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In the following, we will consider the problem of ordering the zeroes of the
Legendre functions P”(z,) when m is a nonnegative integer and 0 <z, < 1. Let
v=v7"(z,) denote the jth positive root of P7(z,) =0, where j=1,2, ... Tt is well
known from the Sturm-Liouville theory that v/'(zq) < v * !(zo) < V7, |(z,). We will

show that "71+2(20)<V;‘n+1(30)' Using these and several other inequalities, we will

also show that v{<v]<vi<vi<vi<vi<vi<vi<yi<y] for all O<zy<l.
Moreover, this is the unique ordering of the first ten v/'(zo)s for 0<zo <l © 199

Academic Press, Inc.

1. INTRODUCTION

Let m denote a nonnegative integer. For fixed z,e [0, 1), we will denote
the positive zeroes of the Legendre function P7'(zy) =0 by v=v]"(z,), where
j=1,2,... In this paper, we will be concerned with questions that are
related to ordering the v}"(z,)’s. For example, given v]'(z,) and v](z,) with
O<zy<1;

[Q1] What conditions on (m, j) and (n, i) imply v](z¢) <v](z,)?

[Q1] was motivated by questions about the order and multiplicity of the
eigenvalues of the Laplacian on a spherical cap (see [1]). The Sturm-
Liouville theory provides some partial answers to these questions. In
particular (see [11, Chap. VII]),

Vi (z) <V zo) <V ((20). (1.1)

However, the above inequalities are not sufficient to order all the v}'(z,)’s.
To the best of the author’s knowledge, it is not known whether or not
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[Q1] has been considered for the v-zeroes of the Legendre functions. On
the other hand, the related problem of how a zero “z,” behaves as the
degree v is varied has been studied via the Sturm comparison theorem (see
[7-97 for a discussion of this and related results).

In this paper, we will present some results that are related to [Q1]. In
general, the condition v7'(z,) = v{(z,) does not imply (m, j) = (n, i) (see the
Remark at the end of Section 2). However, in Section 4, we show that the
set of z,’s, for which v7'(zo)=v](z,) and (m, j) # (n, i), has measure 0. In
Section 2, we list some properties that are related to Legendre functions. In
addition, we show that v =v'(z,) is an analytic function of z, for z,€ (0, 1)
(see Lemma 1).

The main result of this paper are contained in Section 3, where we show
that

VI3 (z0) <V 1 (20), (1.2)
v3(z0) < vi(zo), (1.3)
vilzo) < vi(zo) + L, (1.4)
vi(zo) <vi(zo), (1.5)
v3(ze) < vi(zo)- (1.6)

Although (1.1)-(1.6) are not sufficient to order all the v}'(zo)’s, they do
imply that the first ten zeroes are (in increasing order)

0 1 2 0 3 1 4 2 0 5
Vi<V <Y<V, <V <y, <yl <y <y <y forall O0<zo<l. (L1.7)

2. THE LEGENDRE FUNCTIONS AND RELATED PROPERTIES

In the following section, we list some of the known properties related to
the Legendre functions and their zeroes. Unless otherwise stated,
throughout the remainder of this paper m will always denote a nonnegative
integer and i, j, k, n will always denote positive integers.

A function y = P”(z) that satisfies

d d 2
E((I_Z2)Ez_y>+<v(v+l)_lrjz2)y:0’ —l<z<l, (2.1a)
y(1) bounded, (2.1b)

is called a Legendre function of the first kind of degree v and order m. If
~1<z<1 and v>0, then P7(z) can be expressed as (see [2, p. 148])

409/147/1-20
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(=" I'lv+m+1) S
Pln z — 1_/:.. m/Z
+2) 2"m! F'(v—m—+1) ( )

- (1+m+V)” (’nh‘))n L\H
XEO (m+1),n2" =2y, (22)

where 7(z) is the gamma function and (a), denotes the Pochhammer
symbol,

(@)o=1,
(a),=ala+1)---(a+n—1).

There are various identities which relate contiguous Legendre functions.
We list a few that will be needed later (see [2, p. 161]):

Pz 4+2m+1)z(1 =22 "2 P+ )+ (v—m)(v+m+ 1) P"(z) =0,

(2.3a)

P (2) =PIy (2) = Qv+ 1)(1=22)"2 Pr ' (2), (23b)
(v—m)v—m+1) P}, (z2)—(v+m)(v+m+1) PT_,(2)

=(2v+ 1)(1 =232 P Y(z). (2.3¢c)

It is well known that P7(z)=P™, ,(z) (see [2, p. 122]). We will consider
only nonnegative values of v.

For a fixed z,€[0, 1), we will refer to the problem of finding a pair
(v(v+ 1), y) that satisfies (2.1) and the boundary condition

Mzo)=0, (2.4)

as eigenvalue problem (# ). For such a pair, v(v+ 1) is called an eigenvalue
and y the corresponding eigenfunction. When 0 <z, < 1, the solutions of
(# ) are pairs

77+ 1), Ph(z), (2.5)

where Pin(zq)=0, m=0,1,..,and j=1,2, ...

For fixed m, P7(z) is an analytic function of v in the neighborhood of
any point v, at which the function P} (z) is finite [ 5, p. 189]. Moreover, the
roots of

S(v)=P7(z,)=0 (2.6a)
are simple, i.e. (see [6, p. 241]),
S #0. (2.6b)

J
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To emphasize that the v}”s depend on z,, we write v" =v}"(z,). Questions
on how the spectrum of an eigenvalue problem behaves as a parameter,
such as z,, is varied have been studied by a number of authors (see [11,
p. 1747 or [3, p. 409]). The problem of how a root of a Legendre function
varies as a function of v is considered in [7, 8]. We are interested in how
a typical v'(z,) behaves as a function of the parameter z, for 0 <zo< 1.
Each v{"(z,) is increasing in z, when 0 <z <1 (see [4]). As the following
result shows, each v[" is analytic on (0, 1).

LEMMA 1.  For every nonnegative integer m and positive integer j, there is
a unique function v=v7'(a) that is analytic for a€(0,1) and satisfies
P7(a)=0 for e (0, 1).

Proof. Let v;=v]'(a,) denote the jth positive zero of (2.6a) for z=u,,
i=1, N e=a<a,< - - <ay=1—¢e (0<e<1) From (2.6b), it follows
that

oP(a,)

ES #0.

V=

By the implicit function theorem, there exist g, () and U,=
{a:]a—o;| <6,;} such that for i=1, .., N,

(i) U,=(0,1),
(i) gi{a;)=v;, g;,(«) is unique and analytic for o€ U,,
(i) Py, (x)=0for all e U,

Since [, | —¢] is compact, one can choose a finite number of U,’s
that cover [¢ 1—¢]. Since the g’s are unique on U,, it follows that
g:(2)= g;(a) whenever ae U;nU,. If we define v'(a) = g,(a) for ae U,
then it follows (since ¢ can be chosen arbitrarily small) that we can denote
the solution of P(2) =0 by v=v}"(a) for 0<a <.

Suppose m is a nonnegative integer and k is a positive integer. From
Rodrigues” formula [7, p.246], it follows that P, ., ,(0)=0. Hence,
when z,=0, the solutions of (# ) are those pairs in the form (2.5) with

vi(0)=m+2j—1 2.7)
Since each v[’(z,) is increasing as a function of z,, it follows that
vizo) >m+2j—1 for 0<zo< 1. (2.8)

In general, given an arbitrary z,€ (0, 1), it is difficult to determine the
v7(zo)’s without resorting to numerical methods. However, when z, is a
root of a Legendre function with v=n (n a positive integer), one can easily
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determine certain of the v/"(z,)’s. For m <n, P'(z) has n—m zeroes on the
interval —1<z<1 (see [7, p.260]). These will be denoted by =/, (ie..

Pz )=0and k=1,2,..,n—m). By convention, z), >z, . Thus, if
zo=1z", for some integers m, n, and k, then it follows that

vz ) =1, (2.9)

Bruns’ inequalities give a way of determining intervals in which the z,, ;s
fall (when m =0, we will drop the superscript and write z, , for z,). Let
&, € (0, m) be defined by the equation

COS(¢H,/\') = Zn.k M

Bruns’ inequalities state that (see [7, p. 189])

—1
2

1
n+s

n for k=1,2,..,n (2.10)

n< - <
¢n./\ n+%

It follows from (2.10) that

k k—1
cos< 1n><z,,.k<cos< 27:) for k=1,2,..,n (2.11)
n+s n+

1
2

Although ¢, , in (2.10) may lie in the interval (0, 7), in this paper we will
be concerned with ¢, , € (0, 37 ]. In [9], Szegd obtained a sharper estimate
for an interval containing a ¢, , € (0, $n]. In particular, he showed
jk jk 1 _
—_——<g <, 0<o, <5m, k=1,..,n, (2.12)

(n+3)32+c n+;

where ¢ =1-(2/n)? and j, is the kth nonnegative zero of the Bessel func-
tion Jo(z) (see [9, Sect. IIT; Egs. (4) and (7)]). From (2.12), it follows that

jk jk
cos [ —— | <z, <cos | ——"0=—=]. (2.13)
<’7+%> ‘ <~/(n+%)2+0)

In the sections that follow, we will be interested in determining the order
of the v}'(zo)’s. Certain properties are well known. For example, from the
general Sturm-Liouville theory, we have

v;."(zo)<v;”+'(zo)<v;”+l(20), (2.14)

for every 0 <z, <1 (see [11, Chap. VII]). However, (2.14) does not give a
complete ordering of the v7’s.
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Remark. 1In general, the v7"’s need not be distinct. For example, one can
verify that z},,=z19,=1//5. Hence, when z,= 1/\/3, it follows that
vi(z0) = v1°(z0) = 14.

3. ORDERING THE ZEROES OF P7(z,)

THEOREM 1. If0<z,< 1, then

AR AR S IR S A (3.1)
Proof. The first and third inequalities of (3.1) follow from (2.14). That

18,
m m+2

v vt Eie (v

J+10 7 v

m+1 m+1)
J > i+

From (2.2), we see that

(=1)"I(2(m+1))
2"m!

P (29)= (I_Z(z))m/z Zg-. (3.2)

By (2.8), v7**' > m + 1. Moreover, since Pm+1(z,) #0, it follows from (3.2)
that /

sign(Pli(zo)) = (— D)™/ for j=1,2,.. (3.3)

By applying (2.14), it follows that the sign of P™*!(z,) must be constant

for v+t <v <yt ie,

sign(P7" ! (z))=(—1)"*/+! for vitl<y<yrl (3.4)

From (2.3a) (with v=v7"" and z = z,), it follows that the sign of P:;:ntlz(zo)
must be opposite the sign of P'v;:nw*l(Zo), ie.,

sign(Pptf(20)) = (—1)"*+/* ", (3.5)

Both P7(z,) and P7%?(z,) change sign exactly once in the interval

m+1 m+1
(v v ). Hence,

sign(Ph1(20)) = (— 1)+ 7+, (36)
sign(P%%(zo)): (—1)"+i+2, (3.7)

If we assume v . <v"*2 then it follows that
j+1 J

sign(P}'*?(z0)) = sign(P}'* !(z0)) = sign(P'(z,))

=(—1)y"+i+! for v7 ,<v<yrt2 (3.8)
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Since (3.8) contradicts (2.3a), we conclude v"**<v?”, | and the proof of

Theorem 1 is complete.

Remark 1. From (2.7), it follows that v **(0) =v""_,(0).

Remark 2. 1f 0<zy<1 and v7"""=v}’ for some nonnegative integers
m, n, j, and k, it follows from Theorem 1 that n> 3.

From (2.7), we see that v}(0)=4 and v3(0)=3. The following result
shows that the distance between vi(z,) and v9(z,) is strictly greater than 1
forall 0<zo< 1.

LEMMA 2. If 0<zy<1, then vi(zy) > v3(zo) + 1.

Proof. The proof consists of two parts. First, we will show that v}(z,) #
va(zo)+ 1 for any zoe(0,1). Suppose there is a z,e(0, 1) for which
Vi(Zo) = v3(z) + 1. Let

v=13z0), (39)
v+ 1 =v,(z). (3.10)

From (2.3b) with m=1 and v, v+ 1 as above, we have
P! (20)— Pl (z) = Qv+ 1)(1—22)" P(). (3.11)

However, from (3.9) and (3.10), we see that v and v+ | are zeroes of P .(z,)
and P)(z,), respectively. From (3.11), it follows that

P! (z4)=0. (3.12)

From (3.12), we conclude that v—l=v}(20) for some j. However,
vi(zo)=v+ 1. Hence, j=1, ie.,

vi(zg)=v—1. (3.13)
Substituting (3.10) and (3.13) into (2.3c) with m =1, we find
(2v+ 1)(1 —z3)"2 P2(z4) =0. (3.14)
Hence, v= v‘f(zo) for some j. Moreover, from (3.9), we see that
v=v3(z9) =vi(zo)  forsome z,€(0,1).
By Remark 2 following Theorem 1, this is impossible and it follows that
vi(zo) #vI(zo) + 1 forall O0<zy<l. (3.15)

Since v)(zo), vi(z,) are analytic for 0 <z, <1, it follows from (3.15) that
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either vi(zo) > v9(zo) + 1 or vi(zo) <v)(z)+ 1. In order to complete the
proof of Lemma 2, we note that

z5,=[(T-2 \/7)/21]‘/2 =0.2852, z,,=[(15-2 \/ﬁ)/35]”2 =0.3399,
v3(z5,) <v3(z42) =4, (3.16)
vy(z5,)=35. (3.17)
Substracting (3.16) from (3.17), we obtain
v3(z5,)>vi(z4,) + L. (3.18)
By (3.18), we find that
vi(Zo) > v3(z) + 1 forall 0<zy<1. (3.19)

Before completing this section, we first note a few inequalities that will
be needed later:

2
V2 < 9.3 <sin< 3 ) for n>3. (3.20)
nn+1)+6 2(2n+3) 2n+3

The first inequality in (3.20) is verified by a simple caiculation. The second
inequality in (3.20) follows from the observations that

) T
x<sin x for 0<x<—3-,

when n>=3.

From (3.20) and (2.11) (with n replaced by n+ 1 and k = 2), we find that

nn+1)—2\"? ( 3n
—_— — = 3. .
(n(n+1)+6> > cos 2n+3)>z"“’2 for n=3 (3.21)

Applying (2.13) and arguing in a similar fashion as above, one can also
show that

1)—6\"2 j
(M——)—> >cos<—j2———>>z,,y2 for n=35, (3.22)

n(n+1)+18 /(n+1)Y+¢

1)—12\2 '
nin+1)—12 > cos 3 >Z,.143 for n=6. (3.23)
n(n+1)+56 (n+3)*+c ‘

THEOREM 2. If0<zy< 1, then vi(z,) <vi(zo).
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Proof.- Suppose there is a z,€ [0, 1) such that
v=1v3(z0) = vi(z,), (A1)
and # is that integer for which
n<yv<n+ 1. (A.2)

From (2.7), it follows that v3(0) =3 and v{(0) = 4. Moreover, vJ(z,), vi(zo)
are increasing in z,. Hence, if (A.1) and (A.2) are true, then for such a z,,
it follows that 0 <z, <1 and n>=4. From (2.3a) with m=1 and m=0, we

obtain
drg(1-2) " (v—1)(v+2) \/P2zo)\ (O
< 1 220(1—z5)‘/’2)<P:<zo)>‘(0>' (3.24)

By Remark 2 following Theorem 1, it follows that PZ(z,)#0 and
Pl(z4) #0. From (3.24), it follows that

dzy(1—2z3) '"* (v—=1)(v+2)
det 5 ]1=0 32
a1 i 1) (3:23)
Solving for z; in (3.25), we obtain
, vv+1)=-2
Zo=m—— 3.26
O wv+1)+6 ( )

For an # satisfying (A.2), it follows from (3.21) and (3.26) that

v(v+1)—2\"? n(n+1)—2>”2 3n
- > we1a. (327
%o <v(v+1)+6> <n(n+1)+6 >COS<2n+3)>Z e (327)
From (3.27), we conclude z,>z,, ,,. Since v9(z,) is increasing in z,, it
follows from (2.9) that

vg(20)>vg(z,,+]42)=n+ 1 (328)
However, (3.28) contradicts (A.2) and the proof of Theorem 2 is complete.

THEOREM 3. If 0<zy< 1, then vi(zo) <Vi(zo).

Proof. Suppose there is a zoe [0, 1) such that
v=v,(29) = vi(2o), (B.1)
and # is that integer for which

n<v<n+ 1. (B.2)
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From (2.7), (B.1), and (B.2), we see that n> 5. From (2.3a) with m =

m=1, we obtain

620(1—2(2,)’”2 (v—2)(v+3) Pi(zo) _ 0
( 1 4zy(1 __Z(Z))~I/2><p§(20)> _<0>‘

Since P}(zo) #0 and P2(z,)#0, from (3.29) it follows that
det <6ZO(1 -z (v=2)(v+3) ) —0

1 dzo(1—2z3) '
Solving for zJ in (3.30), we obtain

viv+1)—6
viv+ 1)+ 18

—72 =
ho -
For an n satisfying (B.2), it follows from (3.22) and (3.31) that

viv+1)—6\"? n(n+1)-—6)1/2
Zn=| ——— > —0—— -
0 (v(v+1)+18) /<n(n+1)+18

> cos (———-Jz———> >Z,,
(n+3P+c
Thus,
¥3(20) > VY(z,,0) =n.
From Lemma 2 and (3.33), it follows that

vi(zo) > vi(zo) + 1> n+ 1.

305

2 and

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Equation (3.34) contradicts (B.2) and the proof of Theorem 3 is complete.

THEOREM 4. If 0<zo< 1, then vi(z,) < v3(z,).
Proof. Suppose there is a zoe (0, 1) such that
v =v3(z0) = vi(zo),
and » is that integer for which

n<v<n+1,

(C.1)

(C2)

From (2.7), (C.1), and (C.2), we find n>6. From (2.3a) with m=3, 2, 1, 0,

we obtain
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8¢ (v—23)v+4) 0 0 Pi(zq) 0

1 60 (v—2)(v+3) 0 Plzo) | [0

0 1 4o (v—D)v+2) || PAz) | O]

0 0 1 26 Pl(zo) 0
(3.35)

where o =zq/(1 —z2)"% Since P(z,)#0 and Pl(zy)#0, from (3.35) it
follows that

8¢ (v—3)v+4) 0 0
i 60 (v—2)(v + 3) 0 ~

det] 1 4o -t "% (330
0 0 1 2

After substituting A =v(v + 1), s = into (3.36) and simplifying, we obtain
3845 — T2(A—4)s+ (A—2)(4A—12)=0. (3.37)

We denote the two solutions of (3.37) by

9(A—4) +./3 (1942 — 104/ + 240)'
9% '
Since v 6, it follows that 13>42. Since 194>~ 104/ + 240 > 1856/19 and

A =42, we see that s > 0. A straightforward calculation shows that s~ <0
if and only if 2 <A< 12. Hence, when 4242, s* >s5~ >0. The particular

% 9

zo that satisfies (C.1) is related to either s* or s, ie.,

st 172 s 1/2
e s S

Furthermore, for such a z, we have

st =

(3.38)

z2>min B
0= l+st 145
— S7
T l4so

>9(;.—4)—\/§(1912— 1044 + 240)'7
" 9460~ /3 (1942 — 1044 + 240)
i-12
1+ 56
v+ 1) - 12
v(iv+1)+56

(3.40)

>
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Combining (3.40) with (3.23), we find

><v(v+1)—12>1/2 (n(n+1)—12>1/2
27+ +56) “\nn+1)+56

\

J
>COS<—\/(7_—T3:%——)2__+—C>>Z”+L3. (341)

From (3.41), we find
v3(20) > V3(Zpy 1 a)=n+ 1. (3.42)

However, (3.42) contradicts (C.2) and the proof of Theorem 4 is complete.

4. CONCLUDING REMARKS

By combining the results of Sections 2 and 3, we conclude that
Wl <vi<)<vi<vi<vi<vi<yi<y] forall 0<zo<l.  (41)
By applying Theorems 14 and (2.14), it follows that for 0 <z <1,
vi<vi<vl,
v <,
v;, =min{v}, v¢} =min{v7: v #v], v, vi, v, vi v va, vi v vl (42)
Hence, v; is distinct. Moreover, the order of the first ten v(z,)’s is given

by (4.1).
Numerical calculations indicate that v, = v3 and

vi(zo) <v8(zg)  for 0<z<0.810843468,
vS(zo) = vi(zo) = 1578011308 for z,=0.810843468,
vi(zo) > v8(zo) for 0.810843468 <z,< 1.

It is interesting to note that the Bessel functions, J,, and J,, , ,, have no
common zeroes other than the origin (see [10, p.484]). That is, if j}
denotes the kth positive zero of J,(z), then j7=;7 if and only if
(m, k)= (n, i). By the remark at the end of Section 1, it is clear that the
vi(zo)'s are not distinct for every zye (0, 1). On the other hand, suppose
vi(zo) = vi(zo) With (m, j)# (n, i) and v(z)=v](z) for all z in a dense set
A, such that zye A4, <(0,1). Since v7,v] are analytic, it follows

2o Fr i



308 FRANK E. BAGINSKI

vi(z)=v/(z) for all ze(0,1) (which is impossible). It follows that the
measure of the set,

Fy=1{z010<zo<1, V;”(Zo) =v](zo) and (m, j)# (n, i)},
is zero. Hence, in every neighborhood of a z,, for which v/"(z,) = v](z,) and
(m, j)#(n, i), there is a z; such that v}'(zg)#vi(z5) and |z~ z5] 1s
arbitrarily small. In other words, for almost every z,€ (0, 1), the condition
vi(z9) = v](z,) implies that (m, j)=(n, i).

All of the results that are presented here can be applied to ordering the
eigenvalues of the Laplacian on a spherical cap with a half-angle opening
of 8,€ (0, in) (in the context of this paper, z, = cos 6,). This is because u
is an eigenvalue of the Laplacian if and only if p=u=v7(v]"+1) for
some (m, j) (see [1]). In particular, we can obtain the order of the first ten
eigenvalues of the Laplacian from (4.1) by replacing the v’s with the
corresponding u"’s.
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