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Abstract Mild sonication of eukaryotic cells produces native
plasma membrane sheets that retain their docked organelles,
cytoskeleton structures and cytoplasmic complexes. While the
delicate organization of membranous protein complexes remains
undisturbed, their inner plasmalemmel leaflet can be rapidly
exposed to bathing solutions, enabling specific biochemical
manipulations. Here, we apply this system to track membrane-
biochemistry kinetics. We monitor soluble NSF-attachment pro-
tein receptor (SNARE) complex assembly and disassembly on
the plasma membrane at high time resolution. The results sug-
gest two-phase kinetics for the assembly process and dependence
of the disassembly kinetics on both N-ethyl maleimide-sensitive
factor (NSF) and soluble NSF-attachment protein (a-SNAP)
concentrations.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The plasma membrane (PM) is populated by many types of

membrane proteins that control diverse cellular activities, such

as transport, signaling and membrane fusion. Studies on mem-

brane protein functions and in particular the roles of their

intracellular domains provide a tremendous challenge for

researchers. In vitro systems are generally easy to control

and manipulate, but protein purification and membrane recon-

stitution are often tedious and the reaction conditions are arti-

ficial. In contrast, in vivo methods maintain membrane
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integrity and hence provide physiological conditions. How-

ever, under those conditions, access to the interior PM is lim-

ited, the bottleneck being the ability to perform rapid

manipulations and visualization. PM sheet preparation is a cel-

lular ‘‘ex vivo’’ method that combines the advantages of clas-

sical in vivo and in vitro approaches. Adherent cells are

subjected to an ultrasound pulse which ‘‘unroofs’’ them, leav-

ing behind an intact native membrane bilayer attached to a

cover slip (Fig. 1A and for review see [1]). This easy prepara-

tion of ‘‘inside–out’’ membranes provides the full set of mem-

brane lipids and proteins in their native environment [2]. This

approach has been used to characterize the reactivity status of

soluble NSF-attachment protein receptor (SNARE) proteins

involved in regulated membrane fusion [3] and the effects of

accessory proteins on this process [4].

In the present study, we use the ex vivo PM sheet method for

a new application [5]: analysis of the kinetics of membrane

protein reactions, concentrating on the assembly–disassembly

dynamics of cis-SNARE complexes (Fig. 1B). SNARE com-

plex formation between syntaxin 1A and SNAP-25 (synapto-

somal associated protein of 25kDa) on the PM and

synaptobrevin 2 on the vesicles (trans-SNAREs) is crucial for

vesicle priming and fusion [6]. This process is impeded by the

formation of the non-productive (non-fusogenic) cis-SNARE

complexes formed when all three SNARE proteins reside on

the PM [3,7]. These ternary SNARE complexes are extremely

stable and therefore, the rate of their spontaneous dissociation

is low [6]. In vivo, the specific enzymatic system consisting of

the ATPase N-ethyl maleimide-sensitive factor (NSF) and its

cofactor soluble NSF-attachment protein (a-SNAP) catalyzes

SNARE complex disassembly to SNARE monomers [8] in or-

der to recycle them for further rounds of membrane fusion [8].

Despite the importance of these processes for exocytosis, the

kinetics of the assembly–disassembly processes in vivo has

not been sufficiently described. Here, we present the kinetics

of cis-SNARE complex assembly on the PM using an im-

proved protocol that provides high temporal resolution. Our

data show that the assembly process occurs in two-phases, sug-

gesting the existence of two pools of cis-SNARE complexes

that might differ in their reactivity. In addition, we show for

the first time the disassembly kinetics on the PM. The results

indicate that the disassembly kinetics of SNARE complexes

in the native membrane environment is dependent on the con-

centrations of NSF and a-SNAP.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Illustration of the method and SNARE biochemistry. (A) The membrane sheet assay. Membrane sheets are generated from cells grown on
glass cover slips (shown in blue) by application of a brief ultrasound pulse. The glass cover slip with the adherent membranes is incubated upside
down in a drop of reaction buffer at 37 �C (example shows the formation of fluorescently labeled cis-SNARE complexes by reacting syntaxin 1A and
SNAP-25 with recombinant fluorescent synaptobrevin lacking its TMR (trans membrane region). Labeled cis-SNARE complexes are quantified
using fluorescence microscopy. (B) SNARE dynamics. Neuronal exocytosis is driven by complex formation between syntaxin 1A and SNAP-25 on
the PM and synaptobrevin 2 on synaptic vesicles, forming trans-SNARE complexes. Alternatively, SNARE complexes can be formed when the three
components reside on the same membrane (cis-SNAREs). Cis-SNAREs do not drive membrane fusion. Cis-SNAREs are disassembled by the
enzymatic reaction of NSF assisted by a-SNAP. (C) BoNT/C1 action on syntaxin 1. BoNT/C1 cleaves syntaxin 1 close to its TMR, thereby removing
most of its cytoplasmatic part. Syntaxin becomes cleavage-resistant upon incorporation into cis-SNARE complexes.
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2. Materials and methods

2.1. Cell culture and PM sheet preparation
Pheochromocytoma 12 (PC12) cells (clone 251, [9]) were maintained

and propagated as described previously [10]. For the preparation of
PM sheets, cells were grown on poly-LL-lysine-coated glass cover slips
and disrupted by a mild, 100-ms [5] ultrasound pulse that left pure,
two-dimensional, native PM sheets adsorbed to the glass (Fig. 1A).

2.2. Antibodies
For the detection of syntaxin 1, we used the mouse monoclonal anti-

body HPC-1 [11]. Cy3-coupled goat-antimouse was used as a second-
ary antibody (Dianova, Hamburg, Germany).

2.3. Purification of recombinant proteins
cDNA encoding the light chain of Botulinum neurotoxin C1 (BoNT/

C1) in a pQE3 expression vector (Qiagen, Hilden, Germany) was a gift
from Thomas Binz and Heiner Niemann (Medizinische Hochschule
Hannover, Hannover, Germany). BoNT/C1, synaptobrevin 2 (1-96)
S28C; [12]), recombinant NSF [13] and a-SNAP [13] were expressed
as His6-tagged fusion proteins in Escherichia coli, purified by Ni2+-
nitrilotriacetic acid (Ni-NTA) agarose chromatography and dialyzed
against a buffer containing 150 mM NaCl, 20 mM Tris–HCl pH 7.4
and 1 mM dithiothreitol (DTT).

His6-tags were removed by thrombin cleavage during overnight dial-
ysis following elution. Dialysis buffers were based on Tris–HCl (a-
SNAP) or HEPES (NSF and synaptobrevin) pH 7.4 and contained
NaCl (50 mM for a-SNAP, 70 mM for synaptobrevin and 175 mM
for NSF), 1 mM EDTA, 1 mM DTT, and in the case of NSF, an addi-
tional 10% glycerol and 0.5 mM ATP. To achieve a high grade of pur-
ity, all proteins were subsequently subjected to a second
chromatographic step on an Äkta system (Amersham Biosciences,
Little Chalfont, Buckinghamshire, UK). In the case of a-SNAP and
synaptobrevin, this step consisted of ion exchange using a MonoQ
or a MonoS column, respectively, with a 0.1–1 M NaCl gradient for
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elution. Pure and highly active NSF was obtained by collecting the
hexameric fraction after passage through a size-exclusion column
(Superdex 200, Sigma–Aldrich). Covalent attachment of Alexa594
C5 maleimide (Invitrogen, Karlsruhe, Germany) to synaptobrevin
was performed according to the manufacturer�s instructions.
2.4. Assembly reaction
For preparation of membrane sheets, cells were grown and disrupted

as previously described [5] in ice-cold K-Glu buffer [20 mM HEPES,
pH 7.2, 120 mM potassium glutamate, 20 mM potassium acetate,
10 mM ethylene glycol tetraacetic acid (EGTA)]. Membrane sheets
were either fixed immediately or incubated for the indicated times at
37 �C in bovine serum albumin (BSA)-K-Glu (K-Glu buffer containing
3% BSA), then incubated for 15 min in BSA-K-Glu containing 8 lM
BoNT/C1, then washed briefly and fixed for 1 h at RT in 4% parafor-
maldehyde (PFA) diluted in phosphate buffered saline (PBS). Mem-
brane sheets were washed and immunostained with the primary
antibody HPC-1 and with the secondary antibody Cy3-coupled
goat-antimouse as described previously [14]. For each experiment,
20–60 membrane sheets were analyzed. For each condition, three to
five independent experiments were averaged and values are given as
mean ± S.E.M. Averaged data for the assembly reactions were fitted
with one exponential fitting for each of the phases using IgorPro
(WaveMetrics, Lake Oswego, OR). The time constant s indicates the
time taken to increase fluorescence percentage to 1–1/e of the maxi-
mum value.

2.5. The disassembly studies
Freshly prepared membrane sheets were reacted with 2 lM recombi-

nant synaptobrevin (of which 1 lM was labeled with Alexa594) in
BSA-K-Glu at 37 �C in a humid chamber for 45 min. Then membrane
sheets were washed at 37 �C for 15 min in K-Glu buffer, and incubated
for the indicated times with NSF and a-SNAP in EGTA-free K-Glu
buffer containing 5 mM MgCl2 and 2 mM ATP. In some cases, reac-
tion mixtures were replaced with fresh solutions after 10 min. How-
ever, no obvious differences were observed relative to experiments in
which the same reaction mixture was used for 20-min incubations.
Membrane sheets were washed briefly in K-Glu buffer and then fixed
at RT for 60 min, washed twice in PBS for 10 min each, incubated with
50 mM NH4Cl in PBS for 20 min, washed once with PBS for 10 min
and then imaged in the presence of 1-(4-trimethylammonium)-6-phe-
nyl-1,3,5-hexatriene (TMA–DPH). For each experiment, 20–60 mem-
brane sheets were analyzed. For each condition, three to nine
independent experiments were averaged and values are given as
mean ± S.E.M. Averaged data for the disassembly reactions were fitted
with one exponential fitting using IgorPro.

2.6. Fluorescence microscopy
Membrane sheets were analyzed using a Zeiss inverted fluorescence

microscope in principle as described previously [3]. The images were
analyzed using Metamorph (Universal Imaging Corporation, West
Chester, PA) [3].
3. Results

The PM sheet preparation provides an ideal system for

studying the kinetics of PM protein interactions. The PM

sheets were created by mild sonication of cultured PC12 cells

that left two-dimensional, native PM sheets adsorbed to the

glass cover slip (Fig. 1A). The kinetics of endogenous SNARE

complex formation was previously studied indirectly using this

system [3]. In the current study however, the time resolution

and measurement accuracy were improved. The PM sheets

were incubated for different times after sonication to allow

cis-SNARE complex formation and then treated with BoNT/

C1, which specifically cleaves syntaxin molecules that are not

part of the cis-SNARE complexes i.e. syntaxin monomers

and syntaxin in binary complexes [3] (Fig. 1C). The sheets were

then fixed and labeled with syntaxin antibody, which bound to
the intact syntaxin molecules residing in the SNARE com-

plexes (Fig. 2C).

To determine the concentration of BoNT/C1 that should be

used, a calibration experiment with different concentrations of

BoNT/C1 was performed. Fig. 2B depicts the level of the resid-

ual intact syntaxin, remaining after 2 min of incubation with

BoNT/C1, as a function of BoNT/C1 concentration. After

2 min with 8 lM BoNT/C1 the level of residual intact syntaxin

was 30% (Fig. 2B). To assure a maximal cleavage of the free

syntaxin molecules, we carried out the BoNT/C1 treatment

with the highest level (8 lM) and extended the incubation per-

iod to 15 min reaching a level of 10% (Fig. 2B; dashed line).

Under these conditions, the baseline fluorescence immediately

after PM sheet formation was low (10%), suggesting that in

freshly prepared membranes, about 90% of the syntaxin is

present in its free form (Fig. 2C and D, t = 0 min) consistent

with earlier reports [3]. With time, the membrane fluorescence

increased, representing the kinetics of cis-SNARE complex

assembly in the absence of disassembly proteins (Fig. 2C and

D). Surprisingly, the assembly dynamics exhibited two-phase

kinetics; in the first, rapid phase (on the order of minutes),

�15% of the total cis-SNAREs are formed (Fig 2D, left), then

the process plateaus transiently and continues at a slower rate,

reaching a steady-state level of �85% of the total syntaxin in

cis-SNAREs after �60 min (Fig. 2D, right). These two, previ-

ously non-differentiated [3] kinetic phases of SNARE complex

formation were revealed by the higher time resolution pro-

vided by these experiments.

The disassembly dynamics was monitored by adding known

quantities of the disassembly factors NSF and a-SNAP in the

presence of Mg-ATP to PM sheets. Prior to the disassembly

process, the sheets were incubated with fluorescently labeled

recombinant synaptobrevin 2 which reacted with the endoge-

nous SNARE proteins to form labeled cis-SNARE complexes

(Fig. 3A and B (t = 0)). Upon disassembly, the soluble fluores-

cently labeled synaptobrevin was released from the SNARE

complexes and diluted in the bathing solution. Therefore, the

decrease in PM fluorescence directly reflected the cis-SNAREs�
disassembly kinetics.

The reaction dynamics exhibited clear dependence on NSF/

a-SNAP concentrations. There was an initial rapid phase of

disassembly that lasted for up to 2 min (Fig. 3C), followed

by a slower phase. The amplitude of the fast phase was a func-

tion of NSF/a-SNAP concentration. The remaining fraction of

the cis-SNARE complexes after the disassembly process

(Fig. 3B, all curves at t = 20 min) showed dependence on

NSF/a-SNAP concentration as well.
4. Discussion

4.1. Differentiation of two kinetic phases in cis-SNARE complex

assembly

The assembly of cis-SNARE complexes was previously mon-

itored indirectly by incubating the PM sheets for predeter-

mined times followed by an additional, long (45 min)

incubation with fluorescently labelled synaptobrevin. The de-

crease in the incorporation of exogenous synaptobrevin over

time indicated endogenous cis-SNARE complex formation.

However, the relatively long half time (�5 min) of synaptobre-

vin binding [3] and the very few time points examined led to a

systematic underestimation of the determined half time of



Fig. 2. Kinetics of cis-SNARE complex assembly on membrane sheets. (A) PC12 membrane sheets were formed by a brief ultrasound pulse, and
directly fixed and co-stained for phospholipid membranes with TMA–DPH (left) and syntaxin (right). (B) To determine the efficiency of syntaxin
cleavage by BoNT/C1, membrane sheets were incubated for a period of 2 min in the presence of the indicated concentrations of BoNT/C1. The
remaining syntaxin was then immunostained. The staining intensity of complexed syntaxin was compared with the value of syntaxin staining on
directly fixed membrane sheets that were not treated with the toxin (set to 100%). The dashed line represents the percentage of PM fluorescence after
15 min incubation of the inner leaflet of the membrane in presence of 8 lM BoNT/C1. (C) To monitor the assembly reaction, sheets were incubated
for the indicated times at 37 �C, then treated with BoNT/C1 to cleave syntaxin molecules (free and in binary complexes). (D) Syntaxin level in cis-
SNARE complexes was then determined by immunostaining (See B). Quantification of syntaxin immunofluorescence shows that cis-SNARE
assembly occurs in two-phases, a rapid one and a slow one, with time constants of approximately 1.6 min and 25.9 min, respectively. Left graph:
Magnified view of the first phase taken from the graph on the right.
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SNARE complex formation. In the present study, we sampled

cis-SNARE complex assembly directly and more frequently

and took advantage of the specific and rapid cleavage of free

syntaxin by BoNT/C1 to gain higher time resolution and accu-

racy. The increased temporal resolution using the new readout

revealed the existence of two kinetic phases of assembly: a ra-

pid one that used up 15% of the total syntaxin followed by a

second step that used up about 60% of the total syntaxin.

The two-phase dynamics might be explained by assuming

that at t = 0 min, the PM already contains a fraction of pre-

existing binary complexes (syntaxin-SNAP-25). Formation of

the binary complex is rather slow [15] and therefore, its exis-

tence on the PM at the beginning of the experiment might

accelerate ternary complex formation [15]. An alternative

explanation is that the two-phase kinetics represents two pop-

ulations of syntaxin that differ in their reactivity. The syntaxin

on the PM has been shown to form clusters via homophilic

protein–protein interactions [16]: Sieber et al. detailed the

anatomy of syntaxin nano-sized clusters [17] that included

84% of the syntaxin molecules. The rest (�16%) of the syntaxin

molecules freely diffused outside the clusters. Thus, fast-form-
ing complexes might be attributed to the free syntaxin popula-

tion that is more accessible to SNAP-25 and synaptobrevin for

the formation of cis-SNARE complexes. Under this scenario,

the slow phase might correspond to cis-SNARE complexes

that are formed from the clustered syntaxin population [17],

since clustered syntaxin is less accessible or has to dissociate

from the clusters. In either case, further information is needed

to understand the mechanistic basis of this phenomenon.

4.2. Dynamics of cis-SNARE disassembly

The disassembly reaction was measured under conditions in

which cis-SNARE complexes were, as under physiological

conditions, embedded in the native membrane. The experimen-

tal results indicated that at various concentrations and stoichi-

ometric ratios of NSF and a-SNAP, the disassembly

components work efficiently enough to cope with the speed

of SNARE complex assembly on the PM sheets (as shown in

Fig. 2). As the level of cis-SNAREs in the cells is expected to

be very low [3], it is reasonable to assume that efficient cis-

SNARE disassembly also occurs under physiological condi-

tions in intact cells. The disassembly dynamics clearly exhibits



Fig. 3. SNARE disassembly kinetics. (A) Fluorescent cis-SNARE complexes were generated as shown in Fig. 1A and were then directly fixed (left
shows phospholipid staining of the membrane sheets, right shows synaptobrevin fluorescence staining), or (B) the membrane sheets were incubated
for the indicated times in the presence of 40 nM NSF and 2 lM a-SNAP prior to fixation (with the exception of the first image which is a magnified
view of the right image shown in A). (C) The kinetics of cis-SNARE disassembly with variable amounts of NSF and excess a-SNAP (2 lM, left
graph; time constants for disassembly were 135, 52, 27 and 17 s for 1, 10, 40, and 100 nM NSF, respectively), or variable concentrations of a-SNAP
and excess NSF (40 nM right graph; time constants for disassembly were 153, 90, 34 and 27 s for 20, 50, 100 nM and 2 lM a-SNAP, respectively).
For quantification, the fluorescence that remained after incubation with NSF/a-SNAP was related to the fluorescence of the membrane sheets that
were not incubated with the disassembly components (fixed directly).

D. Bar-On et al. / FEBS Letters 582 (2008) 3563–3568 3567
dependence of the fast-amplitude fraction (Fig. 3C, t = up to

2 min) and the remaining fraction of cis-SNAREs on NSF/a-

SNAP concentration. The remaining fraction of cis-SNAREs

could be a result of additional processes that interfere with

cis-SNARE complex disassembly, such as the formation of

syntaxin-a-SNAP complexes and their disassembly by NSF

[13], or lower accessibility of the disassembly machinery to a

certain population of SNARE complexes.
5. Conclusions

Assays using native PM sheets are highly flexible and enable

the study of diverse aspects of membrane proteins. In the cur-

rent study, we expanded the use of this method by analyzing

the kinetics of cis-SNARE complex assembly/disassembly.

The availability of free SNARE proteins for fusion-producing

trans-SNARE complex formation depends on maintaining low

levels of cis-SNARE complexes. An interfering process such as

cis-SNARE complex formation could be of crucial importance

to the regulation of trans-SNARE formation, thereby having

an influence on exocytosis in general. We distinguished two-
phase kinetics in the assembly process. Moreover, the depen-

dence of cis-SNARE complex disassembly kinetics on NSF

and a-SNAP was characterized for the first time on PM sheets.
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