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a b s t r a c t

In this paper, we propose the cubic spline collocation method with two parameters for
solving delay differential equations (DDEs). Some results of the local truncation error and
the convergence of the spline collocation method are given. We also obtain some results
of the linear stability and the nonlinear stability of the method for DDEs. In particular, we
design an algorithm to obtain the ranges of the two parameters α, β which are necessary
for the P-stability of the collocationmethod. Some illustrative examples successfully verify
our theoretical results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

DDEs arise in the models of many real life applications, for example, control theory, medical science, biology, lasers,
and population growth. In the past decades, there has been increasing interest in the numerical solution of the initial value
problem of DDEs. Some numerical methods which have successfully solved ordinary differential equations (ODEs) have
been adopted to solve DDEs [1–11]. In recent years, spline collocation methods as numerical methods have been used to
solvemany differential equations such as ODEs, DDEs and partial differential equations (PDEs). Blaga et al. have successfully
applied the spline function of even degree to solve DDEs in [9]. Ibrahim et al. have discussed the 2h-step spline method
for DDEs in [7], but the results of the stability and convergence have not been given. Engelborghs et al. have proposed
collocation methods for periodic solutions of DDEs in [4]. Moreover, in [1], El-Hawary et al. have successfully obtained the
numerical solutions of DDEs by means of the four point spline collocation method. They have also studied the convergence
and stability of collocation methods. However, to the best of our knowledge, the nonlinear stability and the convergence
of the cubic spline method for ODEs cannot be obtained by using their proposed methods, so we introduce different ways
to obtain the convergence and the nonlinear stability of the cubic spline collocation method for solving DDEs. Moreover, in
this paper, we design an algorithm for obtaining the value range of the two parameters when the method is P-stable.

This paper is organized as follows. In Section 2, we present the description of the method. Some theorems of the local
truncation error, the convergence and the nonlinear stability of the cubic spline collocation method for solving DDEs are
given in Section 3. In Section 4, we study the linear stability of the method. Finally, some numerical examples are provided.
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2. Description of the method for solving DDEs

Consider the initial value problem of DDEs
y′(t) = f (t, y(t), y(t − τ)), 0 ≤ t ≤ T ,
y(t) = ρ(t), −τ ≤ t ≤ 0 (1)

where τ > 0, ρ : [−τ , 0] → R is a continuous differentiable mapping, f : [0, T ] × R × R → R is a given mapping, satisfies
the following Lipschitz condition

|f (t, y, z)− f (t, y′, z ′)| ≤ L1|y − y′
| + L2|z − z ′

|, ∀t ∈ [0, T ], y, z, y′, z ′
∈ R. (2)

Define a uniform partition on I = [0, T ] into N equal parts and denote

h =
T
N
, ti = ih, Ii = [ti−1, ti], i = 1, 2, . . . ,N,

and τ = mh, ti − τ ∈ Ii−m = [ti−1−m, ti−m]. Then, the cubic C1-spline function S(t) can be written on each subinterval Ii by

S(t) =


ξ̄ 2(2ξ + 1)S(0)i−1 + ξ̄ 2ξS(1)i−1 + ξ 2(2ξ̄ + 1)S(0)i − ξ 2ξ̄S(1)i , ∀t ∈ Ii,
ρ(t), τ ≤ t ≤ 0,

(3)

where ξ =
t−ti−1

h ∈ [0, 1], ξ̄ = 1 − ξ, S(0)i = S(ti), S(1)i = hS ′(ti), i = 0, . . . ,N. Substituting ti−1+α and ti−1+β into (3),
respectively, we get[

S(ti−1 + hα)
S(ti−1 + hβ)

]
=

[
ᾱ2(2α + 1) ᾱ2α

β̄2(2β + 1) β̄2β

] [
S(0)i−1
S(1)i−1

]
+

[
α2(2ᾱ + 1) −α2ᾱ

β2(2β̄ + 1) −β2β̄

] [
S(0)i
S(1)i

]
= C(α, β)

[
S(0)i−1
S(1)i−1

]
+ D(α, β)

[
S(0)i
S(1)i

]
, ∀α, β ∈ [0, 1], (4)

where ᾱ = 1 − α, β̄ = 1 − β . Next, differentiating Eq. (3) on both the two sides, we can obtain

hS ′(t) = ξ̄ (−6ξ)S(0)i−1 + ξ̄ (1 − 3ξ)S(1)i−1 + ξ(6ξ̄ )S(0)i + ξ(1 − 3ξ̄ )S(1)i . (5)

By using the collocation conditions

S ′(ti−1+φ) = f (ti−1+φ, S(ti−1+φ), S(ti−1+φ − τ)), φ ∈ {α, β}, (6)

where α, β are collocation points, and 0 < α < β ≤ 1, denote φ̄ = 1 − φ, then (6) can be written as follows

φ(6φ̄)S(0)i + φ(1 − 3φ̄)S(1)i = φ̄(6φ)S(0)i−1 − φ̄(1 − 3φ)S(1)i−1 + hf (ti−1+φ, S(ti−1+φ), S(ti−1+φ − τ)). (7)

Let fi−1+φ = f (ti−1+φ, S(ti−1+φ), S(ti−1+φ − τ)), we can obtain the following equivalent recurrent formula

S i = AS i−1 + hBf
i
, (8)

where

A =A−1H, B =A−1, S i = (S(0)i , S(1)i )T ,

f
i
= (fi−1+α, fi−1+β)

T
=


f (ti−1+α, S(ti−1+α), S(ti−1+α − τ))
f (ti−1+β , S(ti−1+β), S(ti−1+β − τ))


and

A−1
=

[
6αᾱ α(1 − 3ᾱ)
6ββ̄ β(1 − 3β̄)

]−1

, H =

[
6αᾱ ᾱ(1 − 3α)
6ββ̄ β̄(1 − 3β)

]
.

So we can get the following scheme


S(0)i

S(1)i


=

1
6αβ − 3α − 3β + 2

6αβ

0
(1 − α)(1 − β)

αβ



S(0)i−1

S(1)i−1


+ h


2 − 3β

6α(α − β)

3α − 2
6β(α − β)

1 − β

α(α − β)

α − 1
β(α − β)

[fi−1+α
fi−1+β

]
. (9)
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3. Theoretical analysis

In this section, we give some theoretical results of the cubic spline collocation method for DDEs.

Theorem 3.1 (Consistence). For numerical method (8), the local truncation error is O(h4).

Proof. Substituting true solution to (8), then we have the following local truncation error

e1i =

[
y(ti)
hy′(ti)

]
− A

[
y(ti−1)
hy′(ti−1)

]
− hB

[
f (ti−1+α, S(ti−1+α), S(ti−1+α − τ))
f (ti−1+β , S(ti−1+β), S(ti−1+β − τ))

]
,

where

S(t) = ξ̄ 2[(2ξ + 1)y(ti−1)+ (ξy′)(ti−1)h] + ξ 2[(2ξ̄ + 1)y(ti)− ξ̄y′(ti)h], t ∈ [ti−1, ti]

is a cubic Hermite interplot of y(t) on subinterval t ∈ [ti−1, ti]. Applying Taylor’s expansions

y(t) = S(t)+ O(h4), t ∈ [ti−1, ti], y ∈ C1
[a, b],

then

|S(t)− y(t)| ≤ Ch4, t ∈ [ti−1, ti],

where C is an appropriate constant. Combine (8) with Lipschitz condition (2), then we obtain

|e1i − e2i | = O(h4), i = 1, . . . ,N,

where

e2i =

[
y(ti)
hy′(ti)

]
− A

[
y(ti−1)
hy′(ti−1)

]
− hB

[
y′(ti−1+β)
y′(ti−1+β)

]
.

Now using the Taylor expansion

y(x) = q3(x)+ O(h4),

and noting that the methods are accurate for polynomials of degree ≤ 3, namely e2i = 0, hence

|e1i | = O(h4). �

Theorem 3.2 (Convergence). If ‖A‖ ≤ 1, numerical method (8) for solving problem (1) is convergence.

Proof. First, we denote

ϵi =


|S(0)i − y(ti)|

|S(1)i − hy′(ti)|


, ϵ′

i =


|S(ti+α)− y(ti+α)|
|S(ti+β)− y(ti+β)|


,

ϵ̃i =


|S(ti−1+α − τ)− y(ti−1+α − τ)|
|S(ti−1+β − τ)− y(ti−1+β − τ)|


, Xi = max

0≤s≤i
{‖ϵs‖},

where[
y(ti−1 + hα)
y(ti−1 + hβ)

]
=

[
ᾱ2(2α + 1) ᾱ2α

β̄2(2β + 1) β̄2β

] [
yi−1
hy′

i−1

]
+

[
α2(2ᾱ + 1) −α2ᾱ

β2(2β̄ + 1) −β2β̄

] [
yi
hy′

i

]
= C(α, β)

[
yi−1
hy′

i−1

]
+ D(α, β)

[
yi
hy′

i

]
+ O(h4), ∀α, β ∈ [0, 1]. (10)

The cubic spline collocation function S(t), with C(α, β) and D(α, β) in Eq. (10) as the functions with respect to α and β , is
continuous on [0, 1], so[

S(ti−1 + hα)− y(ti−1 + hα)
S(ti−1 + hβ)− y(ti−1 + hβ)

]
=

[
ᾱ2(2α + 1) ᾱ2α

β̄2(2β + 1) β̄2β

]
S(0)i−1 − yi−1

S(1)i−1 − hy′

i−1


+

[
α2(2ᾱ + 1) −α2ᾱ

β2(2β̄ + 1) −β2β̄

]
S(0)i − yi
S(1)i − hy′

i



= C(α, β)


S(0)i−1 − yi−1

S(1)i−1 − hy′

i−1


+ D(α, β)


S(0)i − yi
S(1)i − hy′

i


+ O(h4), (11)

∀α, β ∈ [0, 1], then there must exist constants λ1 > 0, λ2 > 0 such that
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‖ϵ′

i−1‖ ≤ λ1‖ϵi−1‖ + λ2‖ϵi‖ + Ch4
≤ λXi + Ch4,

‖ϵ̃i‖ ≤ max{λXi−m, λXi−m+1} + Ch4
≤ λXi + Ch4, ∀ i ≥ 1,

(12)

where C is an appropriate constant. Combine Theorem 3.1 and Eq. (8) with the following formula

y(t) =


1 + 2

t − ti−1

h


ti − t
h

2

y(ti−1)+
(t − ti−1)(ti − t)2

h2
y′(ti−1)

+


1 + 2

ti − t
h


t − ti−1

h

2

y(ti)−
(t − ti−1)

2(ti − t)
h2

y′(ti−1)+ O(h4), ∀t ∈ [ti−1, ti], (13)

we have[
S(ti)− y(ti)

hS ′(ti)− hy′(ti)

]
= A

[
S(ti−1)− y(ti−1)

hS ′(ti−1)− hy′(ti−1)

]
+ hB

[
fi−1+α − f (ti−1+α, y(ti−1+α), y(ti−1+α − τ))
fi−1+β − f (ti−1+β , y(ti−1+β), y(ti−1+β − τ))

]
+ O(h4).

By using Lipschitz condition (2), we obtain

‖ϵi‖ ≤ ‖A‖‖ϵi−1‖ + h‖B‖[L1(λ1‖ϵi−1‖ + λ2‖ϵi‖)+ L2ϵ̃i] + Ch4,

≤ ‖A‖‖ϵi−1‖ + h‖B‖λ(L1 + L2)Xi + Ch4

≤ ‖A‖‖ϵi−1‖ + h‖B‖λ(L1 + L2)‖ϵi‖ + Ch4
+ h‖B‖λ(L1 + L2)Xi−1, (14)

and

[1 − h‖B‖λ(L1 + L2)]‖ϵi‖ ≤ [‖A‖ + h‖B‖λ(L1 + L2)]Xi−1 + Ch4. (15)

Noting that ‖A‖ ≤ 1, from the above equation we obtain

‖ϵi‖ ≤
‖A‖ + h‖B‖λ(L1 + L2)
1 − h‖B‖λ(L1 + L2)

Xi−1 + Ch4
≤

1 + h‖B‖λ(L1 + L2)
1 − h‖B‖λ(L1 + L2)

Xi−1 + Ch4. (16)

Since ‖B‖λ(L1 + L2) > 0, for any c0 ∈ (0, 1), we select h such that h‖B‖λ(L1 + L2) ≤ c0, then

‖ϵi‖ ≤ Xi ≤ (1 + c1h)Xi−1 + Ch4

≤ (1 + c1h)iX0 + Ch4
i−1−
j=0

(1 + hc1)j

≤ exp(ihc1)X0 + Ch4N exp(ihc1)

≤ exp(Tc1)X0 + Ch4N exp(Tc1), (17)

where c1 =
2L‖B‖λ(L1+L2)

1−c0
. From Theorem 3.1 and the definition of ‖ϵi‖, it always gives

‖ϵi‖ → 0 as h → 0,

when the initial error ‖ε0‖ = 0. Consequently, numerical method (8) is convergence. �

Theorem 3.3 (Nonlinear Stability). If ‖A‖ ≤ 1, numerical method (8) is stable, i.e. there exists a constant C, for any perturbation
ϵi, i = 0, 1, 2, . . . , such that

‖εi‖ ≤ C‖ε0‖,

where

ϵi =


|zi − yi|

|hz ′

i − hy′

i|


.

Proof. Consider the initial value problem
y′(t) = f (t, y(t), y(t − τ)), 0 ≤ t ≤ T ,
y(t) = ϕ(t), −τ ≤ t ≤ 0, (18)

and the perturbation problem
z ′(t) = f (t, z(t), z(t − τ)), 0 ≤ t ≤ T ,
z(t) = ψ(t), −τ ≤ t ≤ 0, (19)

where f satisfies Lipschitz condition (2).
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Denoting that

ϵi =


|zi − yi|

|hz ′

i − hy′

i|


, ϵ′

i =


|Sz(ti+α)− Sy(ti+α)|
|Sz(ti+β)− Sy(ti+β)|


,

ϵ̃i =


|Sz(ti−1+α − τ)− Sy(ti−1+α − τ)|
|Sz(ti−1+β − τ)− Sy(ti−1+β − τ)|


,

Xi = max
0≤s≤i

{‖ϵs‖, max
−τ≤t≤0

‖ψ(t)− ϕ(t)‖}, X0 = max
−τ≤t≤0

‖ψ(t)− ϕ(t)‖,

where Sy(·), Sz(·) are the spline collocation functions of (18) and (19), respectively.
Noting that the definitions of the collocation functions Sy(t), Sz(t), there must exist constants λ1 > 0, λ2 > 0, λ > 0

which satisfy

‖ϵ′

i−1‖ ≤ λ1‖ϵi−1‖ + λ2‖ϵi‖ ≤ λXi,

‖ϵ̃i‖ ≤ max{λXi−m, λXi−m+1} ≤ λXi, ∀i ≥ 1.
(20)

By means of Theorem 3.1 and (8), using Lipschitz condition (2), we have

‖ϵi‖ ≤ ‖A‖‖ϵi−1‖ + h‖B‖[L1(λ1‖ϵi−1‖ + λ2‖ϵi‖)+ L2ϵ̃i],
≤ ‖A‖‖ϵi−1‖ + h‖B‖λ(L1 + L2)Xi

≤ ‖A‖‖ϵi−1‖ + h‖B‖λ(L1 + L2)‖ϵi‖ + h‖B‖λ(L1 + L2)Xi−1, (21)

and

[1 − h‖B‖λ(L1 + L2)]‖ϵi‖ ≤ [‖A‖ + h‖B‖λ(L1 + L2)]Xi−1. (22)

Since ‖A‖ ≤ 1, then from the above equation we have

‖ϵi‖ ≤
‖A‖ + h‖B‖λ(L1 + L2)
1 − h‖B‖λ(L1 + L2)

Xi−1 ≤
1 + h‖B‖λ(L1 + L2)
1 − h‖B‖λ(L1 + L2)

Xi−1. (23)

Noting that ‖B‖λ(L1 + L2) > 0, for any c0 ∈ (0, 1), we select h such that h‖B‖λ(L1 + L2) ≤ c0, then

‖ϵi‖ ≤ Xi ≤ (1 + c1h)Xi−1 ≤ (1 + c1h)iX0

≤ exp(ihc1)X0 ≤ exp(Tc1)X0, (24)

where c1 =
2L‖B‖λ(L1+L2)

1−c0
. Let C = exp(Tc1), it shows that the numerical method (8) is stable. �

4. Linear stability analysis

Consider the initial value problem of DDE
y′(t) = λy(t)+ qy(t − τ), t ≥ 0, τ > 0,
y(t) = ϕ(t), t ≤ 0, (25)

where λ, q ∈ C are any given parameters, τ is a constant delay. For the purpose of study the linear stability of the method
for solving problem (25), we introduce the following definition and theorems.

Theorem 4.1 ([3]). If the coefficients λ, q of Eq. (25) satisfy

Re(λ) < 0, |q| + Re(λ) < 0, (26)

then for any initial function ϕ ∈ C(−∞, 0], the solution of problem (25) y(t) satisfies

lim
t→+∞

y(t) = 0.

Definition 4.1 ([3] (P-Stability)). If the coefficients λ, q of Eq. (25) satisfy (26), and the numerical solutions yn of the method
for solving problem (25) satisfies

lim
n→∞

yn = 0,

then the numerical method is P-stable, where yn ≈ y(nh), h > 0 is stepsize,mh = τ , m is a positive integer.



H. Su et al. / Computers and Mathematics with Applications 62 (2011) 2580–2590 2585

Now, applying the cubic spline collocation method to solve problem (25), we have

S ′(ti−1+φ) = λS(ti−1+φ)+ qS(ti−1−m+φ), φ ∈ {α, β}, i = 1, . . . ,N, (27)

where h =
τ
m , m ≥ 1, and m is an integer, S(ti−1−m+φ) = S(ti−1+φ − mh).

Let z = hλ, v = hq, then from the above equation, we have

φ̄(−6φ)S(0)i−1 + φ̄(1 − 3φ)S(1)i−1 + φ(6φ̄)S(0)i + φ(1 − φ′)

= z[φ̄2(2φ + 1)S(0)i−1 + φ̄2φS(1)i−1 + φ2(2φ̄ + 1)S(0)i − φ2φ̄S(1)i ]

+ v[φ̄2(2φ + 1)S(0)i−m−1 + φ̄2φS(1)i−m−1 + φ2(2φ̄ + 1)S(0)i−m − φ2φ̄S(1)i−m], (28)

and

A1S i + B1S i−m = A2S i−1 + B2S i−m−1,

where S i = (S(0)i , S(1)i )T , S i−m = (S(0)i−m, S
(1)
i−m)

T ,

A1 =


6αᾱ − zα2(1 + 2ᾱ) α(1 − 3ᾱ)+ zα2ᾱ

6ββ̄ − zβ2(1 + 2β̄) β(1 − 3β̄)+ zβ2β̄


, B1 =


−vα2(1 + 2ᾱ) vα2ᾱ

−vβ2(1 + 2β̄) vβ2β̄


,

A2 =


6αᾱ + zᾱ2(1 + 2α) ᾱ(3α − 1)+ zᾱ2α

6ββ̄ + zβ̄2(1 + 2β) β̄(3β − 1)+ zβ̄2β


, B2 =


vᾱ2(1 + 2α) vᾱ2α

vβ̄2(1 + 2β) vβ̄2β


.

Hence, we can obtain

(A1, B1)


S i

S i−m


= (A2, B2)


S i−1

S i−m−1


.

Denoting C(z, v) = (A1, B1), D(z, v) = (A2, B2), Mi = (S i, S i−m)
T , Mi−1 = (S i−1, S i−m−1)

T , and using Definition 4.1 and
Theorem 4.1, we obtain the following theorem.

Theorem 4.2 ([1]). The numerical method (27) is P-stable, if the coefficients λ, q (or z = λh, v = qh) of Eq. (25) satisfy (26),
and the eigenvalues µj(z, v) of the following problem

µC(z, v).x = D(z, v).x, x ≠ 0, (29)

are in the unit disk, i.e.

|µj(z, v)| < 1, j = 1, 2. (30)

Next, we investigate the value range of α and β when the numerical method is P-stable and design algorithm as follows

Algorithm 1.

For 0 ≤ θ ≤ 2π
z = aeiθ ; v = beiθ ;
if Re(z)+ |v| < 0
For 0 ≤ α ≤ 1
For α < β ≤ 1

root(det(ζC(z, v)C(z, v)T − D(z, v)D(z, v)T ) = 0)
if |{root(det(ζC(z, v)C(z, v)T − D(z, v)D(z, v)T ) = 0)}

1
2 | < 1

record α, β;

end
end
end
end

end

Using Algorithm 1, we can obtain the results of α, β as in Fig. 1, from which we can see that the ranges of α, β satisfying P
stability depend on the coefficients z, v of problem (25).

5. Illustrative examples

In order to verify our theoretical results, we present some numerical examples in this section.
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Fig. 1a. The ranges of α, β satisfying P-stability, a = −2, b = 1.

Fig. 1b. The ranges of α, β satisfying P-stability, a = −5, b = 1.

Fig. 1c. The ranges of α, β satisfying P-stability, a = −10, b = 1.

Example 5.1. Consider the initial value problem as follows
y′(t) = Ay(t)+ y


t −

3π
2


− A sin(t), 0 ≤ t ≤ T ,

y(t) = e−pt
+ sin(t), −

3π
2

≤ t ≤ 0,
(31)

where A = −p − e−
3pπ
2 , T = 10, p = 1.0. The exact solution is y(t) = e−pt

+ sin(t). If we select two collocation points
α = 0.5, β = 1.0 and apply the cubic spline collocationmethod (8) to solve problem (31), then the results of error estimation
and error order can be obtained as shown in Table 1. When h = 0.1 and h = 0.01, the error of the numerical solutions and
the exact solution are shown in Fig. 2. From the numerical results we find that the error between the numerical solutions
and the exact solution is very small. The order of error is very high. In particular, we select T = 100, h = 0.1 and obtain the
numerical result as in Fig. 3. From this we can see that the error is also very small and almost tends to 10−7, which show
that the convergence of the cubic spline method for solving ODEs can be verified and the method is robust.
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Fig. 1d. The ranges of α, β satisfying P-stability, a = −100, b = 1.

Table 1
The error of numerical solution and exact solution of problem (31) when α = 0.5, β = 1.0.

h ‖error1‖L1 Order ‖error‖L2 Order
10
50 1.845504 × 10−6 – 2.066386 × 10−6 –
10
100 1.215364 × 10−7 3.9246 1.359508 × 10−7 3.9260
10
200 7.234833 × 10−9 4.0478 8.108477 × 10−9 4.0675
10
400 7.587401 × 10−11 6.5983 1.440994 × 10−10 5.8143

Fig. 2a. The error of numerical solution and true solution of problem (31) with h = 0.1.

Example 5.2. Consider the following initial value problemy′(t) =
1
2
e

t
2 y

t
2


+

1
2
y(t), 0 ≤ t ≤ 10,

y(0) = 1,
(32)

the exact solution of which is y(t) = et . In our theoretical analysis, we have not involved the cubic spline collocation
method to solve proportion (or variable) DDEs. In fact, the method for solving this problem is also very effective. First, let
α = 0.5, β = 1.0, h = 0.1 and α = 0.5, β = 1.0, h = 0.01, and using the cubic spline collocation method to solve (32),
respectively, we can obtain the relative error of the numerical solution and the exact solution as shown in Fig. 4, fromwhich
we know that the accuracy of the method is still very high and the numerical solution is very reliable.

Example 5.3. Consider the initial value problem
y′(t) = (−2 + 0.5 cos(t))y(t)+ y(t − 2), 0 ≤ t ≤ T ,
y(3) = sin(t), t ≤ 0, (33)
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Fig. 2b. The error of numerical solution and true solution of problem (31) with h = 0.01.

Fig. 3. The error of numerical solution and true solution of problem (31), h = 0.1, T = 100.

Fig. 4a. The error of numerical solution and true solution of (32), h = 0.1.

and the perturbation problem
z ′(t) = (−2 + 0.5 cos(t))z(t)+ z(t − 2), 0 ≤ t ≤ T ,
z(3) = cos(t), t ≤ 0. (34)

We use the cubic spline collocation method to solve problems (33) and (34). Selecting α = 0.5, β = 1.0, T = 25 and
h = 0.1, h = 0.01, we obtain the errors of numerical solutions as in Fig. 5. From Fig. 5 we can see it clearly that as t
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Fig. 4b. The error of numerical solution and true solution of (32), h = 0.01.

Fig. 5a. The error of numerical solutions of (33) and (34), h = 0.1.

Fig. 5b. The error of numerical solutions of (33) and (34), h = 0.01.

increases the absolute error of numerical solutions of problem (33) and (34) constantly decreases, and finally tends to 0.
Thus, we can draw the conclusion that cubic spline collocation method (8) for DDEs is stable, which precisely verifies our
theoretical analysis.
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6. Conclusion

In this paper, we have successfully applied the cubic spline collocation method to solve DDEs, and obtained some
theorems of local truncation error and convergence. The analysis of nonlinear stability and linear stability of the method
has also been given. Moreover, we have designed an algorithm for solving the ranges of the two parameters α, β when
the method is P-stable. In particular, we have successfully obtained the numerical solution of proportion delay differential
equations (PDDEs) by using the cubic spline collocation method. In fact, this method is efficient for solving some other
differential equations such as neutral delay differential equations (NDDEs). Finally, the numerical results have shown that
the cubic spline collocation method for solving DDEs is very robust and efficient.
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