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1. Introduction

In his seminal work [1], Gribov pointed out that the Landau
gauge condition aﬂAfL =0 is plagued by the existence of gauge
copies, i.e. there exist equivalent configurations A;L = UA,LU‘l +

iUd,U~! which still obey the condition, dpAjl =0. As a conse-
quence, the Landau gauge does not enable us to pick up a unique
field representative for each gauge orbit.?

In order to get rid of the gauge copies, Gribov proposed [1] to
restrict the domain of integration in the Feynman path integral to a
certain region £2, defined as the set of field configurations obeying
the Landau condition and for which the Faddeev-Popov operator
M, M® = — (5259 — gfCAC 3,,), is strictly positive, namely

2 ={A%: 9,A% =0; MP = (326 — gf™ A 3,) >0} (1)

The boundary 952 of the region £2, where the first vanishing eigen-
value of the operator M® appears, is called the first Gribov hori-
zon. One has to note that, within the region £2, the operator M
is strictly positive, so that its inverse (M~1)% does exist.
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To restrict the domain of integration in the functional inte-
gral, Gribov worked out the so-called no-pole condition [1] for
the ghost propagator, which is the inverse of the operator M,
namely

gab:(Mfl)ab’ (2)

where the gauge field AZ plays the role of an external classical
field. Expression (2) can be represented in a functional form by
means of the Faddeev-Popov ghosts

GP(x,y; A) =

NZ -1 <(—:a (X)Cb (y))conn

_ 1 [pepitec e SRR
N2 -1 [ Depee— [ dxeauDfic '

According to [1], one introduces the ghost form factor o (k, A) in
momentum space as

1 1
Glk; A) = —

k21 -0k, A’ )

where G(k; A) is obtained by taking the Fourier transform of the
trace of G%(x, y; A), i.e.

G(k; A) = / d*xdly e**=VG(x, y; A), (5)

and
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N2-1

G y: A =Trg®(x, y; A) = Y G, y; A). (6)
a=1

Before starting the evaluation of the form factor o (k, A) it is worth

to point out that expression (4) can be obtained as the Fourier
transform of the quantity

G*(z: A) = / d*yG(z,0; Ay). (7)
where

Ay(x) =ARX+Y), (8)
ie.

Gik; A) = / d'zeiG* (z; A). (9

This property> can be obtained from Eq. (5) by performing the
change of variables (z=x—y, y = y), amounting to rewrite Eq. (5)
as

Gk; A)=/d4ze”‘2/d4yg(z+y,y; A). (10)

Finally, Eq. (9) follows by observing that a translation of both ar-
guments of G(z+ y, y; A) by y is the same as a translation of the
field configuration A‘L by y, as it can be checked term by term
by looking at the expressions given in the next sections, see for
example Eq. (66).

As o (k, A) turns out to be a decreasing function of the momen-
tum k [1], Gribov required the validity of the condition

o(0,A) <1, (11)

which is known as the no-pole condition. From condition (11) it
follows that the ghost propagator has no poles at finite values of
the momentum k. Therefore, expression (4) stays always positive,
meaning that the Gribov horizon 92 is never crossed. The only
allowed pole is at k = 0, whose meaning is that of approaching
the horizon 92, where the ghost propagator is singular, due to
the appearance of zero modes of the operator M. According to
the no-pole prescription, Eq. (11), the Faddeev-Popov quantization
formula gets modified as [1]

durp = DAS(DA) det(M™)e=Sm
= DASBA)det(M™®)o(1 -0 (0, A))e ™5™, (12)

where Sy is the Yang-Mills action

1
Sym= Z/d“fowFfw, (13)

and 6(x) stands for the step function. Making use of the integral
representation

+ico+¢ d
6(x) = ’3 e Px
2wip
—ioco+e

) (14)

it turns out that the ghost form factor o (0, A) can be brought into
the exponential of the Yang-Mills measure digp, i.e.

e~ Sm = e~ (Sym+pa (0,4)) (15)

3 We are grateful to the referee for having pointed out Eq. (9).

We see thus that the Yang-Mills action gets modified by the addi-
tion of the factor o (0, A). Therefore, for the partition function Z,
one writes

d
Z= /DA%&(@A) det(MP)eSrmeh1=0(0.A), (16)

Further, the integration over 8 was evaluated by a saddle point
approximation [1], yielding

Z=N f DAS(DA) det(MP)e~Smi+poO.A) (17)
with 8* determined by the gap equation [1]
3Ng? [ d* 1
1= 4g (2m)4 4 N _ gy’ (18)
k% + 2(N271)‘3

Independently, Zwanziger [3,4] implemented the restriction to the
Gribov region £2 by following a different route, based on the study
of the smallest eigenvalue, A, (A), of the Faddeev-Popov operator.
Relying on the equivalence between the canonical and microcanon-
ical ensembles in the infinite volume limit, he was able to show
that the restriction to the Gribov region can be achieved by adding
to the Yang-Mills action a nonlocal term Sy, known as the horizon
function [3,4], namely

Sh :/d“xh(x)

=g [[atudty oAl ol T AL ). (19)

The resulting partition function cut-off at the Gribov horizon turns
out to be

/ DAS(IA) det(M™P)e ™
2

= / DAS(9A) det(MP)e= Sty sn (20)

where the massive parameter y is a dynamical parameter deter-
mined in a self-consistent way through the horizon condition [3,4]

(h(x)) = 4(N* —1). (21)
To the first order, condition (21) reads

_ 3Ng? d*k 1

1 )
4 (2m)* k4 +2g2Ny4

(22)

from which one sees that, apart from a numerical coefficient,
y*4 can be identified with g*, ie. g* =4(N* — 1)y%.

Although both Gribov’s no pole condition (11) and Zwanziger’s
construction of the horizon function S, amount to modify the
Faddeev-Popov functional measure, a discussion about the equiv-
alence between the ghost form factor o (0, A) and the horizon
function Sy has not yet been worked out. The present work aims
at filling this gap. We shall evaluate the form factor o (0, A) till the
third order in the gauge fields A‘;r The resulting expression will be
thus compared with that obtained by expanding the horizon func-
tion Sy, hence establishing the equivalence between o (0, A) and
Sy till the third order in the gauge field expansion.

The Letter is organized as follows. In Section 2 we evaluate
Gribov's ghost form factor o (0, A). In Section 3 we expand the
horizon function S, by comparing it with o (0, A). Section 4 is de-
voted to a few concluding remarks.
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2. Evaluation of Gribov’s ghost form factor

The evaluation of the ghost form factor o (k, A) will be per-
formed order by order in the gauge field A‘;L. As we shall evaluate
o to the third order, we write

o0=0V4+0® 10 4 0(a%, (23)

where oM, 0@, @ stand, respectively, for the first, second and
third order expansion of o in powers of the gauge fields. Therefore,
from the no-pole condition (11), we get

+ a(“omo(” +0(A%). (24)

Let us start thus by considering the expression of G(x, y; A) in an
external background gauge field Afl, obtained by taking the trace
over the color indices of expression (3), namely

G(x,y; A) = N2 —1 (Ea x)c’ (y)>conn

—— =0 ab b
1 chDcc“(x)c“(y)e_fd4XC Dy
- IV2 — l fDCDEefdelXEaaMD%JCb

In order to evaluate G(x, y; A) till the third order in the gauge field
A‘;L, we consider

(25)

/DCDEE”(x)ca(y)e_fd4"5a*’#D?f’Cb
= / DcDec (x)c(y)

x (1 +g/d421 LT (1) FP1 A (21)c (21)
1 _

+58° / d*z1d*zy 071" (1) FP1 AD! (21)c (21)

X 028%™ (2) f2722 AR (23)c(22)
1 _

+ €g3/d4zl d*zy d*z; e (z1) fubien Afj (21)c (z1)

X 0728 (23) f222 A (22)¢? (22)

X a Ca3 (Z )fCl3b3C3Ab3 (Z3)CC3 (23) + )e—fd‘le‘ﬂazca' (26)

To the zeroth order approximation, it turns out that

1
(0) LAY — —a a (0)
GV y A= m(c (*)c (J/)>
d4q eiq(x_y)
—Golx—V)= [ ——— 27
ox—y) and (27)
2.1. First order
At first order we have
_ 1
GV y; A) = 2 1(6"(X)C"(y)>( ). (28)
Using
—a b ©) _ cab
cXc () =8"Gox—1y), 29
(29)
we obtain

GV, y: A)

= [ %21 Gotx — 2035 Gotzs — ) F0 A% 2. (30)
Moreover, due to
faba =0, (3-1)
it follows that G vanishes identically
GV y; A) =0, (32)
so that
oM =o0. (33)

2.2. Second order

Performing Wick contractions and using Eq. (29), one obtains

GP(x, y; A)
g b b 4 14
_ a1bic1 faibyc
__(N2—1)f1 1€1 fh2 ‘fd z1d°z2 Go(x — z1)
x 071 Go(z1 — 22)95? Go(22 — V) AN} (21) AP (22). (34)
Taking the Fourier transformation of the expression above
Glk; A) = / d*xd*y "G (x, y; A), (35)
it follows
G (k; A)
Ng? 4 4 a4 4 ik(x—
=——2 | d*z1d*z,d*xd*y e** V) Go(x — z
(N2 = 1)/ 1d°z3 y ol 1)
x 8 Go(z1 — 22)332 Go(z2 — Y) A}, (21) A} (22), (36)
where we have used the property
fabCfebc — Nse. (37)
Setting
d%q

AL (x) = elIx A 38

L= [ e ) (39)
we obtain
G (k; A)

Ng? 1 d*q (—k
- Nt 1[4 TR e g hyasq k). (39)

(N2—D k) @m)* ¢q2
which can be rewritten as

Ky ky

Ng? d*
£ 2 S COA@.  (40)

N -1 | 2ot k-

Therefore, till the second order, for the no-pole condition we get

G@ (k; A) =

Gk; A) =GO (k; A) +GP (k; A)
= k1_2(1 +0@(k, A)), (41)
where
Ng2  k,k,
0Dk A) = s g ) (42)
4 A2 (—g)A“
v () = d*q AL(—DAL@ (43)

m*  (k—q)?
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Owing to the transversality of the gauge field A‘L ()

auAj (=@ A5 ()

we can set

=(qy AZ(_Q)Agu (@) =0, (44)

A% (~) A% (@) = w(A) (a,w - q’;f” )

1
o(A) = AL A@). (45)
Thus

1 [ d'q A=A @ quqv
=3 | Grd T k-2 (5“”_ 7 ) (40)

Following [1],% it turns out that

1 [ d%q AS(—AS(Q) quqv
wO=3] i~ ¢ (8’” P )

1 d%q A%(—q)A?

1y, [ 29 ACoA@ )

4 (m)4 q?

so that for the Gribov no-pole form factor o @, one obtains
N 2 d4 A% (—aq)A?
0-(2)(0’ A) = g q A (-9 )L(Q). (48)
4N2-1) ) @m)4 q?

Expression (48) corresponds to the original Gribov approxima-
tion [1], and is equivalent to set 55 ~ 7 in the horizon func-
tion (19).

2.3. 3° order
To the third order

G®x, y; A)
3

1
—  faibicy fasbacs pasbscs %
x f 021 d*zy d*zs A (21) A2 (22) A2 (23) (49)
X (€10 (9) 3 €1 (21)c (21) 952 C2 (22)c (22)
x 0°C% (23)C (23)). (50)

Performing all possible Wick contractions and proceeding as in the
case of G@, one finds

GV (x. y: A)
3
— phibabs _E7 f 21 dizy d*z3 AL (21) A% (2,)
N+ -1 s
b
x Ay (23)Go(x — z1) (51)
X 97} Go(z1 — 22)93?Go(z2 — 23)95>Go(23 — ¥), (52)

where we have defined

J,r:-b]bzbg = fﬂ]b]ﬂfﬂzbzﬂ] fﬂb302. (53)

Taking the Fourier transformation

4 See also Ref. [5].

G k; A)
= [ ity eGPy a) (54)
]_—b1b2b3 13g3 d4q5 d4q6 b b
-1 kK ] @)t @er)t Ayl (s = 104,1@s — o)
(95) . (q6)v (—kz)
Ai3 (g6 + k)LD (55)
4545
and using the transversality condition qMAj’L (q) =0, one gets
G (k; A)
Fhibabs o k1 diqr diqa
33 b
A 2 —_
N1 /@ / @) 2 AP (—q1) AP (g1 — q2)

(@2 — k)
(@1 —k)?(q2 — k)?
bybzb
-3 3 F10 kyks, bibabs
T NZ—1 kA
Proceeding as in the previous case, for the Gribov ghost form factor
till the third order we find

x A% (g2) (56)

k). (57)

a®(0; A)
_1}%[1 E ]—‘bl 2 13 kZLQ b1b2b3(k)] (58)
=i’g’ fblb_Zb:l (ng)]“ (ng)i ALl (—q1) AP (q1 — q2)
A%(Qz)(q]()?ﬁ, (59)

where use has been made of

d4 a4
”1”2”%0)—6“ (2;;4 (2;’)24 AbY (—q1)AP2(qy — ) A% (2)
@)y

B 60
" @)2(@) (60)

3. Expansion of the horizon function

In order to make a comparison between Gribov’s ghost form
factor 0 (0, A) and Zwanziger's horizon function Sp, we need to
expand the expression

_17ad
Sp=g’ / d*xd*y fCAD o[ ML FOCAT (), (61)
till the third oder in the gauge field Aft. To that end we evaluate

the inverse of the Faddeev-Popov operator M~!, which is equiva-
lent to solve the problem
(—0%5 + gf A% 8,)GM (x, y) = 86D (x — y), (62)

where the Green function G (x, y) is evaluated as a series in the
coupling constant® g, i.e.

GM(x, y) =Gl (x— y) + gGh(x, y) + g2GCH (x, y) +---,  (63)
where
—8289Gh(x — y) = 895W (x — y). (64)

5 Notice that an expansion in g is equivalent to an expansion in the gauge
field Aj,.
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Thus, at first order, we get

(—9%6% + gf A 8,,) (GO (x — y) + gGh(x. y) + 0(g?))
=55 —y),

—gd?s"Gh (x — y) + gf A3, Gl (x — y) =

2G4 (x — y) = fPAC 3, GE(x — y), (65)

which gives

(de
G%x, /d4 abe AC (2)0% ——. 66
( J’) |2f ()IL|Z—y|2 ( )
Therefore
[me] !
sad 1 1
= +gf“df/d4z <@, ——. (67)
lx—y|? |x — z|? Au Hlz—yP?
Consequently, till the third order in the gauge fields A? i for the
horizon function we obtain
ad
EE\Ix—y2
1
wer [ dt a0 ) A
1
_ 2 gabc faec 4., 14 b e
— g2 o [ dtxaty o =)
1
+ g3fadmfabCfdec / d4xd4y d4Z Ab (X) | | Am(Z)
1
va| P A (y) + 0 (A%). (68)
Finally, moving to the Fourier space,
S; — N _Ab adm gabc gdec
h=g /(271)4 b (=) (@ +ig> fom fPe
diq; d* %2 , (@2)v
b (—=qAT (1 — q2)A},(q2) . (69)
@) 2myi " e

Recalling now the expression for the ghost form factor o (0, k) till
the third order, namely

0 (0,k)
=0@0,A) +5®(0, A)
_ & (N d*q AL (—AL(q)
4(N2—1) ) q2
dq, d4Q1
(2m)* (2m)* A

_ ,'g]:blbzb3

b1 (—q1) A% (q1 — g2) A% (g2) 2 )
q19;
(70)

and making use of

Fo0203 4B (—q1) A% (1 — 42) AT (@2)

— foam pabe pdec Ab (—qr) AT a1 — 42) A% (G2). (71)
it is apparent that, apart from a global factor, the expression of
the Gribov ghost factor o (0, A) coincides with that obtained by
expanding the horizon function till the same order,” i.e.

0(0,A) = Sh+ 0(A%). (72)

1
4(N2-1)
4. Conclusion

In this work the equivalence between Gribov’s ghost form factor
0 (0, A) and Zwanziger’s horizon function Sy has been investigated.
The form factor o (0, A) has been evaluated till the third order in
the gauge fields A‘;L and proven to be equivalent with the horizon
function Sy, as expressed by Eq. (72). Our result can be interpreted
as a strong indication of the fact that Zwanziger’'s horizon function
Sp is an all orders resummation of Gribov’s form factor o (0, A).

Let us conclude by mentioning that, although being nonlocal,
the horizon function Sj can be cast in local form by means of the
introduction of a suitable set of auxiliary fields. Remarkably, the
resulting action turns out to be renormalizable to all orders [3,4,
6-10].
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