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l. Introduction 

The object of this paper is to give a more detailed account of the 
situation, discussed in the first part of CoBHAM's article [2]. We shall 
consider here the situation where customers of different priorities arrive 
at one counter to be served 2). 

2. Description of the system 

We distinguish r priorities by the priority numbers l, 2, ... , r, where 
l stands for the highest and r for the lowest priority. Customers of 
priority number k will be called k-customers in the sequel. At time zero 
the counter is opened for servicing. At that moment, with probability 
p0(av ... ,a,) a queue consisting of a1 !-customers, ... , a, r-customers is 
present (withal> o, ... ,a,> 0, Po(~, ... ,a,)> 0, I Lal~o •... ,a.~OJpo(av····a,) 
= l) 3). New k-customers arrive (k E {1, ... , r}) according to the 
following law: the interval from time zero to the first arrival of a k
customer, and the intervals between arrivals of successive k-customers 
are mutually independent random variables with distributionfunction 

(2.1) Gk(x) = ~ 0 for x < 0 
( l-e-.<k" for x > 0, 

where we assume Ak>O fork E {1, ... , r}. The servicetime is also stochastic 
and has the same distributionfunction Fk(t) (continuous from the right) 
for all k-customers. All arrival intervals (including the intervals from 
time zero to the arrival of the first k-customer) and all servicetimes are 
mutually independent. 

Servicing takes place for each priority in the order of arrival. If 
customers of different priorities are present when the counter becomes 
free to serve a new customer, that one with highest priority which came 
first to the counter, is the next to be served. If the counter becomes 

1 ) Report SP 53 of the Statistical Department of the Mathematical Centre. 
2 ) Questions, put to us by the N.V. Philips' Gloeilampenfabrieken, Eindhoven, 

Holland, gave rise t6 the present investigation. 
3 ) The conditions under which a sum or a limit have to be taken are sometimes 

denoted by placing them between half square brackets l j. Summations are always 
over non-negative integers. 



313 

empty the next customer to be served is the first newly arriving customer. 
Servicing of a customer is never interrupted to make way for another 
customer. 

Following D. G. KENDALL [10] we consider the moments at which 
customers leave the counter at the end of their servicetime. The customers 
are numbered (1, 2, ... ) in the order in which they leave the counter, and 

(2.2) 

is defined as the probability that the nth departing customer is a k
customer and leaves a queue consisting of a1 !-customers, ... , a, r-eus
tamers at the counter (for all k E {l, ... , r}, n E {l, 2, ... } and ai E {0, l, ... } 
for j E {l, ... , r}). 

We introduce the generating functions 

(2.3) /k,n(Xv ... ,X,) def .2 La1 > 0, ... ,a, >OJ Pk,n(a1 , ... ,a,)X~• ... X~· 

for IX1 1 < l, ... , IX, I< l, the functions q;k(1X) and the moments of Fk(t), 
defined by 1) 

(2.4) 
00 

CfJk (!X) def I e-at dFk(t) 
0-

for RetX;>O and 

(2.5) 
00 

fl~) def I tldFk(t). 
0-

We exclude the case where Fk(O)= l for some k, i.e. we have fl~l>O for 
all k and all real l and q;k(1X) < l for all k and all IX> 0. 

Finally let 

(2.6) 

be the conditional distributionfunction of the waitingtime of the nth 

departing customer, given that the nth departing customer is a k-customer, 
and 

(2.7) 
00 

'll'k,n(1X) def I e-"'tdH~.,,(t) 
0-

for all k E {l, ... , r} and n E {l, 2, ... }. 
We distinguish two cases : 

and 

T 

the case of nonsaturation, defined by _2; Aifli1l < l 
1 

r 

the case of saturation, defined by .2• Aifl~1 l ;;;. l. 
l 

For the case of nonsaturation we prove that the limits of Pk.n(~, ... , a,) 
and fk.n(Xv ... , X,) for n--+ oo exist and thatHk,n(t) tends to a distribution-

1 ) The integrals are Lebesgue-Stieltjesintegrals over the interval 0 ,s;; t < oo. 

21 Series A 
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function Hk(t) for n ~ oo. All these limits are independent of the initial 
situation, i.e. the probability distribution {p0(av ... , a,.)}. Hk(t) is the 
distributionfunction of the waitingtime of an arbitrary k-customer in 
the stationary situation. 

Using D. VAN DANTZIG's "method of collective marks" ([5], [6] and 
[7]), we derive recurrence relations (3.12) between the generating functions 
fk.n(Xv ... , X,.) together with relations (3.16) connecting the fk ... (Xv ... , X,), 
'!f'~.-.n(cx) and (Pk(cx). From these relations we derive the relations (5.2) for the 

fk (Xv ... , X,.) def lim/,.,, (X1 , ... , X,.), 
n--+ oo 

which are then solved. From the relation (3.16) we derive (5.3), connecting 
MX1 , ... , X,.) and 

1f!k (a) def lim 1f!k,n (a). 
n-->-oo 

Once the l~c(Xv ... , X,.) are solved, they are used, together with the 
last relation, to compute the first two moments of H~c(t) and to derive an 
expression for 1f'~c(a), for k E {l, ... , r}. The first moment of Hk(t) was 
given by CoBHAM [2], but we did not understand his proof. 

For the case of saturation we only state some results without proof. 
We shall use some abbreviations to keep the formulae from becoming 

awkwardly long. With the understanding that on both sides of the equa
litysign in (2.8) up to and including (2.14) indices may be added to the 
function symbols, we write 1 ) 

(2.8) 

(2.9) 
abb r 

g (X)=~> li (X), 
1 

(2.10) I (uk Xvl) abb I (u, . .. , u, XHll ... , x,._z, v, ... , v), 

i.e. the first k variables in (2.1 0) are equal to u, the last l variables are 
equal to v and the remaining variables (if any) are equal to the correspond
ing variables of I(X) (we shall always have k+l<J). In the same way 

(2.ll) 

(2.12) 

(2.13) 

(2.14) 

We use 

I ([Jik) X) abb f ( Ul, ... ' u/.:-ll xk, .. . , X,.), 

f(Utk) Xvz) abb I(UI, ... , Uk-1, Xk, ... ,X,._z, v, ... ,v), 

f(Yuc)X) abb f(Y~c,t• ... ,y,,,k-1,X"' ... ,X,.), 

I(Ytk)Xv1) abb /(Y~c.t' ... ,yk,k-l,Xkl ... ,X,._I, v, ... ,v). 

lim I (X) (lXI < I) 
X-->-1 

1) abb is used, when on the left hand side of an equalitysign an abbreviation 
is introduced for an expression on the right hand side. 
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if we want to take 

lim lim ... lim f (X) 
x1~1 X2---+l x,~l 

where Xv ... , X, must remain inside the unit circle. The order in which 
the latter limits are taken is irrelevant unless otherwise stated. 

Finally 1) 

(2.I5) 
abb r 

pX = .~> P; Xi, 
1 

and for all k, l E {I, ... , r}, with k+l<.r, 

(2.I6) 
k r 

p (uk, X) abb ~> Pi u + ~~ PiX;, 
1 k+1 

(2.I6') 

(2.I7) 

(2.I7') 
k-1 r-l r 

p(UUcl,X,vl) abb ~; P; U;+ ~i PiX;+~~ P;V, 
1 k r-l+1 

(2.I8) 

(2.I8') 
k-1 r-l r 

p(y,kl>X,vl) abb ~~ PiYk,i+ ~; PiXi+ ~~ ]J;V. 
1 k r-l+1 

3. Recurrence relations for the system 

In order to apply the method of collective marks of D. VAN DANTZIG 
[5] and [6], we introduce an event E, which happens with probability 
I-Xk whenever a k-customer arrives, thus 

(3.I) 

The events E are independent for all customers. Any event E is called 
a "catastrophe" in D. VAN DANTZIG's papers. Its nature, however, is 
irrelevant. As only probabilities of other events, together with non
occurrence of any "catastrophe" are considered, it is irrelevant whether 
under occurrence of an event E the process continues or not. 

We can now interprete fk.n(X) as a probability for 

(3.2) Pk,n (av ... , a,) X~·· .. X~r 

is the probability, that at the nth departure, n E {I, 2, ... }, one k-customer 
leaves the counter, a1 !-customers, ... ,a, r-customers remain at the counter 

1 ) If k = 1 the first sum on the right hand side of (2.17) and (2.18) equals zero, 
if k = r the last sum of (2.16); analogously for (2.16'), (2.17') and (2.18'). 
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and with respect to none of the remaining customers the event E happened. 
Therefore 

(3.3) fk,n (X)= ! La1 ~ 0, ... ,a.~ OJ Ple,n (a1 , ... , a.) X~'· .. X~r 

is the probability, that at the nth departure, n E {1, 2, ... }, a k-customer 
leaves the counter and with respect to none of those remaining at the 
counter the event E happened. Further 

(3.4) 

is the probability, that at the nth departure, n E {1, 2, ... }, an i-customer 
leaves the counter, ale k-customers, ... , a. r-customers remain at the 
counter and with respect to none of the customers remaining at the 
counter the event E happened. If ale> 0 the next customer to be served 
is a k-customer, therefore for k E {1, ... , r} 1) (using (2.10)) 

(3.5) 
~ h.,(ok-1 X)- hn(Ok X)= 

( =! lak > l,ak+ 1 > 0, ... ,a.> OJ Pi,.,(O, ... , 0, ak, ... , ar) X~k ... X~· 

is the probability, that at the nth departure an i-customer leaves the 
counter, service on a lc-customer starts and with respect to none of the 
customers left by the departing i-customer the event E happened. 

Put 

(3.6) 

Now 

/;,.,(0") =Pi,n (0, ... , 0) 

is the probability, that at the nth departure an i-customer leaves and 
the counter becomes empty, while 

(3.7) 

is the probability, that the first customer arriving after a given moment 
is a lc-customer, therefore (using (2.9) and (2.10)) 

(3.g) 

is the probability, that at the nth departure, n E {1, 2, ... }, the counter 
becomes empty and the next arriving customer is a lc-customer, with 
respect to which the event E does not happen. 

(3.9) 

is the probability, that during the servicetime of a lc-customer exactly 

1) If k = r then h,.(OkX) stands for fi,n(Or). 
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a1 !-customers, ... , a, r-customers arrive, so (using (2.15)) 

is the probability, that with respect to none of the customers, arriving 
during the servicetime of a k-customer, the event E happened. 

Analogously 

(3.11) 

is the probability, that with respect to none of the customers with priority 
number k, arriving during the servicetime of a k-customer, the event E 
happened. 

Now the probability that at the (n+ l)•t departure a k-customer leaves 
and that neither to him nor to those remaining at the counter the event E 
happened is equal to the probability that at the nth departure either an 
i-customer leaves the counter (for i equal to l, 2, ... or r), service on a 
k-customer starts and to those remaining at the counter (the k-customer 
under service included) the event E did not happen or the counter becomes 
empty and the first customer arriving is a k-customer, with respect to 
whom the event E did not happen and (in any case) during the servicetime 
of that k-customer no customers, with respect to whom the event E 
happened, arrive. This equality can be written in the following way, 
using (3.3), (3.5), (3.8) and (3.10) with their interpretations 

(3.12) X~cf~c,n+l (X) ={gn (Ok-l X)- gn(OkX) + P~cXJcgn(O')} IP1c (A. (1- pX)). 

This relation is valid fork E {l, ... , r }, n E {l, 2, ... } and all real Xk satis
fying O<:X~c< l, because of the arbitrariness of the event E. If at the 
moment the counter is opened for service, with probability p0(a1 , ... , a,) 
a queue consisting of a1 !-customers, ... , a, r-customers is present and 

(3.13) 

then (3.12) is true for n=O as well. 
For O.;;;;Xi< l, it=k and 0<X1,< l we can solve (3.12) for fk.n+l(X) 

once gn(X) is known for those values of X. But then we can find fk.n+I(X) 
(and gn(X)) for all X satisfying jX1 j < l, ... , jX,j < l by analytic continuation 
for each k E {1, ... , r}. Therefore (3.12) holds generally for each 
k E {l, ... , r}, n E {0, 1, 2, ... }and jX1 j.;;;;1, ... , jX,j.;;;;l. 

We might try to express f~c.n+I(X) as a function of g0(X) only, by repeated 
application of (3.12) and so eliminating g1(X) with l> 1. This however is 
not practicable, the more so as /k,n+I(X) for Xk= 0 can be found from 
(3.12) only by dividing both sides by Xk for Xki= 0 and taking the limits 
for xk--+ 0, which leads to partial differential quotients in the expression 
for /k,n+I(X) for Xk=O. 
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Analogous to (3.11) and its interpretation we have: 

(3.14) 

is the probability, that if at the nth departure a k-customer leaves the 
counter, with respect to none of the customers with priority number 
k arriving during his waitingtime, the event E happened. 

Finally 

(3.15) 

is the probability, that at the nth departure a k-customer leaves the 
counter and with respect to none of the customers with priority number 
k which remain at the counter the event E happened. Now this is equal 
to the probability that at the nth departure a k-customer leaves and 
that with respect to none of the customers with priority number k arriving 
either during his waitingtime or during his servicetime the event E 
happened. 

Therefore we have 

(3.16) 

for k E {1, ... , r}, n E {1, 2, ... } and for all Xk satisfying O.;;;Xk.;;; 1. This 
may again be generalized by analytic continuation. Therefore (3.16) 
holds for all xk satisfying IXkl < 1. 

We can now summarize our results. From (3.16) we have, that "Pk.n(O<-) 
is a function of fk.n(X) and rpk(O<-). The functions fk.n(X) are known to 
satisfy (3.12), but cannot be solved explicitly from those relations in 
terms of g0(X). However, as we are interested in the behaviour of the 
system in the long run, we will use (3.12) and (3.16) to find lim "Pk,n(O<-). 

n--+oo 

The relations (3.12) and (3.16) can also be derived in a more formal 
way than it has been done here. 

4. Convergence to a stationary distribution 

Before making use of the relations (3.12) and (3.16) we shall prove 
some results connected with the convergence of the Pk.n(av ... , ar) for 
n--+ oo, which justify the method of the next section. 

Let us say that the system is in the state (k; av ... , ar) at the departure 
of the nth customer if the nth departing customer is a k-customer and 
if he leaves for every i E {1, ... , r} ai i-customers at the counter. Then 
all transition probabilities from a state at the nth departure to any state 
at the (n+ 1)•t departure are independent of nand can easily be calculated. 
By considering only the moments, at which a customer leaves the system, 
we thus obtain a Markof chain, with a denumerable number of states. 
Let us denote this Markof chain by M. For every state there is a positive 
probability to reach in a finite number of steps a state where a departing 
customer leaves an empty counter, and from this situation any state can 
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again be reached in any number of steps. 'Ve conclude that 11! is an 
irreducible and aperiodic Markof chain (cf. FELLER [8] for the terminology 
and classification of states in Markof chains). From Corollary 1 in 
FELLER [8] (p. 328) it follows immediately, that lim Pk.n(av ... ,a,) 

n-+oo 

exists and is independent of the initial distribution. 
T 

In the case of nonsaturation (!i?c;,u\1> < 1) all states are ergodic. To 
1 

prove this, we need a theorem of FosTER [9], which was given by 
MousTAFA [12] in the following slightly generalized form: 

Theorem 4.1 . An irreducible, aperiodic Markof chain represented 
by the Markof matrix IIPi.ill (i, j = 1, 2, ... )is ergodic if for some c> 0 and 
some integer i 0, there exists a non-negative solution {Yi} of the inequalities 

00 

(4.1) L' Pi, i Yi < Yi - c for i > i 0 , 
1 

00 

(4.2) ! 1 Pi,i Yi < 00 for i < i 0 • 
1 

00 

We note that !i Pi.iYi can be regarded as the expectation after one step, 
1 

if we start in the ith state, of a r'andom variable 1) y, taking values Yi with 
probabilities Pi.i· 

T 

Theorem 4.2. If !i?ci,u11><1, all states in the Markof chain Mare 
1 

ergodic. 

Proof: This theorem is an application of Th. 4.1. The states of M 
can be characterized by (k; av ... ,a,), i.e. the priority number of the 
leaving customer and the number of customers of each priority left by 

T 

him. With each state we associate a number y. By definition y= !• ai,ui1> 
1 

for the state (k; av ... , a,), i.e. y is the expectation of the time needed 
to serve the remaining customers and as such non-negative. If we start 
in the situation (k; 0, ... , 0, a1, ••• ,a,) with a1>0 for an l.;;;;;r, the next 
customer to be served is an l-customer and the expectation of y after 
one step is then 

!-1 T 

! 1 ?ci,up> ,u?> + (az + Az,uP>- 1) ,up>+ !i (ai + A.i,ul1>) ,ul1> = 
1 1+1 

T T 

= Li ai,up> +,up> { L1 ?ci,up> -1} < 
l 1 

T 

<It ai,ul1l_c; 
! 

1) Random variables are distinguished from numbers by printing their symbols 
in bold type. 
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where 

In fact the expected number of i-customers arriving during the service
time of an Z-customer is }.i,uj1>, and one Z-customer leaves the system at 
the end of this step. Therefore ( 4.1) is satisfied in this case. If we start in 
the state (k; 0, ... , 0), the expectation of y after one step is finite, so 
( 4.2) is satisfied for the r states with a1 = a2 = ... =a,= 0. 

Thus Th. 4.2 follows. 

Corollary. If we define Pk(av ... ,a,)= lim Pk,n(av ... ,a,) we have: 
n->oo 

r 
Lk L La1 > 0, ... ,a,> OJ Pk (av ... ,a,)= l 
1 

and the Pk(av ... , a,) form a stationary distribution for the Marko£ chain 
M. This is an immediate consequence of Th. 4.2 and Th. 2, p. 325, in 
FELLER [8]. 

To prove also the convergence of !L SJPk.n(av ... , a,) where the summation 
is over an arbitrary set S of states, and the convergence of moments of 
the queue length, we need the following theorem. 

Theorem 4. 3. Let an irreducible, aperiodic ergodic Marko£ chain 
be represented by the Marko£ matrix II Pi. ill (i, j = l, 2, ... ). If 

def 1. (n) 
ni = Im Pi,i• 

n--+oo 

where p~~J are the n step transitionprobabilities (these limits exist, are 
positive and independent of i; cf. FELLER [8], p. 325) then we have for 
any non-negative state function F1 

00 00 

(4.3) lim _L1 Pi~} F1= _L1 n1 F1 for every i. 
n~oo 1 1 

Proof: As lim Pi~{=n1 and F1;;;.0 we have for all positive integers s 
n---+00 

00 00 

(4.4) lim in£ L' p;~} F1 > _L1 n1 F;, 
n---+oo 1 1 

because if c; > 0 and N is such that 1) 

N oo 

L1 'Tlj Fi > L1 'Tli Fi-B, 
1 1 

00 

1) If ~1 n1F1= oo, only some obvious changes are necessary. 
1 
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we have 

oo N N oo 

lim inf ~> p~~} F; > lim inf ~> p;~} F; = ~> n; F; > ~) n; F;- e 
n-+-oo 1 n~oo 1 1 1 

for every e>O, whence (4.4) holds. 

00 00 

The proof of (4.3) is completed, if~) n;F;=oo. If })n;F;<oo we 
1 1 

00 

proceed as follows. We know, that n; is always positive, 1; n;= 1, and 
00 1 

n;= 1i nip1~J for all positive integers n (cf. FELLER [8], p. 325). Therefore 
1 

we have for a fixed N > s and every n 

00 00 00 00 00 

1; n; F;= 1~ ni 1s p~~}F; > 1 Ll < i < N,i i' sJ ni1s P1~} F;+n.1s p~~}F; 
1 1 1 1 1 

so 

00 00 00 

1~ n; F; > lim sup { 1 U < i < N, i i' sJ ni 1s P1~} F; + n.1; Pt} F;} > 
1 ?l-+00 1 1 

00 00 

> 1 Ll<i < N,i i' sJ niliminf1s Pt}F;+n.limsup 1; p~~J F; > 
n-+oo 1 n-+oo 1 

00 00 

> 1 Ll < i < N,i i' sJ ni 1s n; F;+n.limsup 1s p~~}F;. 
l ?l-+00 1 

Now take N -+ oo 
00 00 00 

1J n; F; > ( 1-n8 ) 1; n; F; + n8 lim sup 1J p~~} F;. 
1 1 ?l-+00 1 

As n 8 > 0 this leads to 
00 00 

(4.5) limsup 1~ p~~}F; <: 1s n;F; 
n-+oo 1 1 

for all s. 
From (4.5) together with (4.4) we have (4.3). 

Remark 1. The theorem remains true for arbitrary state functions 
F; with 

as can be seen by writing 

where 
F+ def IF;I +F; 

i - 2 ' 

F ;- def IF;I-F; 
1- 2 . 

Remark 2. If the Markof chain we consider has a probability p1°l of 

22 Series A 
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00 

being in the state i in the initial situation (p~OJ;;;. 0 and !• pj0> = l}, then 
1 

by Th. 4.3 
00 00 00 

lim !> !1 p~0 > p~~} F1 = !1 n1 Fi, 
n-+oo 1 1 1 

provided F1 is, bounded. 
From the convergence of Pk.,(av ... ,a,) follows only the existence of 

lim fk.n(X), if IXil < l for all i E {l, ... , r}. We may now conclude, that 
n-+oo 

if jXij< l for all i E {l, ... , r} 

lim /,.k(X)=!La1 > O, ... ,a. >OJ pda1, •.• ,a,) X~· ... X~'· 
n-> oo 

This follows if we take the state function 

• def~ X~• ... X~r if 
F(~;a1 , •.• ,a,)= 0 if i i= k. 

i=k, 

Thus 

fk (X) def lim /k,n(X)=! La1 > 0, ... ,a,> OJ Pk(av ... ,a,)X~• ... X~r 
n-+oo 

is a power series with positive coefficients, which converges for 

T 

jXil < l, i E{l, ... , r}, and as !k L La1 > 0, ... ,a,> OJ Pk (a1, ... ,a,)= l, 
1 ;: 

we conclude that 

(4.6) lim /dlk-1 X p-k) = /dF) (lXI < l). 
X -->1 

Remark 3. From Th. 4.3 we also conclude that 

• 
lim !k! La1 > 0, ... ,a,> OJ a1pk,n (a1 •... , a,)= 

n->-oo 1 
T 

= !k! Lal > o, ... ,a. >OJ ajpk(al•···,a.), 
1 

.ie. the expected length of the queue of j-customers at the nth departure 
tends to the expected length of the queue of j-customers derived from 
the stationary distribution, and analogously for the higher moments of 
the queue length, provided the initial state is fixed, i.e. p0(bv ... , b,) = l 
for a given initial state (bv ... , b,). 

Theorem 4.4. If !i A.i,uP>< l, the conditional distributionfunctions 
1 

of the waitingtimes Hk_,(t) (k E {l, ... , r}) converge to a non-degenerate 
distributionfunction Hk(t) with · 

00 

"Pk (<X) def J e-o:t dHk(t) 
0-
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satisfying 

(4.7) fk (I, ... , 1, 1- ~' 1, ... , I)= /dl') 'IJ'k (1X) 9Jd1X) for 11- ~~ < l. 

Proof. A distributionfunction of a non-negative random variable 
is uniquely determined if its Laplace transform is given on an interval 
which lies in the right half plane, because the Laplace transform of such 
a· distributionfunction is analytic for all arguments with positive real 
part, and can thus be determined uniquely by analytic continuation, so 
that the uniqueness theorem for the inverse of a Laplace transform may 
be applied (cf. D. V. WIDDER [14] Th. 5a, p. 57 and Th. 6.3, p. 63). 

From (3.16) follows the convergence of 'IJ'k,n(1X) for 11- ~I< 1 as 

lim A.nW)>O and 9Jk(£X)>0. 
1!--,>00 

We can now follow a standard method (compare e.g. LEVY [11], p. 49, 
proof of Th. 17 2) to prove that Hk,n(t) converges to a function Hk(t) 
with 'IJ'k(iX)= lim 'IJ'k,n(1X) satisfying (4.7). Hk(t) is a monotonic non-

n--+oo 

decreasing function continuous from the right and satisfies Hk(t) = 0 for 
t<O and lim Hk(t)=1, as from (4.7) lim 'IJ'k(1X)=l. This proves Th. 4.4. 

t~oo a-+-0 

All the foregoing theorems concerning the queuing problem are valid 
r r 

only if !i J.,,upl < 1. In the case of saturation ( ~> J.i,u~1 l > I) analogous 
1 1 

theorems can be proved, although we did not succeed so far in finding 
simple proofs. In fact one can prove: 

s s+1 

If !• ~~1l < 1 and !• J.i,u11l > 1 we have 
1 1 

lim! La.+2 > O, ... ,a, >OJ Pk.n(av ... ,a,)=O 
n--+ oo 

and 

lim ! La,+ 1 > 0, ... , a,> OJ Pk,n (a1 , ... , a,) 
1!--+00 

exists and is positive. 
If we define 

- def • 
pda1, ... ,a,) =lim! La.+l > O, ... ,a, >OJ Pk.n(a1, ... ,a,) 

1!--+00 

we have for k E {I, ... , r} 

lim /k,n(X p-•)= !L~ > O, ... ,a. >OJ pda1, ... ,a.)X~· ... X:• 
11--+ 00 

whereas 
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H~c.n(t) converges to a non-degenerate distributionfunction if k<.s and 
lim H~c.n(t)=O for every finite t if k;;;.s+ 1. If k.;;s the moments of H~c.n(t) 

n---+oo · : 

do not necessarily converge to those of Hk(t), i.e. we cannot conclude 

00 o6 
(4.8) lim ft1 dH~c,n(t)= ft1dHdt) for k.;;s. 

n-+oo 0- 0-

An example will show, that in some cases (4.8) does not hold. Take 
8 + 2 < r and ,un2 = oo. If we start from an initial situation with 

00 

a1 = ... =a,+1 =0, a,+ 2 >0 it is clear that JtdHk.n(t)=oo (nE{l,2, ... }), 
0 

00 

whereas J tdH~c(t) is not necessarily infinite for k.;;s. 
0 

(To be continued) 




