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Abstract--The paper proposes a method for estimating linear, time-invariant state space models from 
multiple time series data. The approach is based on stochastic realization theory. The coefficient matrices 
of the state space model are derived from the estimated Markov parameters that are associated with the 
different system inputs, such as lagged endogenous variables, observable exogenous variables, and 
unobservable noise. 

1. I N T R O D U C T I O N  

The use of state space representations for modeling time series has been suggested 
frequently over recent years (see, for example, Akaike [1], Aoki [2--4], Hannan [5], Kitagawa 
and Gersch [6], Mittnik [7], Otter [8]). The canonical correlation method proposed by Akaike 
(for detailed expositions see Akaike [9, 10]) has the disadvantage that it may lead to different, 
nonequivalent state space representations when changing the order of the variables contained 
in the vector of endogenous variables. Aoki [3, 4] suggests an alternative method which 
involves the singular value decomposition of a block Hankel matrix whose entries consist 
of estimated autocovariances. Employing system-theoretic model reduction techniques, the 
system matrices are obtained from a lower rank approximation of the Hankel matrix. 
Aoki's approach has the advantages that lower dimensional state space representations are 
strictly nested in higher dimensional ones and that they are not affected by the ordering of 
the variables. Using this method Aoki and Havenner [11, 12] obtain encouraging results in 
modeling applications. 

In this paper we propose an alternative approach to deriving state space models from 
multiple time series data. The approach is related to Aoki's [4] method and shares the 
advantages of nestedness and that the resulting models are not affected by the ordering of 
the endogenous variables, but has, in addition, the attractive feature that it allows for 
exogenous variables as system inputs. Treating all variables as endogenous, Aoki [4] estimates 
the system matrices of the state space representation from sample autocovariances. The 
procedure suggested here is based on the estimated Markov parameters that correspond to 
the various types of inputs, such as lagged endogenous variables, observable exogenous vari- 
ables, or unobservable disturbances. It has computational advantages, in particular, when dealing 
with purely autoregressive processes, autoregressive processes with exogenous variables, or 
autoregressive approximations of mixed autoregressive moving average processes. 

The paper is organized in five sections. The next, Section 2, describes the basic version of 
the method, assuming only lagged endogenous variables as system inputs. Section 3 outlines the 
necessary modifications for the approach described in Section 2 when exogenous variables are 
present. In Section 4 we present extensions of the basic algorithm, enabling us to obtain state 
space models when moving average terms are present. The final section contains concluding 
remarks. 

tPresented at the 1988 Annual Meeting of the Society for Economic Dynamics and Control, Tempe, Arizona. I would like 
to thank Frank Diebold for his helpful comments .  
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2. ESTIMATION OF SYSTEM MATRICES FOR 
AUTOREGRESSIVE PROCESSES 

Given a sample of N realizations of a mean-zero, weakly stationary stochastic process {y,}, 
y,6 R "~, our objective to derive a linear, time-invariant, state space model in innovations 
representation, 

z,+ l = Az, + K¢t ( l a )  

y, = Czt + et, (lb) 

that approximates the observed sequence• System (1) is such that A E R n×", C¢ R '~ ×", K e R" x m, 

{¢,} is a white noise disturbance sequence, and {z,} represents the sequence of state vectors. 
Finding the triple (A, K, C) is known as the stochastic realization problem in the systems literature. 
To introduce the basic approach to obtaining estimates of (A, K, C), we assume in this section 
the simplest scenario, namely that {Yt} is generated (or can reasonably well be approximated) by 
the autoregressive (AR) process 

P 

Y, = ~ MiYt-i + et, (2) 
i = l  

where {¢,} is assumed to be white noise with E(¢t)= 0 and E(¢~ T) = 6a2~. Given the sample 
Y~, Y2 . . . . .  YN, least squares estimates of the AR coefficient matrices, lf/l~, 1V~ 2 . . . . .  1~1 k, are obtained 
by 

# = (xTx) -'x~Y, (3) 

where 

O = [M1 M2 "'" 

Y - - - - [ Y k + l  Y k + 2  " ' "  

Yk Yk+l 

Yk - ! Yk 

XT= 

Yl Y2 

M k ]  T , 

y~lT, 

• " " Y N -  I 

Y N -  2 

• " " YN- k 

Making use of some order selection criterion, integer k is assumed to be large enough such that 
k > . p .  

To derive the state space representation in innovations form (1), we first construct a system of 
the form 

z, + i ffi Fz, + Kyt (4a) 

Yt = Czt + ~,. (4b) 

Substituting (4b) into (4a) shows that the triple (A, K, C) associated with the innovations form (1) 
is obtained from (F, K, C) by 

A = F + KC. (5) 

Representation (4) represents a system whose inputs consist of the system's lagged outputs. The 
AR coefficients Me can then be interpreted as the impulse responses or Markov parameters of 
system (4). From system theory we know that the Markov parameters of (4) are given by 

Mi = CF t- I K, i = I, 2 .... (6) 



Multivariate time series analysis with state space models 1191 

An estimate of triple (F, K, C) is derived by constructing the following block Hankel matrix from 
the estimated parameters 1~,., 

- M ,  . . .  

M2 ~13 0 
I l  k 

lVlk 0 "'" 0 

Matrix II k can be factorized nonuniquely such that 

Ilk = ~ , .  (7) 

Matrices ek and ~k are called observability and reachability matrices, respectively, in the systems 
literature. It follows from (6) that 

C 
l 

CF 
I 

o k =  " (S) 

C F k  - ! 

and 

~k----[K FIg " "  Fk-IK]. (9) 

As is suggested in the context of approximate linear realization theory (see, for example, Zeiger 
and McEwen [13], Kung [14], Moore [15], Pernebo and Silverman [16]) and used in [4], the singular 
value decomposition technique can be employed to perform factorization (7), i.e. 

l~/k = C¢)~ "T, (10) 

where ~ ' T ~  = ~ r ~  = I,  and Q is a diagonal matrix containing the singular values of 1Olk ordered 
in a nonincreasing fashion, ~ 1> ~2 I>'" ">1 qkm I> 0. Defining tPk and ~k by 

~k = CQ '/2 (1 l) 

~k = (~ 1/2~T (12) 

yields an "internally b a l a n c e d "  state space representation. The advantages of this particular type 
of representation will be discussed later. 

In a nonstochastic setting, and assuming k i> p, the dimension of the system to the realized is 
given by rank(Hk) - n ~< rap ,  i.e. Q = diag(ql, q2 . . . . .  q , ,  0 . . . . .  0). In the presence of noise, we 
expect that q~ > 0 for i - -  n + I . . . .  , rap ,  which prevents us from detecting the exact dimension of 
the underlying process. When determining the dimension of the state space by the rank of l~k, the 
resulting model is likely to suffer from overparameterization. Model reduction techniques allow us 
to separate the overparameterized state space model into a "dominant" and a "weak" subsystem, 
which can be conceptualized by rewriting the system in terms of partitioned matrices: 

L1 2, 

Y,-- [C1 

~'~2JLZ2,,d 

c,,[",'l +,,. Lz~,,J 
In practice, we may assume that singular values close to zero correspond to the weak subsystem 
of (4), given by ~ ,  1~ 2, (~2), which contributes little to the response of the system and may be due 
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to the presence of noise. The dominant sybsystem (i~n, 1~], ~.1) that is associated with the n largest 
singular values is taken as the model representing the underlying process. Statistical criteria of the 
types suggested in Otter [8] and Holt and Antill [17] may be employed to estimate the dimension 
of the system. Other approaches to specifying n are discussed in [1 1] and [12]. The lower rank 
approximation of 101k that corresponds to the dominant subsystem is derived by eliminating the last 
k m  - n  singular values in 0 as well as the corresponding columns of 11I and ~r Let the modified 
matrices be denoted by 0,  ~1 and ~¢, respectively. A rank n approximation of 1~ k, denoted by 1~1, 
is then obtained by 

f l  = uO'~ T. (13) 

Note that l~I will be only approximately Hankel. The lower rank approximations of the reachability 
and observability matrix are given by 

= ~10 '/2, (14) 

= T. (15) 

Using (8), an estimate of matrix C is given by the first m rows of t~, and from (9) it follows 
that I~ consists of the first m columns of ~ .  An estimate of the transition matrix F of system (4) 
is given by 

= O--1/2][]T~ ~70-1/2, (16) 

where HE denotes the shifted Hankel matrix, HE = L -  IHk, with L denoting the lag operator. The 
estimate of the transition matrix of the innovations representation (1) is computed by 

tk = i~ + RC. (17) 

The fact that lower dimensional approximations are nested in higher dimensional ones is 
an attractive feature of Aoki's method. Given an nrdimensional state space model of the 
form (I), any lower dimensional approximation say of dimension n2 < n~, can be derived by 
deleting the last n~-  n2 rows and columns of the transition matrix .~ and the last n~-  n2 
columns of matrix C. Since the Hankel matrix factorization in Aoki's method does not really 
yield the reachability matrix of system (1), an algebraic Riecati equation has to be solved to 
determine R. This implies that lower dimensional approximations of R cannot be obtained 
by deleting the last n l -  n2 rows of R. Moreover, for each different value of n: a different 
algebraic Rieeati equation has to be solved. The nestedness of lower rank realizations is a 
result of the fact that Aoki's method yields an internally balanced system. A system is said to be 
internally balanced if its observability and reachability gramrnians are equal and diagonal (see 
Moore [15] and Pernebo and Silverman [16] for detailed discussions of balanced realizations). 
The approach proposed here yields an internally balanced realization for representation (2) and 
not for the innovations form (1). Given triple (~, R, C) lower dimensional approximations are 
derived by deleting the corresponding rows and columns of matrices l}, R and C, respectively, 
But since 

lower dimensional approximations of system (I) are also obtained by deleting the appropriate 
columns and rows of matrices ~,, ~ and (~. Hence, both representation (1) and (4) possess the 
nestedness property, and the derivation of lower dimensional approximations does not involve 
an additional computational burden for either representation. 
To generate, for example, simulations or predictions from a state space model, it may be 

necessary to know the initial state vector zm. Given sample Yl, Y2,..., Y~ and matrices A and C, 
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a smoothed estimate of  z~ can be obtained using the following relationship: 

where 

Y* = d~NZj + SE, 

y , = [ y T  yT . . .  yT]T 

E=[c ,  . . .  4 ]  T, 

~N is the observability matrix as defined in (8), and S is the lower triangular Toeplitz matrix 

M o  

M1 Mo 
0 

M N - I  M N - 2  " ' "  M 0 

S =  

with Mo = I. Then, a least squares estimator of z~ is given by 

1193 

(18) 

jffik 

The "modified Hankel matrix" 

HC = 

leads to the following factorization: 

"sl M1 M2 "'' Mp" 

s 2 M 2 M 3 0 

_s, Mp 0 . . .  o 

H'  = d~j,~p, (21) 

where ¢Vp is the usual observability matrix and 

~pp=[Zl K FK . . .  FP-IK]. (22) 

Given the estimates ~p and ~ ,  the simultaneous derivation of  the system matrices and the initial 
state vector requires only a minor change in the procedure described above. As is clear from (22), 
the first column of ~ gives the initial state and columns 2 through m + l represent matrix K. 
Matrices ~ and 1~ are derived as before. 

P 
Sk ----- ~ Mkyk-j = CF k- IZl, k = 1 . . . . .  p. (20) 

where ~N denotes the observability matrix whose elements are computed from the estimated system 
matrices. 

Rather than using this two-step procedure, i.e. estimating first the system matrices and 
subsequently the initial state vector, both c a n  be estimated simultaneously. Given an AR 
process of  order p, the initial state vector represents the effect of the presample realization Y0, 
Y-J , . . - ,  Y-p+1- Let the vector Sk, k = 1, 2 , . . .  ,p, capture the effect of  the initial state on Yk, i.e. 

Zl ~T " - I  ~T * = (ON~)N) (~NY , (19) 
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TO compute least squares estimates of  s~ and M~, define 

~ *  = IS l S2 

Y = [Yl Y2 

X *T ~__ 

Then, 

• " sp Mi M2 

.. yN] T, 

• . , M p ] T  

0 y|  Y2 "'" Yp "'" YN-I 

0 0 Yl Yp-I YN-2 

0 Yl YN-p 

O* = (X*TX*) -IX*TY*.  (23) 

Factorizing H c via singular value decomposition and specifying ~p and ~ by (11) and (12) 
implies that neither of the representations (1) and (4) will be internally balanced. A balanced 
realization for system (4) is derived as follows. Construct 

1£'12 1£'13 0 

(24) 

lqlp 0 " -  0 

from •* and factorize l~lp = ~r~p. Defining ~ = [~ a T . . .  Sp],̂ T T 

provides an estimate of the initial state vector with representation (4) being balanced. 

3. AUTOREGRESSIVE PROCESSES WITH EXOGENOUS VARIABLES 

In the presence of exogenous variables, the state space representation in innovations form is 
given by 

z,+ ~ = Az, + Bxt + K¢, (25a) 

y, = Cz, + Dx, + c,, (25b) 

where A, K, C are as specified in Section 2, Be  R nX r, D ~ R" × r, and {x,} is assumed to be an 
r-dimensional deterministic sequence of exogenous variables. The procedure described in Section 
2 can easily be modified to handle exogenous variables. Given the system matrices of the 
representation 

z, + i = Fz, + Gxt + Ky, (26a) 

y, = Cz, + Dx, + ¢,, (26b) 

the transition matrix of representation (25) is computed by (17) and matrix B is given by 

n = G + K D .  (27) 
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The estimation of  the Markov parameters of  system (26) is analogous to (2). Defining 

t 9  = []VII M 2 

Y = [Yt+, Yt+2 

- Y/ 

Yt- l 

XT = Yt-k+l 

XI+ 1 

Xl 

X / - k x + t  

• -. Mk 1VI~ 1VI~l 

• . .  yt~] T 

Yt+l " " " Y N - I  

Y/ Y N -  2 

Yt-k+2 YN-t+k 

X/+2 XN 

Xl+ 1 X N -  1 

X l _ k x + 2  " • • X N _ l + k x  

M x 1T 
kxJ , 

1195 

The factorization of  lOlt yields 

lqt 0 . ' .  0 

and 

101, = d ~ , .  (29) 

The Markov parameters of  system (26) that correspond to " input"  y, are given by (6), and the ones 
that correspond to x, are of  the form 

x f D ,  i = 0 
Mi = ~ (30) 

CF ~-IG, i = 1 , 2  . . . .  

Therefore, the observability and reachability matrices in (29) can be written as 

C 

CF 

CF t- l 

.~ l= [K G FK FG " '"  Ft-IK Ft-lG], (32) 

(31) 

I-~Ii = 

we obtain the least squares estimates of  the coefficient matrices by 

# = (X~X)-IXY, (28) 

where 1 = max(k, kx). Parameter kx represents the lag length considered for the exogenous 
variables. As with parameter k, a suitable value for kx can be specified using some order selection 
criterion. Defining lq~ = [lf,1; If/IX], i = 1, 2 . . . .  , l, where l(,lt = 0 for i > k or lf4~ = 0 for i > kx, 
allows us to construct the block Hankel matrix 

-lq, 1% . .  ~, 

lq2 lq3 0 
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respectively. Analogous to Section 2, given I~lt, the chosen lower rank approximation of 1Oil, 
matrix ~ consists of the first m rows of ~1; g is given by the first m columns of ~t; and C consists 
of the columns m + 1 through m + r in ~t. The transition matrix I~ is computed as in (16). The 
matrices ~ and 1~ of the innovation representation (1) are obtained by (17) and by replacing the 
matrices on the right-hand side of (27) by their estimates. 

4. E X T E N S I O N  TO A U T O R E G R E S S I V E  M O V I N G  
A V E R A G E  P R O C E S S E S  

In principle, extending the procedure for deriving a state space model for AR processes 
to autoregressive moving average (ARMA) processes is similar to the modification described in 
the previous section. Treating the disturbance sequence (~,} as a sequence of system inputs, 
we can include the coefficient matrices associated with the lagged disturbances in the block 
Hankel matrix as was done with the exogenous variables {x,}. Therefore, given the estimates 
of the coefficient matrices, the derivation of the system matrices is as before. The difficulties 
that arise in the presence of moving average (MA) terms are due to the fact that the disturbances 
are unobservable. Their coefficients cannot be estimated directly, like those of the observable 
exogenous variables. Another estimation problem that arises is that the least squares estimation 
(3) of the AR coefficients will generally be biased. The latter problem can be circumvented by 
applying instrumental variable (IV) estimators that use lagged ys as instruments. The modified 
Yule-Walker (MYW) method also represents an IV estimator. Among others, Mehra [18] 
and Cadzow [19, 20] note that the overidentified MYW method usually yields more efficient 
estimates than the exactly identified version. Stoica et al. [21] suggest a multistep MYW 
procedure that provides estimates whose efficiency approaches the Cram6r-Rao lower bound. 
All these approaches enable us to estimate the AR coefficients without estimating the MA 
coefficients first. A method for estimating the MA coefficients, given the AR coefficients and 
the autocovariance function of the process, is described next. It should be pointed out that 
the method applies also to ARMA processes with deterministic components such as exogenous 
variables, constant terms and time trends since these components can be removed from the 
process. 

To derive the procedure, we make use of a closed form expression given in Mittnik [22] that 
relates the parameters of a multivariate ARMA process to its autocovariance function. The 
exposition is simplified by introducing the following notation. Let A-- [A~A~. . .  A~ T be a 
k m  x m matrix. Then, operator H>[A] generates akm x k m  block Hankel matrix whose first block 
column is given by A and all entries below the main block counterdiagonal are zero. Operator 
H>[A] generates a k m  x k m  block Hankel matrix whose last block column is given by A and all 
entries above the main block counterdiagonal are zero. Operator T>[A] generates the k m  x k m  

lower triangular block Toeplitz matrix whose first block column is given by A. Finally, operator 
T>[A] generates a k m  x k m  upper triangular block Toeplitz matrix whose last block column is 
given by A. 

Let an m-dimensional zero-mean stationary ARMA process of orders p and q be given by 

..4 (L)y, = B(L~t, (33) 

where A ( L ) = I - A , L  . . . . .  - A , L  r and B ( L ) = B e + B , L  . . . . .  +B,L', with A~=0 for i f p  + 1, 
. . . .  r if r = max(p, q) > p or Bt = 0 for i = q + 1 . . . . .  r if r > q. {ct} is a white noise sequence with 
E(c,) = 0 and E(c~c~ = 6,tI. Setting var(~,) = I entails no loss in generality since we allow B0 ~ I. 
Note that the MA parameters can always be redefined such that Be = I. Having Be ~ I requires us 
to premultiply the disturbance terms in the measurement equations of the state space systems by 
B0. Equations (lb) and (4b), for example, become 

Yt ~ Czt + Bo£t. 
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Let r ,  = E(y,y, r_,), T = 0, 1 . . . . .  denote the autocovariance sequence of  process (33) and define 
the following matrices: 

where Ci denotes the 

r=[r  . . .  r ,qL 

r * = [ r o  r j  . . .  r J  T, 

A = [ A ~  AI "'" A~ r, 

• ~ = ['1 --Al -A2 . . . .  Ar] T, 

B=[Bo • By ... B,T, 

B* = [B o B 1 ' ' '  B,] T, 

c = [ c 0  • . . .  T, 

C * = [ C 0  Cl "'" C,] r, 

ith coefficient matrix of  the moving average representation of  (33), 
i.e. C ( L ) = A - I ( L ) B ( L ) =  Co+ C I L + " "  As shown in [22], the following relationship can be 
established: 

F = MTF + M . F *  + NC*, (34) 

where the m (r + 1) x m (r + 1) matrices Mr,  MN, and N are defined by 

Expression (34) relates the autocovariances to the AR coefficients and the coefficients of  the 
moving average representation. By using the fact that 

C = (I - MT)-IB (35) 

(see [23]) the autocovariances can be related directly to the AR and MA coefficients. By combining 
(34) and (35), [26] shows that the MA parameters satisfy 

NB* = n>[( I  - Mr)F  - M,F*].$,. (36) 

Thus, given the AR coefficients and the autocovariances F,,  r = 0 , . . . ,  r, equation (36) provides 
an implicit expression for the MA coefficients in terms of  the AR coefficients and the autocovari- 
ances. There is unfortunately no direct way of  obtaining matrix B given the right-hand side of  (36). 

The problem of deriving B from (36) is related to a procedure for obtaining the MA coefficient 
estimates for pure MA processes suggested by Jenkins and Alavi [24]. Note that in this case (36) 
reduces to 

NB* = F. (37) 

Their iterative, linearly convergent procedure for computing B from (37) consists of  solving 
recursively the following set of  equations: 

q 
] g -  F 0 -  ~ BtI~B r (38a) 

/=1 

q - k  
h i =  B,r, BT, ,  k =q,q - 1 . . . . .  1, (38b) 

i~ l  

where B0 = I and X = var(c,). The procedure is initialized by setting Bt = 0, i = 1 . . . . .  q. Jenkins 
and Alavi [24, p. 12] note that "[t]he convergence properties of  this method are not satisfactory, 
especially if q > 1, and a quadratically convergent method, which applies to mixed models, is now 
under development." 

The problem of  determining B from (37) is also related to the spectral factorization problem 
for which a quadratically convergent procedure is readily available. Tunnicliffe Wilson [25] provides 
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a Newton-Raphson factorization algorithm. It relates successive iterations for B,+ ~,, in terms of 
B,,k by a set of linear equations given by 

q - k  q - k  

Y', B,+I,J+kB~J+]3,,y+kBT+I,J =Ft~+ X B,,J+kB~J' k = 0  . . . . .  q, (39) 
i = 0  j = 0  

where B,. k denotes the value for MA coefficient Bk in the zth iteration. Using our matrix notation, 
it can be shown that (39) amounts to the following equation: 

N, + IB* + N,B*+ t = F + N,B*, (40) 

with N and B* being as defined in (34) and (36), respectively. In case of mixed ARMA processes, 
equation (40) becomes 

N,+ ,B~* + N,B*+ 1 = a + N,B* (41) 

where 

A (A~ AT "" *T = • Aq) = H~'[(I - M T ) F  - -  M.F*].~. 

Tunnicliffe Wilson initializes recursion (39) by setting 

T, j = 0  
B0,/= 0, j = l  . . . . .  q, 

where T is obtained from the Cholesky decomposition F0 = TT T. Note that one iteration can 
be saved by initializing (41) with B0,. = A(H~) -~, where A0 = HI-I T and, to avoid confusion, B0. 
denotes the value of matrix B at the initialization. The factorization procedure requires for 
each iteration the solution of a set of m2(q + 1 ) -  m ( m  - 1)/2 linear equations which can be 
specified by vectorizing (41)• Computationally this can be rather costly, even for moderate values 
for m and q. 

An alternative method is proposed in Mittnik [26] and briefly summarized here. It is well known 
that an m-dimensional AR process of order p can be expressed as a first order process of dimension 
mp. Using a somewhat different strategy we can transform an m-dimensional MA process of 
order q, given by 

y, = B(L)¢,, (42) 

into a first order MA process of dimension mq. Defining 

_So = B,  • 

_n, = tB, • n l  

To = T>[B_0], 

T, = Tt>[B_ t], 

we can rewrite the MA process (42) as 

where 

• . .  Sq _,y, 

• , • B q T ] T  

YkA = T0t-kz~ + Tl{kA-a, k SZ, (43) 

= [ y I _ q  . . .  

and subscript A denotes the time interval with which process (43) evolves. For the above definitions 
of _B0 and I~1 and, thus, Tt and T2, A is equal to q. 

This conversion allows us to obtain an expression for the factorization problem (36) or (37). 
Let Do and Dt denote the variance and first order autocovariance of process (43), Do == E(ytAZkTA) 
and Dt ffi E(ykD'TA_ A), respectively. Note that the autocovariance matrices of process YkA consist 
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of the elements 
In particular, 

of the autocovariance function of the original processes, /'t, i = 0, 1 . . . .  

D 0 

9 1  

-Ao A T  . . .  A T  - 
q - - I  

AI Ao 

Aq_ I " " " A o  

Aq Aq_ I "'" A1 

0 Aq A 2 

0 "'" 0 Aq 

In case the original process is a pure MA process, the Ais in Do and D~ are replaced by Fis. Using 
this notation, the factorization problem can be written as 

ToT0 + + TIT~ = Do (44a) 

TIT0 T = D l . (44b) 

Solving (44) amounts to finding the solution to 

P + D~P-tDT = Do, (45) 

with P = ToT0 r. Equation (45) is solved iteratively by 

P~+ 1 = Do - D,p~-IDI r, (46) 

with P0 = Do - DtDfftDT, yielding 

P = lira P~. 
T~OO 

Given P, we obtain To via Cholesky decomposition. The first block column of T o represents the 
MA coefficient matrices B0, B~ . . . . .  Bq_ j and, rather than solving T~ = D~(T0 r)- t, B~ is computed 
by 

Bq = AqB o I. (47) 

The procedure just described represents an alternative to the matricial spectral factorization 
algorithm of Tunnicliffe Wilson [25] which requires in each iteration the solution of an 
m2(q + 1 ) -  m(m - 1)/2-dimensional system of linear equations. The algorithm suggested here 
involves the inversion of matrix Pk in each iteration. Matrix Pk is of dimension mq × mq only, and, 
since it is (block) symmetric positive definite, its inverse can be computed rather efficiently. Note 
also that Do has a block Toeplitz structure and can be efficiently inverted by applying the block 
Levinson algorithm suggested by Akaike [27], involving only 0(q 2) operations. 

The proposed factorization procedure can be applied to the standard spectral factorization 
problem, providing us directly with estimates of the coefficients of the moving average represen- 
tation, Co, C~ . . . . .  without first having to estimate the AR coefficients. The latter can be estimated 
in a subsequent step by applying one of the IV-type methods mentioned earlier. Then, using (35), 
the MA coefficients can be determined by 

B = (I - MT)C. (48) 

An advantage of proceeding in this fashion is that the convergence of the iterative factorization 
is not affected by poorly estimated AR coefficients. 
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5. C O N C L U D I N G  R E M A R K S  

A method for estimating linear, time-invariant state space models from multiple time series data 
has been suggested. The system matrices are derived from estimated Markov  parameters associated 
with the system's inputs. The inputs may consist of  lagged outputs, observable exogenous variables, 
unobservable noise, or any combination of  these three types. For  pure A R  processes, A R M A  
processes that can be approximated reasonably well by AR processes, and A R  processes with 
exogenous variables, the approach is computationaUy simpler than the one proposed by Aoki, since 
it does not require the solution of  an algebraic Riccati equation. In the presence of  MA terms, the 
proposed algorithm involves a step that is related to the spectral factorization problem. In fact, 
we accomplish the factorization by solving (45) which can be regarded as a special and rather simple 
version of  a Riccati equation. The equivalence between Tunnicliffe Wilson's [25] spectral 
factorization algorithm and finding the solution to an algebraic Riccati equation has been pointed 
out by Anderson [28]. Hence, the approach by Aoki and the one described here are more closely 
related than it may first appear. A major  computat ional  advantage of  the proposed method is that 
the factorization has to be solved only once, not re-solved each time considering a different lower 
dimensional approximation.  Also, the separate estimation of  the A R  coefficients allows us to 
employ more efficient estimators for this step. 

It  remains to be seen how both approaches compare  in practical applications. A comparison 
of  alternative strategies to modeling multivariate time series (such as unrestricted vector auto- 
regressions, Bayesian vector autoregressions, multiple A R M A  models obtained via maximum 
likelihood estimation, and the ones mentioned here) which investigates their performance with 
respect to various objectives is the subject of  future research. 
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