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Abstract

This paper is devoted to inequalities of Lieb–Thirring type. Let V be a nonnegative potential such that
the corresponding Schrödinger operator has an unbounded sequence of eigenvalues (λi(V ))i∈N∗ . We prove
that there exists a positive constant C(γ ), such that, if γ > d/2, then

∑
i∈N∗

[
λi(V )

]−γ � C(γ )

∫
Rd

V
d
2 −γ dx (∗)

and determine the optimal value of C(γ ). Such an inequality is interesting for studying the stability of mixed
states with occupation numbers.
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We show how the infimum of λ1(V )γ ·∫
Rd V

d
2 −γ dx on all possible potentials V , which is a lower bound

for [C(γ )]−1, corresponds to the optimal constant of a subfamily of Gagliardo–Nirenberg inequalities.
This explains how (∗) is related to the usual Lieb–Thirring inequality and why all Lieb–Thirring type
inequalities can be seen as generalizations of the Gagliardo–Nirenberg inequalities for systems of functions
with occupation numbers taken into account.

We also state a more general inequality of Lieb–Thirring type

∑
i∈N∗

F
(
λi(V )

) = Tr
[
F(−� + V )

]
�

∫
Rd

G
(
V (x)

)
dx, (∗∗)

where F and G are appropriately related. As a special case corresponding to F(s) = e−s , (∗∗) is equivalent
to an optimal Euclidean logarithmic Sobolev inequality∫

Rd

ρ logρ dx + d

2
log(4π)

∫
Rd

ρ dx �
∑
i∈N∗

νi logνi +
∑
i∈N∗

νi

∫
Rd

|∇ψi |2 dx,

where ρ = ∑
i∈N∗ νi |ψi |2, (νi)i∈N∗ is any nonnegative sequence of occupation numbers and (ψi)i∈N∗ is

any sequence of orthonormal L2(Rd) functions.
© 2005 Published by Elsevier Inc.
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1. Introduction

Lieb–Thirring type inequalities are well known in the context of the stability of matter in
quantum mechanics. Let h̄ = h/2π > 0 and m > 0 be respectively Planck’s constant and the
mass constant. Given a smooth bounded nonpositive potential V on R

d , if we denote by

λ1(V ) < λ2(V ) � λ3(V ) � · · · � λN(V ) < 0

the finite sequence of all negative eigenvalues of the Schrödinger operator

HV = − h̄2

2m
� + V,

then it is possible to bound the sum
∑N

i=1 |λi(V )|γ in terms of ‖V ‖Lγ+d/2(Rd ) whatever N is.
The inequality

N∑
i=1

∣∣λi(V )
∣∣γ � CLT(γ )

∫
Rd

|V |γ+ d
2 dx (1)

is known as the Lieb–Thirring inequality. Here we denote by CLT(γ ) the smallest possible pos-
itive constant which is independent of V . For γ = 1, the sum

∑N
i=1 |λi(V )| is the complete
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ionization energy, which is the physically relevant quantity for studying the stability of matter.
Considerable efforts have been made to understand further the Lieb–Thirring inequality and in
particular to find the optimal value of CLT(γ ). Up to now a few facts about the sharp constant in
the Lieb–Thirring inequality are known. It was proved in [1] for d = 1 and later generalized to
arbitrary d in [22] that for γ � 3/2 the sharp constant is given by the semiclassical constant, i.e.,
the constant corresponding to the limit problem when letting h̄ → 0, after an appropriate scaling.
Among many other open problems, the Lieb–Thirring conjecture asserts that in d = 1

CLT(γ ) = C
(1)
LT (γ ) := inf

V ∈D(R)
V �0

|λ1(V )|γ∫
R

|V |γ+ 1
2 dx

.

This has been worked out for the case γ = 1/2 in [21]. Also see [2,17,18,20,26,27] for further
results on (1).

What we study in this note is a somewhat different problem, where V is a nonnegative,
unbounded potential on R

d , such that the eigenvalues of HV form a positive unbounded non-
decreasing sequence (λi(V ))i∈N∗ . Our main result is the

Theorem 1. For any γ > d/2, d ∈ N
∗, and for any nonnegative V ∈ C∞(Rd) such that V d/2−γ ∈

L1(Rd),

∑
i∈N∗

[
λi(V )

]−γ � C(γ )

∫
Rd

V
d
2 −γ dx. (2)

The value of the sharp constant C(γ ) is given by the Weyl asymptotics, i.e., by its value in the
semiclassical limit:

C(γ ) =
(

m

2πh̄2

) d
2 	(γ − d

2 )

	(γ )
.

Although the result is quite simple and arises as an immediate consequence of the Golden and
Thompson inequality, it is to our knowledge new. Some partial estimates have been obtained in
[8] in case of quadratic potentials. We refer to [3,13,23,30] for earlier results in this direction.
The semiclassical formula stems from prescribing hd phase space volume to each bound state of
the Schrödinger operator. Using this heuristics, we can estimate the series by

∑
i∈N∗

[
λi(V )

]−γ ≈ 1

hd

∫
Rd×Rd

(
p2

2m
+ V (x)

)−γ

dp dx,

which is easily seen to yield the right-hand side of (2). If one considers h as a parameter, then
as h gets small the two sides in the above relation are asymptotically the same. A rigorous proof
of this fact relies on the Weyl asymptotics, that we will establish later in this paper for a specific
potential V .

We may notice that all physical constants can be adimensionalized. A simple scaling indeed
shows that for any i ∈ N

∗,

λ
h̄,m
i (V ) = λ

1, 1
2

i

(
V

(
h̄√ ·

))
,

2m
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so that in (2),

C(γ )|h̄,m =
(

2m

h̄2

) d
2

C(γ )|h̄=1,m=1/2, C(γ )|h̄=1,m=1/2 = 	(γ − d
2 )

(4π)
d
2 	(γ )

.

From now on, we assume for simplicity that h̄ = 1,m = 1/2.
Theorem 1 is motivated by the study of the dynamical stability of mixed states with respect

to minimizers of variational problems with temperature in quantum mechanics. Inequality (1)
appears in the context of atomic and molecular physics, where it is natural to consider isolated
systems for which the potential V is asymptotically zero at infinity. Computing the full ionization
energy is then a completely relevant question. Requiring that V grows at infinity makes sense in a
different context, e.g., in solid state physics, where the potential is not necessarily created by the
system under consideration itself, but can be imposed by external devices (for instance a doping
profile) or by a given electrostatic field (applied voltage). In that case, collective effects are
fundamental and it is interesting to investigate how mixed states converge in a semi-classical limit
to a classical system. At the kinetic level, the behavior of the classical system is now reasonably
well understood. For instance one knows in which sense special stationary solutions are stable,
see [4,5]. At the quantum level, many particle systems are not so well understood. A first attempt
in this direction has been made in [28], in a nonlinear case, but the result relies on a rather
weak notion of stability and the exchange term is neglected. For a linear system, we will see in
Section 3 that an appropriate functional for studying the stability of a mixed state, i.e., a sequence
(ν,ψ) = (νi,ψi)i∈N∗ ∈ R

N
∗

+ × (L2(Rd))N
∗

made of nonnegative ordered occupation numbers νi

and wave functions ψi , is the free energy functional

F[ν,ψ] :=
∑
i∈N∗

[
β(νi) + νi

∫
Rd

(|∇ψi |2 + V |ψi |2
)
dx

]
,

where β is a given convex function on R+. Under the constraints

(ψi,ψj )L2(Rd ) = δij ∀i, j ∈ N
∗,

the functional F has a minimizer made of the sequence ψ̄ = (ψ̄i)i∈N∗ of the eigenfunctions
counted with multiplicity, and the sequence ν̄ = (ν̄i )i∈N∗ of occupation numbers given in terms
of the eigenvalues by

ν̄i = (β ′)−1(−λi(V )
)
.

However, such considerations are purely formal as long as we do not prove that F[ν,ψ] is finite
at least for the formal minimizer (ν,ψ) = (ν̄, ψ̄). Such a property is a condition on both β and V .
In case

β(ν) =
{−(1 − m)m−1m−mνm if ν � 0,

+∞ if ν < 0,
and m ∈ (0,1), (3)

and with γ = m , for any i ∈ N
∗, we obtain
1−m
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ν̄i = m

1 − m

(
λi(V )

) 1
m−1 ,

β(ν̄i ) + ν̄i λi(V ) = (
β ◦ (β ′)−1)(−λi(V )

) + (β ′)−1(−λi(V )
)
λi(V ) = −[

λi(V )
]−γ

.

The free energy is well defined at least for the optimal mixed state if the series
∑

i∈N∗ [β(ν̄i) +
ν̄i λi(V )] converges, which amounts to require that

∑
i∈N∗ [λi(V )]−γ is finite. A sufficient con-

dition is therefore given by Theorem 1.
Section 2 is devoted to a proof of Theorem 1 based on the inequality of Golden and Thompson

(Theorem 2). We also state a more general result in Theorem 3. The notion of dynamic stability
will be explained in Section 3 and illustrated by several examples. In Section 4, we will come
back to the constant C

(1)
LT (γ ) which appears in the Lieb–Thirring conjecture and prove that it is

related to the best constant in some special Gagliardo–Nirenberg inequalities in the standard case
corresponding to V � 0. Such a result is not new, but we also prove that a similar result holds in
the case V � 0 (case of Theorem 1), which is apparently new. We also relate a limiting case to the
Euclidean logarithmic Sobolev inequality. In Section 5 we show in which sense Lieb–Thirring
type inequalities can be seen as generalizations of the Gagliardo–Nirenberg inequalities to sys-
tems. This extends to systems of orthonormal functions what has been observed in Sections 4.1
and 4.2. We formulate optimal inequalities in an abstract framework and apply the result to the
standard case (Corollary 16), to the framework of Theorem 1 (Corollary 17) and to a limiting
case which provides an optimal inequality of logarithmic Sobolev type for systems. Optimal
constants are expressed in terms of the optimal constants for Lieb–Thirring type inequalities.

2. Proof of Theorem 1

The proof of Theorem 1 is straightforward. It relies on a change of variables in the definition
of the 	 function and the following inequality due to Golden and Thompson [16,37]. See [31,34]
for an introduction to such methods and a proof based on the Feynman–Kac formula. Here we
adopt the presentation of [35] as stated in [34, Theorem 9.2, p. 94].

Theorem 2. [34,35] Let V be in L1
loc(R

d) and bounded from below. Assume moreover that e−tV

is in L1(Rd) for any t > 0. Then

Tr
(
e−t (−�+V )

)
� (4πt)−

d
2

∫
Rd

e−tV (x) dx. (4)

Proof. For completeness, we give an elementary proof of this result. We do not claim originality
here and we give this result only for the convenience of the reader.

Consider the Green function G of the heat equation:

G(x, t) := (4πt)−
d
2 e− |x|2

4t .

We will then write

u(·, t) = et�f := G(·, t) ∗ f
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if u is a solution of ut = �u with initial data u(·, t = 0) = f . By Trotter’s formula, e−t (−�+V )

is obtained as the strong limit of

(
e

t
n
�e− t

n
V
)n

as n goes to infinity. Then we compute the trace of this last quantity as

∫
(Rd )n

dx dx1 dx2 . . . dxnG

(
t

n
, x − x1

)
e− t

n
V (x1)G

(
t

n
, x1 − x2

)
e− t

n
V (x2)

. . .G

(
t

n
, xn − x

)
e− t

n
V (x).

With the notation x = x0 = xn+1, we rewrite this as

∫
(Rd )n

dx0 dx1 dx2 . . . dxn

n∏
j=0

G

(
t

n
, xj − xj+1

)
e− t

n

∑n−1
k=0 V (xk).

Using the convexity of x 
→ e−x , we estimate the exponential term by

e− t
n

∑n−1
k=0 V (xk) � 1

n

n−1∑
k=0

e−tV (xk).

This amounts to

Tr
(
e

t
n
�e− t

n
V
)n � 1

n

n−1∑
k=0

∫
(Rd )n

dx0 dx1 dx2 . . . dxn

n∏
j=0

G

(
t

n
, xj − xj+1

)
e−tV (xk)

= (4πt)−
d
2

∫
(Rd )2

e−tV (x) dx

using

∫
(Rd )n−1

dx0 dx1 dx2 . . . dxk−1 dxk+1 . . . dxn

n∏
j=0

G

(
t

n
, xj − xj+1

)

= G(t, xk − xk) = (4πt)−
d
2 . �

Proof of Theorem 1. The definition of the 	 function gives, for any γ > 0 and λ > 0,

λ−γ = 1

	(γ )

+∞∫
e−tλtγ−1 dt.
0
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The operator −�+V is essentially self-adjoint on L2(Rd), and positive, since V is nonnegative.
This implies, by the functional calculus,

Tr
(
(−� + V )−γ

) = 1

	(γ )

+∞∫
0

Tr
(
e−t (−�+V )

)
tγ−1 dt.

Using (4), since V
d
2 −γ ∈ L1(Rd), we get

Tr
(
(−� + V )−γ

)
� 1

	(γ )

+∞∫
0

∫
Rd

(4πt)−
d
2 e−tV (x)tγ−1 dx dt

�
	(γ − d

2 )

(4π)
d
2 	(γ )

∫
Rd

[
V (x)

] d
2 −γ

dx.

We define

C(γ ) := 	(γ − d
2 )

(4π)
d
2 	(γ )

and obtain the announced inequality.
The optimality of the constant is established by the following example. Consider the potential

Vε ≡ 1 in (0, ε−1π)d = Ωε ⊂ R
d , Vε ≡ +∞ in Ωc

ε . Such a potential can be approximated by
smooth potentials V n

ε such that V n
ε ≡ 1 in Ωε and limn→∞ V n

ε (x) = +∞ for any x ∈ Ωc
ε . The

eigenvalues of −� + Vε on R
d are the same as the ones of −� + Vε on Ωε with zero Dirichlet

boundary conditions on ∂Ωε:

1 + ε2
d∑

j=1

n2
j , n1, n2, . . . , nd ∈ N

∗,

so that

Tr
(
(−� + Vε)

−γ
) =

∑
n1,n2,...,nd∈N∗

(
1 + ε2

d∑
j=1

n2
j

)−γ

,

which behaves asymptotically as ε tends to zero as

∑
n1,n2,...,nd∈N∗

∫ ∫
. . .

∫
nj −1�xj �nj

j=1,2,...,d

dx

(1 + ε2|x|2)γ = 1

(2ε)d

∫
Rd

dx

(1 + |x|2)γ

= |Sd−1|
(2ε)d

∞∫
rd−1

(1 + r2)γ
dr.
0
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This is precisely the right-hand side of inequality (2) as can be checked using

(
π

ε

)d

=
∫
Rd

V
d
2 −γ

ε dx and

∣∣Sd−1
∣∣ = 2π

d
2

	(d
2 )

and

∞∫
0

rd−1

(1 + r2)
γ dr = 	(γ − d

2 )	(d
2 )

2	(γ )
. �

From the above proof, it easy to see that the result of Theorem 1 can be generalized as follows.
Let f be a nonnegative function on R+ such that

∞∫
0

f (t)
(
1 + t−

d
2
)dt

t
< ∞ (5)

and define

F(s) :=
∞∫

0

e−tsf (t)
dt

t
and G(s) :=

∞∫
0

e−ts (4πt)−
d
2 f (t)

dt

t
. (6)

Notice that if d is even, (−4π)(d/2) d(d/2)G/ds(d/2)(s) = F(s). In the case of Theorem 1,

F(s) = s−γ and G(s) = 	(γ − d
2 )

(4π)
d
2 	(γ )

s
d
2 −γ .

Theorem 3. Let V be in L1
loc(R

d) and bounded from below. Assume moreover that G(V ) is in
L1(Rd). With F and G defined by (6), if f satisfies assumption (5), then

∑
i∈N∗

F
(
λi(V )

) = Tr
[
F(−� + V )

]
�

∫
Rd

G
(
V (x)

)
dx.

Proof. The above inequality follows from the definition of F :

Tr
[
F(−� + V )

] =
+∞∫
0

Tr
(
e−t (−�+V )

)
f (t)

dt

t
,

inequality (4) and the definition of G. �
As an example, if we apply Theorem 3 with F(s) = e−s , f (s) = δ(s − 1) and G(s) =

(4π)−d/2e−s , we get

∑
i∈N∗

e−λi(V ) � 1

(4π)
d
2

∫
d

e−V (x) dx. (7)
R
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In the special case V (x) = A2|x|2 + B , eigenvalues are explicitly given as

B +
d∑

j=1

(2nj + 1)A, n1, n2, . . . , nd ∈ N,

and we can compute

Tr
(
e−t (−�+V )

) =
∑
i∈N∗

e−tλi (V ) = e−Bt

d∏
j=1

( ∑
nj ∈N∗

e−(2nj +1)At

)
= e−Bt

[2 sinh(At)]d . (8)

On the other hand,

1

(4π)
d
2

∫
Rd

e−V (x) dx = e−B

(2A)d
.

Putting these estimates together in the case t = 1 shows that the upper bound in (7), namely

1

(4π)
d
2

(
A

sinhA

)d

=
∑

i∈N∗ e−λi(V )∫
Rd e−V (x) dx

� 1

(4π)
d
2

,

is achieved in the limit A → 0+.
Identity (8) is also useful in the case F(s) = s−γ considered in Theorem 1. Using

Tr
(
(−� + V )−γ

) = 1

	(γ )

+∞∫
0

Tr
(
e−t (−�+V )

)
tγ−1 dt,

we obtain in the special case V (x) = A2|x|2 + B the identity

Tr
(
(−� + V )−γ

) = 1

	(γ )

+∞∫
0

e−Bt

[2 sinh(At)]d tγ−1 dt = B−γ

	(γ )

+∞∫
0

e−t

[2 sinh(st)]d tγ−1 dt

with s := B/A. Under the additional restriction γ > d , we get

∫
Rd

V
d
2 −γ dx = Bd−γ A−dπ

d
2
	(γ − d)

	(γ − d
2 )

.

With

C(γ ) = 	(γ − d
2 )

d
2

,

(4π) 	(γ )
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this shows that

Tr((−� + V )−γ )

C(γ )
∫

Rd V
d
2 −γ dx

= sd

	(γ − d)

∞∫
0

tγ−1e−t

(sinh(st))d
dt =: q(s).

It is easy to check that the function s 
→ q(s) bounded by 1 and achieves 1 in the limit s → 0+.

3. Stability for the linear Schrödinger equation

In this section we come back to the physical motivation of Theorems 1 and 3 with more details
than in the introduction and state a list of examples corresponding to various functions F .

3.1. Notations and assumptions

Let E[ψ] := ∫
Rd (|∇ψ |2 + V |ψ |2) dx and assume that V is a potential such that the operator

HV := −� + V has an infinite nondecreasing sequence of eigenvalues (λi(V ))i∈N∗ :

λi(V ) := inf
F⊂L2(Rd )
dim(F )=i

sup
ψ∈F

E[ψ].

Here the eigenvalues are counted with multiplicity, and to each λi(V ), i ∈ N
∗, we can associate

an eigenfunction ψ̄i such that ψ̄ := (ψ̄i)i∈N∗ is an orthonormal sequence:

(ψ̄i , ψ̄j )L2(Rd ) = δij ∀i, j ∈ N
∗.

As in Section 1, we also define ν̄i := (β ′)−1(−λi(V )) for any i ∈ N
∗, ν̄ := (ν̄i )i∈N∗ . The free

energy of the mixed state (ν,ψ) = ((νi)i∈N∗ , (ψi)i∈N∗) ∈ R
N

∗
+ × (L2(Rd))N

∗
is

F[ν,ψ] :=
∑
i∈N∗

β(νi) +
∑
i∈N∗

νiE[ψi]

for some given function β . If the potential V is such that −� + V has an unbounded sequence
of eigenvalues, it is easy to see that F[ν,ψ] is defined only if limi→∞ νi = 0. This allows us
to re-order the sequence (ν,ψ) in such a way that (νi)i∈N∗ is a nonincreasing sequence con-
verging to 0, and we may restrict the domain of the free energy F to S × (L2(Rd))N

∗
, where

S denotes the set of nonincreasing sequences in R+ converging to 0, such that
∑

i∈N∗ β(νi) is
absolutely convergent. Notice that whenever it is finite,

∑
i∈N∗ β(νi) is absolutely convergent by

the assumption limi→∞ νi = 0.
We shall say that assumption (H) holds if β is a strictly convex function with β(0) = 0, which

is C1 on the interior of its support and if the potential V is such that −� + V has an unbounded
sequence of eigenvalues (λi(V ))i∈N∗ for which

∣∣∣∣∑
∗
β(ν̄i)

∣∣∣∣ < ∞ and

∣∣∣∣∑
∗
ν̄iλi(V )

∣∣∣∣ < ∞,
i∈N i∈N
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where ν̄i := (β ′)−1(−λi(V )) for any i ∈ N
∗. As seen in Section 1, assumption (H) is a conse-

quence of the Lieb–Thirring type inequalities of Theorem 1 if β(ν) = −(1 − m)m−1m−mνm,
m ∈ (0,1) (see below Example 2 for more details). In the framework of Theorem 3, F(λ) =
−β(ν) − λν with ν = (β ′)−1(−λ).

3.2. Minimizers of the free energy

Proposition 4. Assume that β and V are such that (H) holds. Then there exists a minimizer
(ν̄, ψ̄) ∈ S × (L2(Rd))N

∗
of F under the constraint

(ψ̄i , ψ̄j )L2(Rd ) = δij ∀i, j ∈ N
∗.

Moreover,

ν̄i = (β ′)−1(λi(V )
)

and if ν̄i is positive for any i ∈ N
∗, the sequence ψ̄ = (ψ̄i)i∈N∗ is unique up to any unitary

transformation which leaves all eigenspaces of −� + V invariant. In particular, any ψ̄i can be
multiplied by an arbitrary constant phase factor, so that we may assume that ψ̄i is real.

To prove this result we first prove some results about finite mixed states: given any n ∈ N
∗, we

can define the projection Pn of a mixed state (ν,ψ) ∈ S × (L2(Rd))N
∗

onto the n-finite mixed
states by Pn[ν,ψ] := (ν̃,ψ) with ν̃i = νi for any i = 1,2, . . . , n and ν̃i = 0 for any i � n + 1.
Let Fn := F ◦ Pn:

Fn[ν,ψ] :=
n∑

i=1

(
β(νi) + νiE[ψi]

)
.

Notice indeed that β(0) = 0, so that β(ν̃i) = 0 for any i � n + 1. We may decompose Fn into an
entropy and an energy term as follows.

Lemma 5. Under assumption (H), for any (ν,ψ) ∈ S × (L2(Rd))N
∗

such that ψ = (ψi)i∈N∗ is
an orthonormal sequence,

Fn[ν,ψ] −Fn[ν̄, ψ̄] =
n∑

i=1

(
β(νi) − β(ν̄i) − β ′(ν̄i )(νi − ν̄i )

) +
n∑

i=1

νi

(
E[ψi] − E[ψ̄i]

)
.

Proof. An elementary computation gives

β ′(ν̄i )(νi − ν̄i ) + νiE[ψ̄i] = −λi(V )(νi − ν̄i ) + νiλi(V ) = ν̄iλi(V ) = ν̄iE[ψ̄i]. �
We are now going to study independently the two terms of Fn[ν,ψ]−Fn[ν̄, ψ̄] and start with

the entropy term.
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Lemma 6. Assume that infs>0 β ′′(s)s2−p =: α > 0 for some p ∈ [1,2]. For any sequence
(νi)i∈N∗ ∈ R

N
∗

+ , if
∑

i∈N∗ β(νi) and
∑

i∈N∗ νiβ
′(ν̄i ) are absolutely convergent, then

(νi − ν̄i )i∈N∗ ∈ �p and∑
i∈N∗

(
β(νi) − β(ν̄i) − β ′(ν̄i )(νi − ν̄i )

)
� 2−2/pα‖ν − ν̄‖2

�p · min
{‖ν‖p−2

�p ,‖ν̄‖p−2
�p

}
.

See [5] for a continuous version of this inequality. We may also refer to [19] in the case of
β(ν) = ν logν − ν and von Neumann algebras, and to [38] for a review of the so-called Csiszár–
Kullback inequalities. For the completeness of the paper, we give a short proof of this result.

Proof. For any i ∈ N
∗, let ζi ∈ [min(νi, ν̄i ),max(νi, ν̄i )] be an intermediate nonnegative point

such that

∑
i∈N∗

(
β(νi) − β(ν̄i) − β ′(ν̄i )(νi − ν̄i )

) = 1

2

∑
i∈N∗

β ′(ζi)(νi − ν̄i )
2 � α

2

∑
i∈N∗

ζ
p−2
i (νi − ν̄i )

2.

Let I ⊂ N
∗. Using

(∑
i∈I

|νi − ν̄i |pζ
p(p−2)/2
i · ζp(2−p)/2

i

)2/p

�
∑
i∈I

ζ
p−2
i (νi − ν̄i )

2 ·
(∑

i∈I
ζ

p
i

)(2−p)/p

,

we get

∑
i∈I

ζ
p−2
i (νi − ν̄i )

2 �
(∑

i∈I
|νi − ν̄i |p

)2/p

·
(∑

i∈I
ζ

p
i

)1−2/p

.

On I = {i ∈ N
∗: νi > ν̄i} (respectively I = {i ∈ N

∗: νi < ν̄i}), we estimate
∑

i∈I ζ
p
i from above

by
∑

i∈I ν
p
i (respectively by

∑
i∈I ν̄

p
i ). Using the inequality (a + b)r � 2r−1(ar + br) for any

a, b � 0 and 2/p = r � 1, we completes the proof. �
Next, we turn our attention to the energy term and recall a result given, for instance, in [26].

Proposition 7. Let V be a potential such that the sequence of eigenvalues (λi(V ))i∈N∗ of HV is
unbounded, and choose any n functions ψ1, . . . ,ψn that are orthonormal in L2(Rd). Then

n∑
i=1

E[ψi] �
n∑

i=1

λi(V ).

We extend this property to orthogonal families.

Lemma 8. Assume that V is a potential as above. For any orthogonal family (φi)1�i�n in
L2(Rd), with ‖φi‖2 = νi and ν1 � · · · � νn, we get

n∑
i=1

E[φi] �
n∑

i=1

νiλi(V ).
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Proof. We prove this result by induction on n. The case n = 1 is trivial. Suppose that the re-
sult holds for any orthogonal system of n functions, and take (φi)1�i�n+1 with nonincreasing
squared norms (or occupation numbers) ν1 � · · · � νn+1 � 0. If νn+1 = 0, then the induction
assumption directly gives the result. Assume next that νn+1 > 0. By Proposition 7, we have

n+1∑
i=1

E

[
φi

‖φi‖
]

�
n+1∑
i=1

λi(V ).

Multiplying by νn+1, we obtain

n+1∑
i=1

νn+1

νi

E[φi] �
n+1∑
i=1

νn+1λi(V ),

hence

n+1∑
i=1

E[φi] �
n∑

i=1

[
νi − νn+1

νi

E[φi] − (νi − νn+1)λi(V )

]
+

n+1∑
i=1

νiλi(V ). (9)

Since νi � νn+1, we can define the family (μiφi)1�i�n with μi := (
νi−νn+1

νi
)1/2, which is orthog-

onal. By the induction hypothesis we get

n∑
i=1

νi − νn+1

νi

E[φi] =
n∑

i=1

E(μiφi) �
n∑

i=1

‖μiφi‖2λi(V ) =
n∑

i=1

(νi − νn+1)λi(V ).

In inequality (9), the first sum of the right-hand side is then nonnegative. For the system of the
n + 1 orthogonal functions, we obtain

n+1∑
i=1

E[φi] �
n+1∑
i=1

νiλi(V ),

which completes the proof of Lemma 8. �
Proof of Proposition 4. By Lemma 8 we get

Fn[ν,ψ] �
n∑

i=1

(
β(νi) + νiλi(V )

)
,

hence a minimization of Fn under the constraint (ψi,ψj )L2(Rd ) = δij directly gives, for any

[ν,ψ] ∈ S × (L2(Rd))N
∗
,

Fn[ν,ψ] � Fn[ν̄, ψ̄].
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Assumption (H) gives the absolute convergence of the series in the definition of F(ν̄, ψ̄). Sup-
pose now that there exists (ν̃, ψ̃) ∈ S × (L2(Rd))N

∗
such that F(ν̃, ψ̃) < F(ν̄, ψ̄). This implies

the existence of a N ∈ N
∗ such that

N∑
i=1

(
β(ν̃i) + ν̃iE[ψ̃i]

)
<

N∑
i=1

(
β(ν̄i) + ν̄iE[ψ̄i]

)
,

which contradicts the result on finite mixed states. �
3.3. Stability

As a consequence of the conservation of the energy E[·] under the evolution according to the
Schrödinger operator i∂t − HV , we obtain the conservation of the free energy. Notice here that
all above computations have been done with functions taking real values and need to be adapted
to the case of complex-valued functions as soon as we consider solutions to the time-dependent
Schrödinger equation.

Proposition 9. Assume (H) and consider an initial mixed state (ν,ψ0) ∈ R
N

∗
+ × (L2(Rd))N

∗
.

If (ν,ψ(t)) is the mixed state where each of the components evolves according to the linear
Schrödinger equation

i∂tψj = −�ψj + V ψj , x ∈ R
d , t > 0,

with initial data ψ0
j for any j ∈ N

∗, then

F
[
ν,ψ(t)

] = F
[
ν,ψ0] ∀t > 0.

To state a dynamical stability result, we have to impose a decay property of the sequence of
occupation numbers as in Lemma 8. From Lemmas 6 and 8, and Proposition 9, we deduce the

Corollary 10. Consider an initial mixed state (ν,ψ0) ∈ S × (L2(Rd))N
∗

with a nonincreasing
sequence of occupation numbers ν. Under the assumption of Lemma 6, if (H) is satisfied, then
for any t > 0,

2−2/pα‖ν − ν̄‖2
�p · min

{‖ν‖p−2
�p ,‖ν̄‖p−2

�p

} +
∑
i∈N∗

νi

(
E

[
ψi(t)

] − λi(V )
)
�F

[
ν,ψ0],

where both terms of the left-hand side are nonnegative.

3.4. Examples

We conclude these comments on stability results by a list of examples of various functions
β and by the corresponding Lieb–Thirring type inequalities given by Theorem 3 with −F(s) =
(β ◦ (β ′)−1)(−s) + s(β ′)−1(−s). We refer to [10,11] for a similar discussion in a non-quantum
mechanical context.
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Example 1. Let m > 1 and consider β(ν) := (m − 1)m−1m−mνm. With β ′(ν) =
(m − 1)m−1m1−mνm−1 = −λ and m = γ

γ−1 , we get −(β(ν) + λν) = F(λ) = (−λ)γ , which
corresponds to the setting of the standard Lieb–Thirring inequality (1). The case γ ∈ (0,1) is
formally covered by β(ν) := −(1 − m)m−1|m|−mνm with m ∈ (−∞,0), m = γ

γ−1 again and
F(s) = (−s)γ , but in this case, β is not convex and the free energy F cannot be defined as
above.

Example 2. As seen above, for m < 1 and β(ν) := −(1 − m)m−1m−mνm, with β ′(ν) =
−(1 − m)m−1m1−mνm−1 = −λ and m = γ

γ+1 , we get: F(λ) = λ−γ , which corresponds to the
setting of Theorem 1.

Example 3. If β(ν) := ν logν − ν, then β ′(ν) = logν = −λ. According to Theorem 3, the cor-
responding inequality is

∑
i∈N∗

e−λi(V ) � 1

(4π)d/2

∫
Rd

e−V (x) dx.

This case can formally be seen as the limit case m → 1 in Examples 1 and 2. Here F(s) = e−s ,
G(s) = (4π)−d/2e−s .

Example 4. If β(ν) := ν logν + (1 − ν) log(1 − ν), then β ′(ν) = log( ν
1−ν

) = −λ and F(s) =
log(1 + e−s). According to Theorem 3, the corresponding inequality is

∑
i∈N∗

log
(
1 + e−λi(V )

)
�

∫
Rd

G
(
V (x)

)
dx,

where G is given in terms of F by (6).

In all the above examples we have to assume that limi→∞ λi(V ) = +∞, except in Example 1
where λi(V ) � 0, limi→∞ λi(V ) = 0 and we adopt the convention that λi(V ) = 0 for any i > N

if there are only N negative eigenvalues.

4. Lieb–Thirring and Gagliardo–Nirenberg inequalities

In this section, we will focus on consequences of Theorems 1 and 3, when one takes only
partial sums, and especially when only the first eigenvalue is considered.

4.1. Optimal constant in the Lieb–Thirring conjecture

We begin with a remark on the connection of the best constant in the Lieb–Thirring conjecture
and its extension for d > 1:

C
(1)
LT (γ ) := inf

V ∈D(Rd )

|λ1(V )|γ∫
Rd |V |γ+ d

2 dx

V �0
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with the best constant in some special Gagliardo–Nirenberg inequalities. Such a result has al-
ready been established in [2,39] (also see [15,32,36] for earlier references). We give it here for
completeness and in order to insist on some interesting scaling properties.

Define the function set for the potential V by

Xγ := {
V ∈ Lγ+ d

2
(
R

d
)
: V � 0, V �≡ 0 a.e.

}
and note that by density of D(Rd) in Lγ+ d

2 (Rd), it holds that

C
(1)
LT (γ ) = sup

V ∈Xγ

V �≡0 a.e.

|λ1(V )|γ∫
Rd |V |γ+ d

2 dx
.

By definition of λ1(V ), we have

λ1(V ) = inf
u∈H 1(Rd )
u �≡0 a.e.

∫
Rd |∇u|2 dx + ∫

Rd V |u|2 dx∫
Rd |u|2 dx

.

Let

q := 2γ + d

2γ + d − 2

and consider the optimal constant CGN(γ ) of the Gagliardo–Nirenberg inequality corresponding
to the embedding of H 1(Rd) into L2q(Rd):

CGN(γ ) = inf
u∈H 1(Rd )
u �≡0 a.e.

‖∇u‖
d

2γ+d

L2(Rd )
‖u‖

2γ
2γ+d

L2(Rd )

‖u‖L2q (Rd )

. (10)

Notice that for γ > max(0,1 − d/2),

q > 1 and 2q <
2d

d − 2
.

Theorem 11. Let d ∈ N
∗. For any γ > max(0,1 − d

2 ),

C
(1)
LT (γ ) = κ1(γ )

[
CGN(γ )

]−κ2(γ )
,

where

κ1(γ ) = 2γ

d

(
d

2γ + d

)1+ d
2γ

and κ2(γ ) = 2 + d

γ
.

Moreover, the constant C
(1)
LT (γ ) is optimal and achieved by a unique pair of functions (u,V ), up

to multiplications by a constant, scalings and translations.
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The scaling invariance can be made clear by redefining

[
C

(1)
LT (γ )

] 1
γ = sup

V ∈Xγ

V �≡0 a.e.

sup
u∈H 1(Rd )
u �≡0 a.e.

R(u,V ),

where

R(u,V ) = −
∫

Rd V |u|2 dx + ∫
Rd |∇u|2 dx∫

Rd |u|2 dx ‖V ‖1+ d
2γ

L
γ+ d

2 (Rd )

.

Note indeed that λ1(V ) � 0, and R(u,V ) is invariant under the transformation

(u,V ) 
→ (
uλ = u(λ ·),Vλ = λ2V (λ ·)),

i.e., R(uλ,Vλ) = R(u,V ) for any λ > 0.

Proof of Theorem 11. By Hölder’s inequality,∫
Rd

|V ||u|2 dx � A‖u‖2
L2q (Rd )

with A := ‖V ‖
L

γ+ d
2 (Rd )

.

Let τ := ‖u‖L2q (Rd )/‖u‖L2(Rd ). The Gagliardo–Nirenberg inequality (10), namely

CGN(γ )‖u‖L2q (Rd ) � ‖∇u‖θ
L2(Rd )

‖u‖1−θ

L2(Rd )

with θ = d
2γ+d

can be rewritten as

‖∇u‖L2(Rd )

‖u‖L2(Rd )

�
[
CGN(γ )τ

] 1
θ .

Putting these estimates together, we obtain

R(u,V ) � Aτ 2 − [CGN(γ )] 2
θ τ

2
θ

A
1+ d

2γ

.

An optimization on τ shows the bound of Theorem 11, which is independent of A, and gives the
expressions of κ1(γ ) and κ2(γ ).

The estimate is achieved since all above inequalities can be saturated by considering

|V |γ+ d
2 −2V = |u|2 ⇔ V = Vu = −|u| 4

2γ+d−2 = |u|2(q−1), (11)

where u is a solution of

�u + |u|2(q−1)u − u = 0 in R
d .
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Up to a scaling, these two equations are the Euler–Lagrange equations corresponding to the
maximization in V and u, respectively. Because of the second equation, the relation with the
Gagliardo–Nirenberg inequality is straightforward. In other words,

R(u,V ) � R(u,Vu) =
∫

Rd |u|2q dx − ∫
Rd |∇u|2 dx∫

Rd |u|2 dx(
∫

Rd |u|2q dx)
1
γ

=
∫

Rd |uλ|2q dx − ∫
Rd |∇uλ|2 dx

(
∫

Rd |uλ|2q dx)
1
γ

,

where

uλ = λ
1

q−1 u(λ ·) and λ
( d

2 − 1
q−1 ) = ‖u‖L2(Rd ),

so that ‖uλ‖L2(Rd ) = 1,

R(u,V ) � τ 2q − [CGN(γ )] 2
θ τ

2
θ

τ
2q
γ

,

and the result holds by optimizing in τ = ‖uλ‖L2q (Rd ). �
Remark. The optimal function in the Gagliardo–Nirenberg inequality (10) is given as the non-
negative solution of (11) in H 1(Rd). The existence of a minimizer of (10) was established for
the first time in [40] by Weinstein in order to prove a sharp condition for global existence of
a solution to the nonlinear Schrödinger equation. This minimizer is radial, positive, decreasing,
and unique up to translations, multiplication by constants and scalings. See for instance [33] for
uniqueness results of radial solutions, and references therein for earlier related results. Optimal
function are not explicitly known in general but are easy to compute numerically as well as the
optimal constants, see for instance [29,39].

4.2. Theorem 1 and Gagliardo–Nirenberg inequalities

In this section, we adapt the remarks of Section 4.1 to the case V � 0 of Theorem 1. The
interpolation of ‖u‖L2q (Rd ), with 1 < q < d/(d − 2), d � 3, between ‖∇u‖L2(Rd ) and ‖u‖L2(Rd )

of the previous section is a standard case of Gagliardo–Nirenberg inequalities, but there is also
another interesting case in Gagliardo–Nirenberg inequalities, which is somewhat less standard.
It corresponds to the interpolation of ‖u‖L2(Rd ) between ‖∇u‖L2(Rd ) and

∫
Rd |u|2q dx for some

q ∈ (0,1). See [9] for a similar setting, where both cases have been taken into account. What
we establish in this section is that these less standard inequalities are related to the estimate of
[λ1(V )]−γ in terms of

∫
Rd V d/2−γ dx.

Consider now a nonnegative smooth potential V ∈ C∞(Rd) such that

lim|x|→+∞V (x) = +∞

and denote by λ1(V ),λ2(V ), . . . the positive eigenvalues of −�+V . By density we may extend
this set of potentials to the set

Yγ := {
V

d
2 −γ ∈ L1(

R
d
)
: V � 0, V �≡ +∞ a.e.

}
.



J. Dolbeault et al. / Journal of Functional Analysis 238 (2006) 193–220 211
Let

q := 2γ − d

2(γ + 1) − d
∈ (0,1)

and define an optimal constant of a second type Gagliardo–Nirenberg inequality by

C∗
GN(γ ) = inf

u∈H 1(Rd ),u �≡0 a.e.∫
Rd |u|2q dx<∞

‖∇u‖
d

2γ

L2(Rd )
(
∫

Rd |u|2q dx)
1

2q
(1− d

2γ
)

‖u‖L2(Rd )

. (12)

Theorem 12. Let d ∈ N
∗. For any γ > d/2, there exists a positive constant C(1)(γ ) such that, for

any V ∈ Yγ ,

[
λ1(V )

]−γ � C(1)(γ )

∫
Rd

V
d
2 −γ dx.

As in Theorem 11, the optimal value of C(1)(γ ) is such that

C(1)(γ ) = κ1(γ )
[
C∗

GN(γ )
]−κ2(γ )

,

where

κ1(γ ) = (2q)γ− d
2 (d(1 − q))

d
2

(d(1 − q) + 2q)γ
and κ2(γ ) = 2γ.

Moreover, the constant C(1)(γ ) is achieved by a unique pair of functions (u,V ), up to multipli-
cations by a constant, scalings and translations.

Notice that q < 1, and 2q > 1 if and only if γ > 1 + d/2. The best constant in the above
inequality is

C(1)(γ ) := sup
V ∈Yγ

V �≡0 a.e.

[λ1(V )]−γ∫
Rd V

d
2 −γ dx

.

The scaling invariance can be made clear by writing

[
C(1)(γ )

] 1
γ = sup

V ∈Xγ

V �≡0 a.e.

sup
u∈H 1(Rd )
u �≡0 a.e.

R(u,V ),

where

R(u,V ) :=
∫

Rd |u|2 dx (
∫

Rd V
d
2 −γ dx)

1
γ∫ |∇u|2 dx + ∫

V |u|2 dx

Rd Rd
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is invariant under the transformation

(u,V ) 
→ (
uλ = u(λ ·),Vλ = λ2V (λ ·)),

i.e., R(uλ,Vλ) = R(u,V ) for any λ > 0.

Proof of Theorem 12. By Hölder’s inequality,

∫
Rd

u2q dx =
∫
Rd

u2qV q · V −q dx �
(∫

Rd

V |u|2 dx

)q(∫
Rd

V
− q

1−q dx

)1−q

.

With A := (
∫

Rd V −q/(1−q) dx)−(1−q)/q = (
∫

Rd V d/2−γ dx)2/(2γ−d), this means that

∫
Rd

V |u|2 dx � A

(∫
Rd

|u|2q dx

) 1
q

.

We may therefore estimate R(u,V ) as follows:

R(u,V ) �
‖u‖2

L2(Rd )
A

1− d
2γ

‖∇u‖2
L2(Rd )

+ A(
∫

Rd |u|2q dx)
1
q

.

An optimization under the scaling λ 
→ λ−d/2u(·/λ), which leaves the L2(Rd)-norm invariant,
shows that

‖∇u‖2
L2(Rd )

+ A‖u‖2
L2(Rd )

� ‖∇u‖
2d(1−q)

d(1−q)+2q

L2q (Rd )

(∫
Rd

|u|2q dx

) 2
d(1−q)+2q

A
2q

d(1−q)+2q
(
κ1(γ )

)− 1
γ

using

2q

d(1 − q) + 2q
= 1 − d

2γ
.

Using the Gagliardo–Nirenberg inequality (12), we get

‖∇u‖2
L2(Rd )

+ A‖u‖2
L2(Rd )

�
∣∣C∗

GN(γ )
∣∣2‖u‖2

L2(Rd )
A

1− d
2γ

(
κ1(γ )

)− 1
γ

which proves that C(1)(γ ) � κ1(γ )[C∗
GN(γ )]−κ2(γ ). It is moreover easy to check that the equality

holds in Hölder’s inequality if V
d
2 −γ−1 is proportional to |u|2. By taking a minimizer of (12),

this completes the proof of Theorem 12. �
Remark. Notice that optimal functions are not explicitly known, unless d = 1. Solutions to the
Euler–Lagrange equations have compact support and minimal ones are radially symmetric and
unique up to translations, see [7]. Also see [9] for more details.
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4.3. General case

We may try to generalize the approach used for power laws to general nonlinearities like the
ones of Theorem 3. However, this is not as simple as when evident scaling properties are present.
We may indeed write

C(1)
F = sup

V

F (λ1(V ))∫
Rd G(V (x)) dx

� 1,

where the above supremum is taken on an appropriate space. Assuming that F is nonincreasing,
we may characterize C(1)

F as

C(1)
F = sup

V,φ∫
Rd |φ|2 dx=1

F(
∫

Rd (|∇φ|2 + V |φ|2) dx)∫
Rd G(V (x)) dx

,

so that the optimal value is at least formally given by

C(1)
F = sup

φ∈H 1(Rd )∫
Rd |φ|2 dx=1

F(
∫

Rd (|∇φ|2 + |φ|2(G′)−1(κ|φ|2)) dx)∫
Rd (G ◦ (G′)−1)(κ|φ|2) dx

,

where κ is given in terms of φ by

κ = (
C(1)

F

)−1
F ′

( ∫
Rd

(|∇φ|2 + |φ|2(G′)−1(κ|φ|2))dx

)
.

This indeed results of the optimization with respect to V , which amounts to

κ|φ|2 − G′(V ) = 0.

This strategy is, however, easy to implement in one more case: F(s) = e−s . In this case,

C(1)
F = sup

V,φ∫
Rd |φ|2 dx=1

e− ∫
Rd (|∇φ|2+V |φ|2) dx

(4π)−d/2
∫

Rd e−V dx
.

The optimization with respect to V gives

V = − log
(|φ|2)

up to an additive constant such that

∫
d

e−V dx =
∫
d

|φ|2 dx = 1,
R R
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which plays no role because its contribution to the numerator and to the denominator cancel.
Summing up the inequality is therefore simply equivalent to the usual logarithmic Sobolev in-
equality: for any φ ∈ H 1(Rd) such that

∫
Rd |φ|2 dx = 1,

∫
Rd

|φ|2 log
(|φ|2)dx + log

(
(4π)d/2

C(1)
F

)
�

∫
Rd

|∇φ|2 dx.

From standard results on logarithmic Sobolev inequalities, see for instance [6], it is known that
optimal functions φ are Gaussian, which allows to determine the value of C(1)

F :

C(1)
F =

(
2

e

)d

.

We will see later an alternative approach which allows to state the following interpolation in-
equality.

Proposition 13. Under the assumptions of Theorem 3, if F and G are related by (6), if F ′ and
G′ are invertible and if we define

β(s) := −
s∫

0

(F ′)−1(−t) dt and H(s) :=
0∫

s

(G′)−1(−t) dt,

then for any φ ∈ H 1(Rd), the following interpolation inequality holds:∫
Rd

|∇φ|2 dx + β

( ∫
Rd

|φ|2 dx

)
�

∫
Rd

H
(|φ|2)dx.

This result will appear as a simple consequence of Theorem 15, where we take ν1 =∫
Rd |φ|2 dx and νi = 0 for any i � 2. We will see that the result holds not only in the frame-

work of Theorem 3 but also in the case where limi→∞ λi(V ) < ∞ as it is the case for standard
Lieb–Thirring inequalities.

4.4. Further results

The analogue of the Lieb–Thirring conjecture does not hold in the context of Theorem 1, i.e.,
for potentials such that limi→∞ λi(V ) = +∞.

Proposition 14. With the notations of Sections 1 and 4.2, for any d ∈ N
∗ and γ > d/2,

C(1)(γ ) < C(γ ).

Moreover, if F and G satisfy the assumptions of Theorem 3, then

n 
→ sup
V

∑
1�i�n F (λi(V ))∫
Rd G(V (x)) dx

=: C(n)(γ )

forms a strictly increasing sequence.
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Proof. The infimum C(1)(γ ) is achieved by a function u∗ with support in a ball B(0,R) for some
R > 0, and a potential V∗ = cu

4/(d−2(γ+1))∗ in B(0,R) for some constant c > 0, and V∗ = +∞
outside. The sequence of eigenvalues of −� + V∗ is therefore given by the one of −� + V∗
in B(0,R) with zero Dirichlet boundary conditions on ∂B(0,R). It is then straightforward to
realize that ∑

i∈N∗

[
λi(V∗)

]−γ
>

[
λ1(V∗)

]−γ = C(1)(γ ).

The general case follows from similar reasons. �
5. Interpolation inequalities

Assume that V is a potential on R
d such that the operator −� + V has an infinite sequence

(λi(V ))i∈N∗ of eigenvalues. Let F and G be two functions such that the inequality

∑
i∈N∗

F
(
λi(V )

) = Tr
[
F(−� + V )

]
�

∫
Rd

G
(
V (x)

)
dx (13)

holds (see for instance Theorem 3 for sufficient conditions). Let λ̄ := limi→∞ λi(V ) and assume
that

Spectrum(−� + V ) ∩ (−∞, λ̄) = {
λi(V ): i ∈ N

∗}.
Note that this includes the standard case of Lieb–Thirring inequalities, which corresponds to
λ̄ = 0 when V is such that −� + V has infinitely many eigenvalues, and the case considered in
Theorems 1 and 3: λ̄ = +∞.

Define σ(s) := −F ′(s) and β(s) := − ∫ s

0 σ−1(t) dt . We may notice that

F(s) =
λ̄∫

s

σ (t) dt =
λ̄∫

s

(β ′)−1(−t) dt.

We assume that F is convex on (−∞, λ̄) and C1 on (−∞, λ̄) whenever it takes finite values.
This implies that β is C1, convex and we get

F(s) = −min
ν>0

[
β(ν) + νs

]
.

Note indeed that, at a formal level,

d

ds

([
β(ν) + νs

]∣∣
ν=(β ′)−1(−s)

) = (β ′)−1(−s) = σ(s).

Inequality (13) can therefore be rewritten as

∑
i∈N∗

νi

∫
d

(|∇ψi |2 + V |ψi |2
)
dx +

∑
i∈N∗

β(νi) +
∫
d

G
(
V (x)

)
dx � 0
R R
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for any sequence of nonnegative occupation numbers (νi)i∈N∗ and any sequence (ψi)i∈N∗ of
orthonormal L2(Rd) functions.

Let us proceed as in Section 4 and optimize on V for fixed ν = (νi)i∈N∗ , ψ = (ψi)i∈N∗ .
Assume further that G′ is invertible. Let

K[ν,ψ] :=
∑
i∈N∗

νi |∇ψi |2 and ρ :=
∑
i∈N∗

νi |ψi |2,

and define

H(s) := −[
G ◦ (G′)−1(−s) + s(G′)−1(−s)

]
.

It is straightforward to check as above that

dH

ds
(s) = −(G′)−1(−s),

and write

H(s) =
0∫

s

(G′)−1(−t) dt

provided (G′)−1 is integrable on a neighborhood of s = 0+.
The optimal potential V has to satisfy

G′(V ) + ρ = 0,

so that

∑
i∈N∗

νi

∫
Rd

V |ψi |2 dx +
∫
Rd

G
(
V (x)

)
dx = −

∫
Rd

H
(
ρ(x)

)
dx.

Summarizing our computations, we have proved that (13) can be rephrased as

Theorem 15. Under the above notations and assumptions, the following inequality holds:

K[ν,ψ] +
∑
i∈N∗

β(νi) �
∫
Rd

H(ρ)dx (14)

with ρ = ∑
i∈N∗ νi |ψi |2, where (νi)i∈N∗ is any nonnegative sequence of occupation numbers and

(ψi)i∈N∗ is any sequence of orthonormal L2(Rd) functions.

Written with such a generality, the result is maybe not as striking as when it applies to the
various examples of Section 3, for which all the assumptions made above can be verified. To keep
the generality of our result, we will not try to give sufficient conditions on β and V for which
all these assumptions can be established and prefer to state three applications corresponding to
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the function β for β(ν) = const · νm with m ∈ (−∞,0) ∪ (1,+∞), β(ν) = −const · νm with
m ∈ (0,1) and β(ν) = ν logν − ν.

Example 1. Let m > 1, which corresponds to the setting of the standard Lieb–Thirring in-
equality (1), and consider β(ν) := cmνm, cm := (m − 1)m−1m−m, m = γ

γ−1 , F(s) = (−s)γ and

G(s) = CLT(γ )(−s)γ+d/2. Define

q := 2γ + d

2γ + d − 2
and K−1 := q

[
CLT(γ )

(
γ + d

2

)]q−1

.

Corollary 16. With the above notations, for any m ∈ (1,+∞), the following optimal inequality
holds:

K[ν,ψ] + cm

∑
i∈N∗

νm
i � K

∫
Rd

ρq dx.

Using the scaling invariance, we can reformulate this result as follows. If we replace ψi(x) by
λ−d/2ψi(x/λ) and νi by λd(1−1/q)νi , the right-hand side of the above inequality is invariant. An
optimization of the left-hand side shows that

(
K[ν,ψ])θ

( ∑
i∈N∗

νm
i

)(1−θ)

� L
∫
Rd

ρq dx,

where θ = d
2(γ−1)+d

and L can be explicitly computed in terms of K, d and γ .

The case m = γ
γ−1 ∈ (−∞,0), which corresponds to γ ∈ (0,1) and β(ν) := cmνm, cm :=

−(1−m)m−1|m|−m is formally covered with the same constants, but does not enter in our frame-
work for infinite systems (see Example 1, Section 3.4). Notice that q varies in the range (1,1+ 2

d
)

for m > 1 and (1 + 2
d
, d

d−2 ) if m < 0. The case γ = 1, q = 1 + 2
d

is not covered.

Example 2. If m ∈ (0,1), which corresponds to the setting of Theorem 1, and β(ν) := −cmνm,
cm := (1 − m)m−1m−m, m = γ

γ+1 , F(λ) = λ−γ and G(s) = C(γ )sd/2−γ . Define

q := 2γ − d

2(γ + 1) − d
∈ (0,1) and K−1 := q

[
C(γ )

(
γ − d

2

)]q−1

.

Notice that due to the restriction γ > d/2, the range of m is reduced to the interval ( d
d+2 ,1).

Corollary 17. With the above notations, for any m ∈ ( d
d+2 ,1), the following optimal inequality

holds:

K[ν,ψ] +K
∫
Rd

ρq dx � cm

∑
i∈N∗

νm
i .
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Using the scaling invariance, we can also reformulate this result as follows. If we replace
ψi(x) by λ−d/2ψi(x/λ) but do not change νi , the right-hand side of the above inequality is of
course invariant. An optimization of the left-hand side shows that

(
K[ν,ψ])θ

( ∫
Rd

ρq dx

)(1−θ)

�L
∑
i∈N∗

νm
i ,

where θ = d
2(γ+1)

and L can be explicitly computed in terms of K, d and γ .

Example 3. If β(ν) := ν logν − ν, then β ′(ν) = logν = −λ, F(s) = e−s and G(s) =
(4π)−d/2e−s . Inequality (14) is a logarithmic Sobolev inequality for systems:

Corollary 18. With the above notations, the following optimal inequality holds:

K[ν,ψ] +
∑
i∈N∗

νi logνi �
∫
Rd

ρ logρ dx + d

2
log(4π)

∫
Rd

ρ dx.

As above, an optimization under a scaling preserving the L2 norm of ψ and leaving νi invari-
ant allows to write

∫
Rd

ρ logρ dx �
∑
i∈N∗

νi logνi + d

2
log

(
e

2πd

K[ν,ψ]∫
Rd ρ dx

)∫
Rd

ρ dx.

Note that we immediately recover the Gagliardo–Nirenberg inequalities of Section 3 by taking
ν1 = 1, νi = 0 for any i � 2, in case of Examples 1 and 2, but with a priori non-optimal constants,
at least in the case of Example 2. The proof of Proposition 13 follows for the same reason.

Remark. We notice that the limit case γ = 0 for d � 3 is not covered. For νi = 1, for
i = 1,2, . . . ,N , and νi = 0 otherwise, a Sobolev type inequality for orthonormal functions
has been given in [24,25] in the case which corresponds to the critical Sobolev embedding
H 1(Rd) ↪→ L2d/(d−2)(Rd). By taking the occupation numbers νi into account, we always
achieve optimal inequalities which are related in a natural way to some corresponding optimal
Lieb–Thirring inequalities as long as γ is positive. To a large extend, this improves the known
results for orthonormal and sub-orthonormal systems [12,14,25].
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