_{1}} \ldots X_{r}^{a_{r}} \int_{0-}^{\infty} \mathrm{e}^{-\lambda_{1} t} \frac{\left(\lambda_{1} t\right)^{a_{1}}}{a_{1}!} \ldots \mathrm{e}^{-\lambda_{r} t} \frac{\left(\lambda_{r} t\right)^{a_{r}}}{a_{r}!} d F_{k}(t)\right.\end{array}\right.$
is the probability, that with respect to none of the customers, arriving during the servicetime of a k-customer, the event E happened.

Analogously

$$
\begin{equation*}
\varphi_{k}\left(\lambda_{k}\left(1-X_{k}\right)\right) \tag{3.11}
\end{equation*}
$$

is the probability, that with respect to none of the customers with priority number k, arriving during the servicetime of a k-customer, the event E happened.

Now the probability that at the $(n+1)^{\text {st }}$ departure a k-customer leaves and that neither to him nor to those remaining at the counter the event E happened is equal to the probability that at the $n^{\text {th }}$ departure either an i-customer leaves the counter (for i equal to $1,2, \ldots$ or r), service on a k-customer starts and to those remaining at the counter (the k-customer under service included) the event E did not happen or the counter becomes empty and the first customer arriving is a k-customer, with respect to whom the event E did not happen and (in any case) during the servicetime of that k-customer no customers, with respect to whom the event E happened, arrive. This equality can be written in the following way, using (3.3), (3.5), (3.8) and (3.10) with their interpretations

$$
\begin{equation*}
X_{k} f_{k, n+1}(X)=\left\{g_{n}\left(0^{k-1} X\right)-g_{n}\left(0^{k} X\right)+p_{k} X_{k} g_{n}\left(0^{r}\right)\right\} \varphi_{k}(\lambda(1-p X)) \tag{3.12}
\end{equation*}
$$

This relation is valid for $k \in\{1, \ldots, r\}, n \in\{1,2, \ldots\}$ and all real X_{k} satisfying $0 \leqslant X_{k} \leqslant 1$, because of the arbitrariness of the event E. If at the moment the counter is opened for service, with probability $p_{0}\left(a_{1}, \ldots, a_{r}\right)$ a queue consisting of a_{1}-customers, ..., $a_{r} r$-customers is present and

$$
\begin{equation*}
g_{0}(X) \xlongequal{\text { def }} \sum\left\llcorner a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor p_{0}\left(a_{1}, \ldots, a_{r}\right) X_{1}^{a_{1}} \ldots X_{r}^{a_{r}} \tag{3.13}
\end{equation*}
$$

then (3.12) is true for $n=0$ as well.
For $0 \leqslant X_{i} \leqslant 1, i \neq k$ and $0<X_{k} \leqslant 1$ we can solve (3.12) for $f_{k, n+1}(X)$ once $g_{n}(X)$ is known for those values of X. But then we can find $f_{k, n+1}(X)$ (and $g_{n}(X)$) for all X satisfying $\left|X_{1}\right| \leqslant 1, \ldots,\left|X_{r}\right| \leqslant 1$ by analytic continuation for each $k \in\{1, \ldots, r\}$. Therefore (3.12) holds generally for each $k \in\{1, \ldots, r\}, n \in\{0,1,2, \ldots\}$ and $\left|X_{1}\right| \leqslant 1, \ldots,\left|X_{r}\right| \leqslant 1$.

We might try to express $t_{k, n+1}(X)$ as a function of $g_{0}(X)$ only, by repeated application of (3.12) and so eliminating $g_{l}(X)$ with $l \geqslant 1$. This however is not practicable, the more so as $f_{k, n+1}(X)$ for $X_{k}=0$ can be found from (3.12) only by dividing both sides by X_{k} for $X_{k} \neq 0$ and taking the limits for $X_{k} \rightarrow 0$, which leads to partial differential quotients in the expression for $f_{k, n+1}(X)$ for $X_{k}=0$.

Analogous to (3.11) and its interpretation we have:

$$
\begin{equation*}
\psi_{k, n}\left(\lambda_{k}\left(1-X_{k}\right)\right) \tag{3.14}
\end{equation*}
$$

is the probability, that if at the $n^{\text {th }}$ departure a k-customer leaves the counter, with respect to none of the customers with priority number k arriving during his waitingtime, the event E happened.

Finally

$$
\begin{equation*}
f_{k, n}\left(1^{k-1} X 1^{r-k}\right) \tag{3.15}
\end{equation*}
$$

is the probability, that at the $n^{\text {th }}$ departure a k-customer leaves the counter and with respect to none of the customers with priority number k which remain at the counter the event E happened. Now this is equal to the probability that at the $n^{\text {th }}$ departure a k-customer leaves and that with respect to none of the customers with priority number k arriving either during his waitingtime or during his servicetime the event E happened.

Therefore we have

$$
\begin{equation*}
f_{k, n}\left(\mathrm{l}^{k-1} X \mathrm{l}^{r-k}\right)=f_{k, n}\left(\mathrm{l}^{r}\right) \psi_{k, n}\left(\lambda_{k}\left(1-X_{k}\right)\right) \varphi_{k}\left(\lambda_{k}\left(1-X_{k}\right)\right), \tag{3.16}
\end{equation*}
$$

for $k \in\{1, \ldots, r\}, n \in\{1,2, \ldots\}$ and for all X_{k} satisfying $0 \leqslant X_{k} \leqslant 1$. This may again be generalized by analytic continuation. Therefore (3.16) holds for all X_{k} satisfying $\left|X_{k}\right| \leqslant l$.

We can now summarize our results. From (3.16) we have, that $\psi_{k, n}(\alpha)$ is a function of $f_{k, n}(X)$ and $\varphi_{k}(\alpha)$. The functions $f_{k, n}(X)$ are known to satisfy (3.12), but cannot be solved explicitly from those relations in terms of $g_{0}(X)$. However, as we are interested in the behaviour of the system in the long run, we will use (3.12) and (3.16) to find $\lim _{n \rightarrow \infty} \psi_{k, n}(\alpha)$.

The relations (3.12) and (3.16) can also be derived in a more formal way than it has been done here.

4. Convergence to a stationary distribution

Before making use of the relations (3.12) and (3.16) we shall prove some results connected with the convergence of the $p_{k, n}\left(a_{1}, \ldots, a_{r}\right)$ for $n \rightarrow \infty$, which justify the method of the next section.

Let us say that the system is in the state $\left(k ; a_{1}, \ldots, a_{r}\right)$ at the departure of the $n^{\text {th }}$ customer if the $n^{\text {th }}$ departing customer is a k-customer and if he leaves for every $i \in\{1, \ldots, r\} a_{i} i$-customers at the counter. Then all transition probabilities from a state at the $n^{\text {th }}$ departure to any state at the $(n+1)^{\text {st }}$ departure are independent of n and can easily be calculated. By considering only the moments, at which a customer leaves the system, we thus obtain a Markof chain, with a denumerable number of states. Let us denote this Markof chain by M. For every state there is a positive probability to reach in a finite number of steps a state where a departing customer leaves an empty counter, and from this situation any state can
again be reached in any number of steps. We conclude that M is an irreducible and aperiodic Markof chain (cf. Feller [8] for the terminology and classification of states in Markof chains). From Corollary 1 in Feller [8] (p. 328) it follows immediately, that $\lim _{n \rightarrow \infty} p_{k, n}\left(a_{1}, \ldots, a_{r}\right)$ exists and is independent of the initial distribution.

In the case of nonsaturation ($\sum_{1}^{r} i \lambda_{i} \mu_{i}^{(1)}<1$) all states are ergodic. To prove this, we need a theorem of Foster [9], which was given by Moustafa [12] in the following slightly generalized form:

Theorem 4.1. An irreducible, aperiodic Markof chain represented by the Markof matrix $\left\|p_{i, j}\right\|(i, j=1,2, \ldots)$ is ergodic if for some $\varepsilon>0$ and some integer i_{0}, there exists a non-negative solution $\left\{y_{i}\right\}$ of the inequalities

$$
\begin{array}{ll}
\sum_{1}^{\infty} p_{i, j} y_{j} \leqslant y_{i}-\varepsilon & \text { for } \quad i>i_{0} \\
\sum_{1}^{\infty} p_{i, j} y_{j}<\infty & \text { for } \quad i \leqslant i_{0} \tag{4.2}
\end{array}
$$

We note that $\sum_{i}^{\infty} p_{i, j} y_{j}$ can be regarded as the expectation after one step, if we start in the $i^{\text {th }}$ state, of a random variable ${ }^{1}$) \mathbf{y}, taking values y_{j} with probabilities $p_{i, j}$.

Theorem 4.2. If $\sum_{1}^{r} \lambda_{i} \mu_{i}^{(1)}<1$, all states in the Markof chain M are ergodic.

Proof: This theorem is an application of Th. 4.1. The states of M can be characterized by $\left(k ; a_{1}, \ldots, a_{r}\right)$, i.e. the priority number of the leaving customer and the number of customers of each priority left by him. With each state we associate a number y. By definition $y=\sum_{i}^{r} a_{i} \mu_{i}^{(1)}$ for the state $\left(k ; a_{1}, \ldots, a_{r}\right)$, i.e. y is the expectation of the time needed to serve the remaining customers and as such non-negative. If we start in the situation $\left(k ; 0, \ldots, 0, a_{l}, \ldots, a_{r}\right)$ with $a_{l}>0$ for an $l \leqslant r$, the next customer to be served is an l-customer and the expectation of \boldsymbol{y} after one step is then

$$
\begin{aligned}
& \sum_{1}^{l-1} \lambda_{i} \mu_{i}^{(1)} \mu_{l}^{(1)}+\left(a_{l}+\lambda_{l} \mu_{l}^{(1)}-1\right) \mu_{l}^{(1)}+\sum_{l+1}^{r}\left(a_{i}+\lambda_{i} \mu_{l}^{(1)}\right) \mu_{i}^{(1)}= \\
= & \sum_{l}^{r} a_{i} \mu_{i}^{(1)}+\mu_{l}^{(1)}\left\{\sum_{1}^{r} \lambda_{i} \mu_{i}^{(1)}-1\right\} \leqslant \\
\leqslant & \sum_{l}^{r} a_{i} \mu_{i}^{(1)}-\varepsilon
\end{aligned}
$$

[^4]where
$$
\varepsilon \xlongequal{\text { def }} \min _{1 \leqq l \leq r} \mu_{l}^{(1)}\left\{1-\sum_{1}^{r} \lambda_{i} \mu_{i}^{(1)}\right\} .
$$

In fact the expected number of i-customers arriving during the servicetime of an l-customer is $\lambda_{i} \mu_{l}^{(1)}$, and one l-customer leaves the system at the end of this step. Therefore (4.1) is satisfied in this case. If we start in the state $(k ; 0, \ldots, 0)$, the expectation of \boldsymbol{y} after one step is finite, so (4.2) is satisfied for the r states with $a_{1}=a_{2}=\ldots=a_{r}=0$.

Thus Th. 4.2 follows.
Corollary. If we define $p_{k}\left(a_{1}, \ldots, a_{r}\right)=\lim _{n \rightarrow \infty} p_{k, n}\left(a_{1}, \ldots, a_{r}\right)$ we have:

$$
\begin{gathered}
p_{k}\left(a_{1}, \ldots, a_{r}\right)>0 \text { for all } k \in\{1, \ldots, r\}, a_{i} \geqslant 0 \\
\sum_{1}^{r} k\left\lfloor a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor p_{k}\left(a_{1}, \ldots, a_{r}\right)=1
\end{gathered}
$$

and the $p_{k}\left(a_{1}, \ldots, a_{r}\right)$ form a stationary distribution for the Markof chain M. This is an immediate consequence of Th. 4.2 and Th. 2, p. 325, in Feller [8].

To prove also the convergence of $\Sigma\lfloor S\rfloor p_{k, n}\left(a_{1}, \ldots, a_{r}\right)$ where the summation is over an arbitrary set S of states, and the convergence of moments of the queue length, we need the following theorem.

Theorem 4.3. Let an irreducible, aperiodic ergodic Markof chain be represented by the Markof matrix $\left\|p_{i, j}\right\|(i, j=1,2, \ldots)$. If

$$
\pi_{j} \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} p_{i, j}^{(n)}
$$

where $p_{i, j}^{(n)}$ are the n step transitionprobabilities (these limits exist, are positive and independent of i; cf. Feller [8], p. 325) then we have for any non-negative state function F_{j}

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{1}^{\infty} p_{i, j}^{(n)} F_{j}=\sum_{1}^{\infty} \pi_{j} F_{j} \quad \text { for every } i \tag{4.3}
\end{equation*}
$$

Proof: As $\lim _{n \rightarrow \infty} p_{i, j}^{(n)}=\pi_{j}$ and $F_{j} \geqslant 0$ we have for all positive integers s

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{1}^{\infty} p_{s, j}^{(n)} F_{j} \geqslant \sum_{1}^{\infty} \pi_{j} F_{j}, \tag{4.4}
\end{equation*}
$$

because if $\varepsilon>0$ and N is such that ${ }^{1}$)

$$
\sum_{1}^{N} \pi_{j} F_{j} \geqslant \sum_{1}^{\infty} \pi_{j} F_{j}-\varepsilon
$$

${ }^{1}$) If $\sum_{\mathbf{1}}^{\infty} \pi_{j} F_{j}=\infty$, only some obvious changes are necessary.
we have

$$
\liminf _{n \rightarrow \infty} \sum_{1}^{\infty} p_{s, j}^{(n)} F_{j} \geqslant \liminf _{n \rightarrow \infty} \sum_{1}^{N} p_{s, j}^{(n)} F_{j}=\sum_{1}^{N} \pi_{j} F_{j} \geqslant \sum_{1}^{\infty} j \pi_{j} F_{j}-\varepsilon
$$

for every $\varepsilon>0$, whence (4.4) holds.
The proof of (4.3) is completed, if $\sum_{i}^{\infty} \pi_{j} F_{j}=\infty$. If $\sum_{i}^{\infty} \pi_{j} F_{j}<\infty$ we proceed as follows. We know, that π_{j} is always positive, $\sum_{i}^{\infty} \pi_{j}=1$, and $\pi_{j}=\sum_{1}^{\infty} \pi_{i} i_{i, j}^{(n)}$ for all positive integers n (cf. Feller [8], p. 325). Therefore we have for a fixed $N \geqslant s$ and every n

$$
\sum_{1}^{\infty} \pi_{j} F_{j}=\sum_{1}^{\infty} \pi_{i} \sum_{i}^{\infty} p_{i, j}^{(n)} F_{j} \geqslant \sum\llcorner 1 \leqslant i \leqslant N, i \neq s\rfloor \pi_{i} \sum_{1}^{\infty} p_{i, j}^{(n)} F_{j}+\pi_{s} \sum_{1}^{\infty} p_{s, j}^{(n)} F_{j}
$$

so

$$
\begin{aligned}
\sum_{1}^{\infty} \pi_{j} F_{j} & \geqslant \limsup _{n \rightarrow \infty}\left\{\sum\lfloor 1 \leqslant i \leqslant N, i \neq s\rfloor \pi_{i} \sum_{1}^{\infty} j p_{i, j}^{(n)} F_{j}+\pi_{s} \sum_{1}^{\infty} j p_{s, j}^{(n)} F_{j}\right\} \geqslant \\
& \geqslant \sum\lfloor 1 \leqslant i \leqslant N, i \neq s\rfloor \pi_{i} \liminf _{n \rightarrow \infty}^{\infty} \sum_{1}^{j} p_{i, j}^{(n)} F_{j}+\pi_{s} \lim _{n \rightarrow \infty} \sup ^{\infty} \sum_{1}^{\infty} p_{s, j}^{(n)} F_{j} \geqslant \\
& \geqslant \sum\lfloor 1 \leqslant i \leqslant N, i \neq s\rfloor \pi_{i} \sum_{1}^{\infty} \pi_{j} F_{j}+\pi_{s} \limsup _{n \rightarrow \infty} \sum_{1}^{\infty} p_{s, j}^{(n)} F_{j} .
\end{aligned}
$$

Now take $N \rightarrow \infty$

$$
\sum_{1}^{\infty} \pi_{j} F_{j} \geqslant\left(1-\pi_{s}\right) \sum_{1}^{\infty} \pi_{j} F_{j}+\pi_{s} \limsup _{n \rightarrow \infty} \sum_{i}^{\infty} p_{s, j}^{(n)} F_{j}
$$

As $\pi_{s}>0$ this leads to

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{1}^{\infty} p_{s, j}^{(n)} F_{j} \leqslant \sum_{1}^{\infty} \pi_{j} F_{j} \tag{4.5}
\end{equation*}
$$

for all s.
From (4.5) together with (4.4) we have (4.3).
Remark 1. The theorem remains true for arbitrary state functions F_{j} with

$$
\sum_{1}^{\infty} \pi_{j}\left|F_{i}\right|<\infty
$$

as can be seen by writing
where

$$
\begin{aligned}
& F_{j}=F_{j}^{+}-F_{j}^{-} \\
& F_{j}^{+} \\
& =\frac{\text { def }}{=} \frac{\left|F_{j}\right|+F_{j}}{2} \\
& F_{j}^{-} \xlongequal{- \text { def }} \frac{\left|F_{j}\right|-F_{j}}{2}
\end{aligned}
$$

Remark 2. If the Markof chain we consider has a probability $p_{i}^{(0)}$ of
being in the state i in the initial situation ($p_{i}^{(0)} \geqslant 0$ and $\sum_{i}^{\infty} i p_{i}^{(0)}=1$), then by Th. 4.3

$$
\lim _{n \rightarrow \infty} \sum_{i}^{\infty} \sum_{i}^{\infty} j p_{i}^{(0)} p_{i, j}^{(n)} F_{j}=\sum_{i}^{\infty} \pi_{j} F_{j}
$$

provided F_{j} is bounded.
From the convergence of $p_{k, n}\left(a_{1}, \ldots, a_{r}\right)$ follows only the existence of $\lim _{n \rightarrow \infty} f_{k, n}(X)$, if $\left|X_{i}\right|<1$ for all $i \in\{1, \ldots, r\}$. We may now conclude, that if $\left|X_{i}\right| \leqslant 1$ for all $i \in\{1, \ldots, r\}$

$$
\lim _{n \rightarrow \infty} f_{n, k}(X)=\sum\left\llcorner a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor p_{k}\left(a_{1}, \ldots, a_{r}\right) X_{1}^{a_{1}} \ldots X_{r}^{a_{r}}
$$

This follows if we take the state function

$$
F\left(i ; a_{1}, \ldots, a_{r}\right) \stackrel{\text { def }}{=}\left\{\begin{array}{ccc}
X_{1}^{a_{1}} \ldots X_{r}^{a_{r}} & \text { if } i=k \\
0 & \text { if } i \neq k .
\end{array}\right.
$$

Thus

$$
f_{k}(X) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} f_{k, n}(X)=\sum\left\llcorner a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor p_{k}\left(a_{1}, \ldots, a_{r}\right) X_{1}^{a_{1}} \ldots X_{r_{r}}^{a_{r}}
$$

is a power series with positive coefficients, which converges for

$$
\left|X_{i}\right| \leqslant 1, i \in\{1, \ldots, r\}, \text { and as } \sum_{1}^{r} \sum_{i} \operatorname{La}_{i} \geqslant 0, \ldots, a_{r} \geqslant 0 \downharpoonleft p_{k}\left(a_{1}, \ldots, a_{r}\right)=1
$$

we conclude that

$$
\begin{equation*}
\lim _{x \rightarrow 1} f_{k}\left(1^{k-1} X 1^{r-k}\right)=f_{k}\left(1^{r}\right) \quad(|X|<1) \tag{4.6}
\end{equation*}
$$

Remark 3. From Th. 4.3 we also conclude that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{1}^{r} k\left\lfloor a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor a_{j} p_{k, n}\left(a_{1}, \ldots, a_{r}\right)= \\
&=\sum_{1}^{r} \sum\left\lfloor a_{1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor a_{j} p_{k}\left(a_{1}, \ldots, a_{r}\right),
\end{aligned}
$$

.ie. the expected length of the queue of j-customers at the $n^{\text {th }}$ departure tends to the expected length of the queue of j-customers derived from the stationary distribution, and analogously for the higher moments of the queue length, provided the initial state is fixed, i.e. $p_{0}\left(b_{1}, \ldots, b_{r}\right)=1$ for a given initial state $\left(b_{1}, \ldots, b_{r}\right)$.

Theorem 4.4. If $\sum_{1}^{r} \lambda_{i} \mu_{i}^{(1)}<1$, the conditional distributionfunctions of the waitingtimes $H_{k, n}(t)(k \in\{1, \ldots, r\})$ converge to a non-degenerate distributionfunction $H_{k}(t)$ with

$$
\psi_{k}(\alpha) \stackrel{\text { def }}{=} \int_{0}^{\infty} \mathrm{e}^{-\alpha t} d H_{k}(t)
$$

satisfying

$$
\begin{equation*}
f_{k}\left(1, \ldots, 1,1-\frac{\alpha}{\lambda_{k}}, 1, \ldots, 1\right)=f_{k}\left(1^{r}\right) \psi_{k}(\alpha) \varphi_{k}(\alpha) \quad \text { for } \quad\left|1-\frac{\alpha}{\lambda_{k}}\right| \leqslant 1 \tag{4.7}
\end{equation*}
$$

Proof. A distributionfunction of a non-negative random variable is uniquely determined if its Laplace transform is given on an interval which lies in the right half plane, because the Laplace transform of such a distributionfunction is analytic for all arguments with positive real part, and can thus be determined uniquely by analytic continuation, so that the uniqueness theorem for the inverse of a Laplace transform may be applied (cf. D. V. Widder [14] Th. 5a, p. 57 and Th. 6.3, p. 63).

From (3.16) follows the convergence of $\psi_{k, n}(\alpha)$ for $\left|1-\frac{\alpha}{\lambda_{k}}\right| \leqslant 1$ as $\lim _{n \rightarrow \infty} f_{k, n}\left(1^{r}\right)>0$ and $\varphi_{k}(\alpha)>0$.

We can now follow a standard method (compare e.g. Lévy [11], p. 49, proof of Th. $17{ }^{2}$) to prove that $H_{k, n}(t)$ converges to a function $H_{k}(t)$ with $\psi_{k}(\alpha)=\lim _{n \rightarrow \infty} \psi_{k, n}(\alpha)$ satisfying (4.7). $H_{k}(t)$ is a monotonic nondecreasing function continuous from the right and satisfies $H_{k}(t)=0$ for $t<0$ and $\lim _{t \rightarrow \infty} H_{k}(t)=1$, as from (4.7) $\lim _{\alpha \rightarrow 0} \psi_{k}(\alpha)=1$. This proves Th. 4.4.

All the foregoing theorems concerning the queuing problem are valid only if $\sum_{1}^{r} i \lambda_{i} \mu_{i}^{(1)}<1$. In the case of saturation ($\sum_{i}^{r} \lambda_{i} \mu_{i}^{(1)} \geqslant 1$) analogous theorems can be proved, although we did not succeed so far in finding simple proofs. In fact one can prove:

If $\sum_{1}^{8} \lambda_{i} \mu_{i}^{(1)}<1$ and $\sum_{i}^{s+1} \lambda_{i} \mu_{i}^{(1)} \geqslant 1$ we have

$$
\lim _{n \rightarrow \infty} \sum\left\llcorner a_{s+2} \geqslant 0, \ldots, a_{r} \geqslant 0\right\lrcorner p_{k, n}\left(a_{1}, \ldots, a_{r}\right)=0
$$

and

$$
\lim _{n \rightarrow \infty} \sum\left\lfloor a_{s+1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor p_{k, n}\left(a_{1}, \ldots, a_{r}\right)
$$

exists and is positive.
If we define

$$
\overline{p_{k}}\left(a_{1}, \ldots, a_{s}\right) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \sum\left\lfloor a_{s+1} \geqslant 0, \ldots, a_{r} \geqslant 0\right\rfloor p_{k, n}\left(a_{1}, \ldots, a_{r}\right)
$$

we have for $k \in\{1, \ldots, r\}$

$$
\lim _{n \rightarrow \infty} f_{k, n}\left(X 1^{r-s}\right)=\sum\left\llcorner a_{1} \geqslant 0, \ldots, a_{s} \geqslant 0\right\rfloor \overline{p_{k}}\left(a_{1}, \ldots, a_{s}\right) X_{1}^{a_{1}} \ldots X_{s}^{a_{s}}
$$

whereas

$$
\left.\lim _{x \uparrow 1} \sum_{1}^{s+1} k f_{k, n}\left(X 1^{r-s}\right)=\sum_{1}^{s+1} k \sum a_{1} \geqslant 0, \ldots, a_{s} \geqslant 0\right\rfloor \overline{p_{k}}\left(a_{1}, \ldots, a_{s}\right)=1 .
$$

$H_{k, n}(t)$ converges to a non-degenerate distributionfunction if $k \leqslant s$ and $\lim _{n \rightarrow \infty} H_{k, n}(t)=0$ for every finite t if $k \geqslant s+1$. If $k \leqslant s$ the moments of $H_{k, n}(t)$ do not necessarily converge to those of $H_{k}(t)$, i.e. we cannot conclude

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0-}^{\infty} t^{j} d H_{k, n}(t)=\int_{0-}^{\infty} t^{j} d H_{k}(t) \text { for } k \leqslant s \tag{4.8}
\end{equation*}
$$

An example will show, that in some cases (4.8) does not hold. Take $s+2 \leqslant r$ and $\mu_{s+2}^{(1)}=\infty$. If we start from an initial situation with $a_{1}=\ldots=a_{s+1}=0, a_{s+2}>0$ it is clear that $\int_{0}^{\infty} t d H_{k, n}(t)=\infty \quad(n \in\{1,2, \ldots\})$, whereas $\int_{0}^{\infty} t d H_{k}(t)$ is not necessarily infinite for $k \leqslant s$.
(To be continued)

[^0]: ${ }^{1}$) Report SP 53 of the Statistical Department of the Mathematical Centre.
 ${ }^{2}$) Questions, put to us by the N.V. Philips' Gloeilampenfabrieken, Eindhoven, Holland, gave rise to the present investigation.
 ${ }^{3}$) The conditions under which a sum or a limit have to be taken are sometimes denoted by placing them between half square brackets []. Summations are always over non-negative integers.

[^1]: ${ }^{1}$) $\stackrel{\text { abb }}{=}$ is used, when on the left hand side of an equalitysign an abbreviation is introduced for an expression on the right hand side.

[^2]: ${ }^{1}$) If $k=1$ the first sum on the right hand side of (2.17) and (2.18) equals zero, if $k=r$ the last surn of (2.16) ; analogously for (2.16 $),\left(2.17^{\prime}\right)$ and (2.18 $)$.

[^3]: ${ }^{1}$) If $k=r$ then $f_{i, n}\left(0^{k} X\right)$ stands for $f_{i, n}\left(0^{r}\right)$.

[^4]: ${ }^{1}$) Random variables are distinguished from numbers by printing their symbols in bold type.

