Incompressibility and least-area surfaces

Siddhartha Gadgil
Department of Mathematics, Indian Institute of Science, Bangalore 560003, India

Received 5 July 2007; received in revised form 16 July 2007

Abstract

We show that if F is a smooth, closed, orientable surface embedded in a closed, orientable 3manifold M such that for each Riemannian metric g on M, F is isotopic to a least-area surface $F(g)$, then F is incompressible. © 2007 Elsevier GmbH. All rights reserved.

MSC 1991: Primary 57N10; Secondary 53A10
Keywords: Incompressible surfaces; Minimal surfaces; Haken manifolds

1. Introduction

We assume throughout that all manifolds (and surfaces) we consider are orientable. Let M be a closed, smooth, 3-manifold and let F be a smoothly embedded surface in M.

For a Riemannian metric g on M, we can seek to minimise the area of embedded surfaces in the homotopy class of F. Here, we say two embedded surfaces F and F^{\prime} in M are homotopic if there is a homeomorphism $\varphi: F \rightarrow F^{\prime}$, so that if $i_{F}: F \rightarrow M$ and $i_{F^{\prime}}: F^{\prime} \rightarrow M$ denote the inclusion maps, then i_{F} is homotopic to $i_{F}^{\prime} \circ \varphi: F \rightarrow M$. We consider the functional

$$
A(g, F)=\inf \left\{\operatorname{Area}_{g}\left(F^{\prime}\right): F^{\prime} \text { embedded surface homotopic to } F\right\}
$$

Definition 1.1. A surface F is said to be least area with respect to the metric g if $\operatorname{Area}_{g}(F)=$ $A(g, F)$.

We recall the concept of incompressibility of the surface F.

[^0]Definition 1.2. A closed, smoothly embedded surface $F \subset M$ in a 3-manifold M is said to be incompressible if the following conditions hold:

- If $D \subset M$ is a smoothly embedded 2-disc with $\partial D \subset F$ and $\operatorname{int}(D) \cap F=\phi$, then there is a disc $E \subset F$ with $\partial E=\partial D$.
- If F is a 2 -sphere, then F does not bound a 3-ball.

A disc $D \subset M$ such that $\partial D \subset F$ and $\operatorname{int}(D) \cap F=\phi$ so that D is transversal to F is called a compressing disc if there is no disc $E \subset F$ with $\partial E=\partial D$.

If F is incompressible and M is irreducible, then a fundamental result [11] (see also [4]) is that for each metric g, the above infimum is attained for some smooth, embedded surface $F(g)$, i.e., there is a least area surface. Recall that M is said to be irreducible if every embedded 2-sphere $S \subset M$ bounds a 3-ball in M. Least area surfaces enjoys several very useful properties [2]-for instance, leading to the equivariant Dehn's lemma of Meeks and Yau [12].

We show here that, conversely, the property of having least area representatives for each Riemannian metric characterises incompressibility. Fix henceforth a closed, smooth, orientable surface F embedded in a closed, orientable, 3-manifold M.

Theorem 1.3. Suppose for each Riemannian metric g on M, there is a smooth, embedded surface $F(g)$ homotopic to F such that $\operatorname{Area}_{g}(F(g))=A(g, F)$, then F is incompressible.

Our result gives a geometric characterisation of incompressiblity, which may be useful in proving incompressibility for surfaces constructed as limits. In particular, this result was motivated by Tao Li's proof [10] of the Waldhausen conjecture in the non-Haken case, where an incompressible surface was constructed as a limit of strongly irreducible Heegaard splittings.

Henceforth assume, without loss of generality, that F is connected. If F is a 2-sphere, either F is incompressible or F bounds a 3-ball in M. In the first case, there is nothing to prove. In the second case, F is homotopically trivial and hence homotopic to the boundary of any 3-ball in M. By considering the boundaries of arbitrarily small balls, we see that $A(g, F)=0$ for any metric g. Thus there is no embedded surface $F(g)$ with $\operatorname{Area}_{g}(F(g))=A(g, F)$. Thus, we can assume henceforth that F is not a 2 -sphere.

Suppose F is not incompressible (and F is not a 2 -sphere), then there is a compressing disc D for F. A regular neighbourhood of $F \cup D$ has two boundary components, one of which is parallel to F. Denote the other by F^{\prime}. We call F^{\prime} the result of compressing F along D. Observe that F is obtained from F^{\prime} by adding a 1 -handle. If F is a 2 -sphere that bounds a 3-ball, we declare the empty set to be the result of compressing F.

Given any surface F, we can inductively define a sequence of compressions. Namely, if F is not incompressible, then we compress F along some compressing disc D to get F^{\prime}. We repeat this process for each component of F^{\prime} which is not compressible. As the maximum of the genus of the components of the surface F^{\prime} obtained by compressing F is less than the genus of F, this process terminates after finitely many steps. The result is a (possibly empty) surface \hat{F}, each component of which is incompressible.

Suppose the result of the compressions is empty, then F is homotopic to the boundary of a handlebody, i.e., the boundary of a regular neighbourhood of a graph $\Gamma \subset M$.

By considering arbitrarily small neighbourhoods of Γ, we see that for any metric g, $A(g, F)=0$. Thus there is no embedded surface $F(g)$ with $\operatorname{Area}_{g}(F(g))=A(g, F)$, i.e., the hypothesis of the theorem cannot be satisfied.

Thus, we can, and do, assume henceforth that F is not homotopic to the boundary of a handlebody and \hat{F} is not empty. Then F is obtained from \hat{F} by addition of 1-handles. Given $\varepsilon>0$, the 1 -handles can be attached to \hat{F} so that the area of the resulting surface, which is homotopic to F, is at most $\operatorname{Area}_{g}(\hat{F})+\varepsilon$. It follows that

$$
A(g, F) \leqslant \operatorname{Area}_{g}(\hat{F})
$$

We construct a metric g which is a warped product in a neighbourhood $N(\hat{F})$ of \hat{F} so that any least-area surface not contained in $N(\hat{F})$ has area greater than the area of \hat{F}. Thus, if a least-area surface homotopic to F exists, it must be contained in $N(\hat{F})$. The structure of the metric on $N(\hat{F})$ together with some topological arguments show that this cannot happen unless $F=\hat{F}$, i.e., F is incompressible.

2. Construction of the metric

In this section we construct the desired metric for which F has no least-area representative unless $F=\hat{F}$.

As \hat{F} and M are orientable, a regular neighbourhood $N(\hat{F})$ of \hat{F} is a product. We shall identify this with $\hat{F} \times[-T, T]$, with T to be specified later. We shall also consider the regular neighbourhood $n(\hat{F})=\hat{F} \times[-1,1] \subset N(\hat{F})$.

Choose and fix a metric of constant curvature 1,0 or -1 on each component of \hat{F} and denote this g_{0}. Let the area of \hat{F} with respect to g_{0} be A_{0}.

We shall use the monotonicity lemma of Geometric measure theory. We state this below in the form we need. For a stronger result in the Riemannian case, see [3].

Lemma 2.1 (Monotonicity lemma). There exist constants $\varepsilon>0$ and $R>0$ such that if g is a Riemannian metric on M and x is a point so that the sectional curvature of g on the ball $B_{g}(x, R)$ of radius R around x (with respect to g) has sectional curvature satisfying $|K| \leqslant \varepsilon$ and F is a least-area surface with $x \in F$, then $\operatorname{Area}_{g}(F \cap B(x, R))>A_{0}$.

We shall construct the desired metric in the following lemma.
Lemma 2.2. There is a Riemannian metric g on M satisfying the following properties.

- On $N(\hat{F}), g$ is of the form $g=f(t) g_{0} \oplus d t^{2}$, with fa smooth function with $f(0)=1$ and $f(t)>1$ for $t \neq 0$.
- For $x \in M-\operatorname{int}(N(\hat{F}))$, the sectional curvature of g on M satisfies $|K| \leqslant \varepsilon$.
- For $x \in M-\operatorname{int}(N \hat{F}))$, the injectivity radius at x is greater than R.

Proof. Observe that $N(\hat{F})-\operatorname{int}(n(\hat{F}))$ has two components for each component \hat{F}_{0} of \hat{F}, each of which can be identified with $\hat{F}_{0} \times[0,1]$ with $\hat{F} \times\{1\}$ a component of $\partial N(\hat{F})$ and $\hat{F} \times\{0\}$ a component of $\partial n(\hat{F})$. On each such component consider the product Riemannian metric $g_{0} \oplus d t^{2}$. Extend this smoothly to a metric on the complement $M-\operatorname{int}(n(\hat{F}))$ of
the interior of $n(\hat{F})$. Rescale the metric by a constant $s>1$ to ensure that it has sectional curvature satisfying $|K| \leqslant \varepsilon$ and the injectivity radius at each point outside $\operatorname{int}(N(\hat{F}))$ is at least R. We choose the constant s to be greater than 1 even if this is not necessary to ensure the bounds on curvature and the injectivity radius. We denote the rescaled metric, defined on $M-\operatorname{int}(n(\hat{F}))$, by g. The restriction of g to each component of $N(T)$ can be identified with the product metric $s g_{0}+d t^{2}$.

Let $T=1+s$. Then there is a natural identification of $N(\hat{F})$ with $\hat{F} \times[-T, T]$, with $n(\hat{F})$ identified with $\hat{F} \times[-1,1]$ and with the restriction of the metric g to $N(\hat{F})-\operatorname{int}(n(\hat{F}))$ given by $s g_{0} \oplus d t^{2}$.

We extend the constant function $f(t)=s$ on $[-T,-1] \cup[1, T]$ to a smooth function on $[-T, T]$ with $f(0)=1$ and $f(t)>1$ if $t \neq 0$. The Riemannian metric on the complement of $n(\hat{F})$ extends smoothly to one given by $g=f(t) g_{0} \oplus d t^{2}$ on $N(\hat{F})$. This satisfies all the conditions of the lemma.

Note that by construction $\hat{F} \times\{0\}$ is isometric to \hat{F} with the metric g_{0}. Further the projection map $p: F \times[-T, T] \rightarrow F$ is (weakly) distance decreasing, and strictly distance decreasing outside $\hat{F} \times\{0\}$.

3. Proof of incompressibility

Suppose now that there is a surface $F(g)$ homotopic to F with area $A(g, F)$.
Lemma 3.1. We have $F(g) \subset \hat{F}_{0} \times(-T, T)$ for some component \hat{F}_{0} of \hat{F}.
Proof. If there is a point $x \in F(g)-\hat{F} \times(-T, T)$, the monotonicity lemma applied to $F(g) \cap B(x, R)$ shows that the area of $F(g)$ is greater than A_{0}, a contradiction. Further, as $F(g)$ is connected, for some component \hat{F}_{0} of $\hat{F}, F(g) \subset \hat{F}_{0} \times[-T, T]$.

To simplify notation, we henceforth denote the surface $F(g)$ by F. We consider the restriction of the projection map from $F_{0} \times[-T, T]$ to F, which we denote, by abuse of notation, by $p: F \rightarrow \hat{F}_{0}$. We have seen that this is strictly distance decreasing unless $F=\hat{F}_{0}$.

We have two cases, depending on whether the embedded surface $F \subset \hat{F}_{0} \times(-T, T)$ separates the boundary components of $\hat{F}_{0} \times[-T, T]$.

In case F does not separate the boundary components of $\hat{F}_{0} \times[-T, T]$, there is a curve γ joining the boundary components disjoint from F. By considering cup products, it follows that $p: F \rightarrow \hat{F}_{0}$ has degree zero. On the other hand, if F does separate the boundary components of $\hat{F}_{0} \times[-T, T]$, as F is connected there is a curve γ joining the boundary components intersecting F transversely in one point. It follows that we can choose an orientation on F so that $p: F \rightarrow \hat{F}_{0}$ has degree one.

Recall that F is a connected, orientable surface that is not a 2 -sphere. As $\hat{F}_{0} \times(-T, T)$ deformation retracts to \hat{F}_{0}, the homotopy class of the inclusion map is determined by the homotopy class of p. If \hat{F}_{0} is not a 2 -sphere, then the homotopy class of p is determined by the induced map on fundamental groups. If \hat{F}_{0} is a 2 -sphere, then the homotopy class of p is determined by the degree of p.

We show first that the case where F does not separate the boundary components of $\hat{F}_{0} \times[-T, T]$ cannot occur.

Lemma 3.2. The surface F must separate the boundary components of $\hat{F}_{0} \times[-T, T]$.
Proof. We have seen that $p: F \rightarrow \hat{F}_{0}$ has degree zero. Suppose first that \hat{F}_{0} is not a 2 -sphere. By a theorem of Hopf and Knesser $[5,6,8,9]$, it follows that p is homotopic to a map whose image does not contain some point $p \in F_{0}$. It follows that $G=p_{*}\left(\pi_{1}(F)\right.$) (which is finitely generated) is conjugate to the subgroup of a free group and hence is a finitely generated free group. The projection $p: \hat{F}_{0} \times[-T, T] \rightarrow \hat{F}_{0}$ induces an isomorphism of fundamental groups. This gives an identification of G with the image of $\pi_{1}(F)$ under the homomorphism induced by the inclusion $i: F \rightarrow \hat{F}_{0} \times[-T, T]$.

By a theorem of Jaco [7], there is a finite graph Γ and $\pi_{1}(\Gamma)$ isomorphic to G and a map $f: F \rightarrow \Gamma$ so that the mapping cylinder $M(f)$ of f is a handlebody. Moreover, we have an identification of $\pi_{1}(\Gamma)$ with G with respect to which the homomorphism from $\pi_{1}(F)$ to $G \subset \pi_{1}\left(\hat{F}_{0} \times[-T, T]\right)$ induced by the inclusion corresponds to the map induced by inclusion from $\pi_{1}(F)$ to $\pi_{1}(M(f))=\pi_{1}(\Gamma)$.

Choose an embedding of Γ in $F_{0} \times[-T, T]$ with induced map on fundamental groups $\pi_{1}(\Gamma) \rightarrow G \subset \pi_{1}\left(\hat{F}_{0} \times[-T, T]\right)$ corresponding to the above identification of $\pi_{1}(\Gamma)$ with G. Then the surface F is homotopic to the boundary of a regular neighbourhood of the image of Γ, which is a handlebody in $\hat{F}_{0} \times[-T, T]$. We have seen that in this case the hypothesis of the theorem cannot be satisfied.

Finally consider the case when \hat{F}_{0} is a 2 -sphere. As p has degree zero, p is homotopic to a constant map. Hence the inclusion map $i: F \rightarrow \hat{F}_{0} \times(-T, T)$ is also homotopic to a constant map. It follows that F is homotopic to the boundary of a handlebody. As above, the hypothesis of the theorem cannot be satisfied in this case.

It thus suffices to consider the case when F does separate the boundary components of $\hat{F}_{0} \times[-T, T]$.

Lemma 3.3. Suppose F does separate the boundary components of $\hat{F}_{0} \times[-T, T]$, then $F=\hat{F}_{0}$.

Proof. We use a theorem of Edmonds [1] regarding degree-one maps $\varphi: F \rightarrow F^{\prime}$ between closed surfaces. Namely, there is a map ψ homotopic to φ, a compact, connected subsurface Σ in F and a disc $D \subset F^{\prime}$ such that $\psi(\Sigma) \subset D$ and ψ maps $F-\operatorname{int}(\Sigma)$ homeomorphically onto $F^{\prime}-\operatorname{int}(D)$. We can regard F as obtained from F^{\prime} by attaching 1-handles to D. Further, all the cores and co-cores of these 1-handles are mapped to homotopically trivial curves by ψ.

It follows that an embedded surface homotopic to F is obtained from \hat{F}_{0} by adding 1-handles (corresponding to those required to obtain F from \hat{F}_{0}). Thus, if A_{1} is the area of $\hat{F}_{0} \times\{0\}$, then $A(g, F) \leqslant A_{1}$, hence $\operatorname{Area}_{g}(F) \leqslant A_{1}$.

Let $\mathrm{d} \omega$ and $\mathrm{d} A$ denote the area forms on $\hat{F}_{0}=\hat{F}_{0} \times\{0\}$ and F, respectively. Then for a smooth function h on $F, p^{*}(\mathrm{~d} \omega)=h \mathrm{~d} A$. As the projection map is distance-decreasing, $h(p) \leqslant 1$ for all p, with equality at all points only in the case where $F=\hat{F}_{0}$.

Observe that $A_{1}=\int_{\hat{F}_{0}} \mathrm{~d} \omega=\int_{F} p^{*}(\mathrm{~d} \omega)=\int_{F} h \mathrm{~d} A$, where the second equality holds as p has degree one. Further, if $F \neq \hat{F}_{0}$, then $\int_{F} h \mathrm{~d} A<\int_{F} \mathrm{~d} A=\operatorname{Area}(F)$. Thus, $A_{1}<\operatorname{Area}_{g}(F)$, a contradiction.

It follows that $F=\hat{F}_{0}$.
Thus, the surface F must be homotopic to \hat{F}_{0}, which is incompressible. Recall that we can assume that F is not a 2 -sphere. It follows that F is incompressible by the characterisation of incompressible surfaces as those for which the induced map on fundamental groups is injective (if F is not the 2 -sphere). This contradicts our assumption that F is compressible, completing the proof of the theorem.

Acknowledgements

I thank the referee for helpful comments and for pointing out that the hypothesis of irreducibility in an earlier version was unnecessary. I thank Harish Seshadri for helpful discussions.

References

[1] A. Edmonds, Deformation of maps to branched coverings in dimension two, Ann. Math. 110 (1979) 113-125.
[2] M.H. Freedman, J. Hass, G.P. Scott, Least area incompressible surfaces in 3-manifolds, Invent. Math. 71 (3) (1983) 609-642.
[3] K.R. Frensel, Stable complete surfaces with constant mean curvature, Bol. Soc. Brasil. Mat. (N.S.) 27 (2) (1996) 129-144.
[4] J. Hass, G.P. Scott, The existence of least area surfaces in 3-manifolds, Trans. Amer. Math. Soc. 310 (1) (1988) 87-114.
[5] H. Hopf, Zur Topologie der Abbildungen von Mannigfaltigkeiten, Math. Ann. 100 (1928) 579-608.
[6] H. Hopf, Zur Topologie der Abbildungen von Mannigfaltigkeiten. II, Math. Ann. 102 (1929) 562-623.
[7] W. Jaco, Heegaard splittings and splitting homeomorphisms, Trans. AMS 144 (1970) 365-379.
[8] H. Kneser, Glättung von Flächenabbildungen, Math. Ann. 100 (1928) 609-616.
[9] H. Kneser, Die kleinste Bedeckungszahl innerhalb einer Klasse von Flächenabbildungen, Math. Ann. 103 (1930) 347-358.
[10] T. Li, Heegaard surfaces and measured laminations. II. Non-Haken 3-manifolds, J. Amer. Math. Soc. 19 (3) (2006) 625-657.
[11] W.H. Meeks III, S.T. Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory. Ann. of Math. (2) 112 (3) (1980) 441-484.
[12] W.H. Meeks III, S.T. Yau, The equivariant Dehn's lemma and loop theorem, Comment. Math. Helv. 56 (2) (1981) 225-239.

[^0]: E-mail address: gadgil@math.iisc.ernet.in.

