1. Introduction

Nowadays, the hybrid composite stack has been extensively used in modern aerospace and aviation industries for manufacturing the key load-bearing components due to its enhanced mechanical properties and improved structural functions [1]. Material made of multi-phase of carbon fiber reinforced polymer (CFRP) and titanium alloy (Ti) is a typical example of hybrid composite configuration. The key advantages of delivering energy saving and improving system performance have awarded the material a promising alternative to substituting standard composite application and single metal alloy application in various industrial sectors [2-5].

Despite its superior behavior, mechanical drilling of this hybrid composite stack still represents the most challenging task in modern manufacturing industries due to the disparate natures of each stacked constituent involved and their respectively poor machinability. For instance, the CFRP laminate shows anisotropic behavior, abrasive nature and low thermal conductivity, which leads to poor heat dissipation and excessive tool wear in cutting. For Ti alloy, the metal exhibits low thermal conductivity and strong chemical affinity to most used tool materials, which usually results in high force/heat generation, and serious tool wear predominating the machining process. Moreover, the hybrid composite machining also involves severe mechanical/physical responses transfer due to the changeable chip-separation modes ruled in the material removal process when the tool edges cutting from one phase to another phase and vice versa. As a consequence, the cutting conditions governing the hybrid CFRP/Ti machining are extremely harsh. Severe subsurface damage, poor machined quality, and rapid tool wear are the key cutting characteristics of the hybrid CFRP/Ti machining.

To reveal the complicated cutting physics governing the hybrid CFRP/Ti machining, tremendous experimental studies have been performed by covering various cutting aspects including machinability evaluation, subsurface damage analysis and wear mechanism inspection [1]. Despite the fact that the referred work has led to a better understanding of the cutting physics dominating the hybrid CFRP/Ti drilling, however, these researches were carried out solely via the experimental method, which exhibits time-consuming and high cost. In contrast, the numerical approach should be a promising tool that can significantly help the mechanism investigation while cutting this bi-material system. Compared to the large amount of scientific work dealing with standard composite and single Ti alloy cutting modeling, very limited publications are reported to concern the numerical modeling and FE analysis of...
hybrid CFRP/Ti machining. The key reasons can be attributed to the problem and difficulty in establishing reliable constituents accurately describing the disparate natures of the composite-to-metal system as well as the complicated modeling of the interface behavior [6]. On this basis, this paper made an attempt to address the challenging issues involved in hybrid CFRP/Ti cutting modeling via the numerical method. To avoid the high computation cost arising from the real manufacturing modeling, the simplified orthogonal cutting configuration (OCC) was adopted. Although the OCC ignored some physical details of the real tool-work interaction, it still represented the most convenient way to replicate the fundamental mechanisms dominating the actual production. To construct the anisotropic machinability of the sandwich material, different constitutive laws and damage criteria were implemented into the commercial software Abaqus/Explicit code (Version 6.11) for the establishment of each stacked phase. The physical aspects involved in hybrid CFRP/Ti machining including specific cutting energy and induced damage extent were precisely studied through the comprehensive numerical analyses. It is the key objective to investigate the parametric effects on the anisotropic machinability of the stacked composite.

2. Physical setup of the FE model

The established FE model comprised four fundamental physical constituents, i.e., the tool part, CFRP phase, interface and Ti phase, as shown schematically in Fig.1 [7]. In the configuration of Fig.1, the tool edge was assumed to travel perpendicular to the CFRP/Ti boundary, which showed some differences from the drilling operation. However, under a 2D configuration, it still represented the simplified and easy way to study the fundamental cutting responses when machining the hybrid CFRP/Ti stack. Note that the use of interface here aimed to serve as a technical control for the “CFRP-to-Ti” contact management to simulate explicitly the interface delamination phenomenon during machining. Besides, a triangular traction-separation cohesion formulation together with the Benzeggagh-Kenane (BK) damage law [8] functionally available in the Abaqus/Explicit code was used to simulate the mechanical responses of the interface layer. In addition, a very small thickness approximately 5 μm was defined for the CFRP/Ti interface in order to minimize its influences on some other machining responses, i.e., CFRP/Ti force generation, chip separation process, etc.

![Fig. 1. Scheme of the OC model for hybrid CFRP/Ti machining (F denotes the cutting force and F denotes the thrust force)](image)

As shown in Fig.1, the tool part was assumed as a rigid body with defined geometries of rake angle, clearance angle (α = 0° and γ = 7°), and tool edge radius (r) of 2 μm, respectively. A cutting velocity was assigned to the reference node of the tool nose in order to finalize the cutting process. For the workpiece geometries and boundary conditions (as depicted in Fig.1), sufficient cutting length of probably 1 mm were used for both CFRP phase and Ti phase in order to attain the steady cutting status. The bottom side of the FE model was restrained in all directions while the left side was constrained to move in the cutting speed direction (X direction).

The CFRP phase used here was modeled as an equivalent homogeneous material (EHM) by also considering its anisotropic behavior relative to the fiber orientation (θ). The studied CFRP laminate was a unidirectional (UD) T300/914 carbon/epoxy laminate and 4-node plane-stress CPS4R elements with reduced integration and automatic hourglass control were used to construct the CFRP-phase model. The basic mechanical/physical properties of the simulated CFRP composite were obtained from [9, 10]. Through several experimental studies, the chip separation process of CFRP laminate was confirmed to be governed by brittle fracture mechanisms following four types of failure modes, i.e., fiber-tensile failure, fiber-compression failure, matrix-tensile failure and matrix-compression failure. Therefore, the commonly-used Hashin damage criteria that consider the mentioned four failure modes were adopted to simulate the rupture of the fiber/matrix system during the CFRP chip removal process. Table 1 then shows the basic expressions of the Hashin damage criteria [11, 12]. During the FE calculation, the stress at each integration point of the CFRP phase was simulated under specified time increment. Afterward, the mentioned four types of fiber/matrix failure modes were evaluated correspondingly. When any of the four failure modes reached the unity, the elastic properties of the examined elements would be degraded automatically according to their respective failure mode. Furthermore, once the elastic stiffness of the examined elements was degraded into zero, the elements would be deleted automatically from the composite phase and resulted in the complete chip separation of the CFRP material.

<table>
<thead>
<tr>
<th>Failure mode</th>
<th>Hashin failure criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber-tensile failure (σ₁₁ ≥ 0)</td>
<td>(D_1 = \left(\frac{\sigma_{\text{th}}}{Y_1} - \frac{\sigma_{\text{th}}}{Y_2} \right)^2)</td>
</tr>
<tr>
<td>Fiber-compression failure (σ₁₁ < 0)</td>
<td>(D_2 = \left(\frac{\sigma_{\text{th}}}{Y_1} - \frac{\sigma_{\text{th}}}{Y_2} \right)^2)</td>
</tr>
<tr>
<td>Matrix-tensile failure (σ₂₂ ≥ 0)</td>
<td>(D_3 = \left(\frac{\sigma_{\text{th}}}{Y_3} - \frac{\sigma_{\text{th}}}{S_1} \right)^2)</td>
</tr>
<tr>
<td>Matrix-compression failure (σ₂₂ < 0)</td>
<td>(D_4 = \left(\frac{\sigma_{\text{th}}}{Y_3} - \frac{\sigma_{\text{th}}}{S_1} \right)^2)</td>
</tr>
</tbody>
</table>

Note: \(\sigma_{\text{th}} \) indicates the stress in the fiber direction, \(\sigma_{\alpha\beta} \) signifies the stress in the transverse direction, and \(\sigma_{ij} \) denotes the in-plane shear stress.

The Ti phase was modeled as a fully isotropic material by using the four-node plane-strain thermally coupled quadrilateral CPE4RT elements for the whole set of the Ti elements. The basic mechanical/physical properties of the studied Ti6Al4V alloy were obtained from [13].

In addition, the most-used Johnson-Cook (JC) constitutive law and JC damage criteria were adopted to simulate the chip removal process of the Ti alloy. The basic expressions of the JC constitutive law and JC damage criteria can be found in [14]. Besides, the damage evolution was controlled by using effective plastic displacement at failure in the FE calculation. Moreover, the input JC parameters were selected from our previous work on hybrid CFRP/Ti cutting modeling [4, 7].
3. Experimental validation of the FE model

The validation work was performed concerning the individual Ti phase verification and CFRP phase verification. Both the two-phase models were validated carefully and refined rigorously until they were capable of replicating consistent results with the experimental observations from the literature. Afterward, they can be assembled for the cutting modeling of hybrid CFRP/Ti stack.

The Ti phase was validated through the comparisons of chip morphology and cutting force generation by refering to the experimental work done by Gentel et al. [15]. Fig. 2 shows the comparison between the simulated and experimental chip morphologies. It was clear that the predicted chip morphology agreed well with the experimental observation. Besides, the simulated cutting force (77.4 N/mm) was also in good agreement with the experimental one (75 N/mm) [15], which confirms the efficient credibility of the developed Ti-phase cutting model.

Fig. 2. Comparison of the simulated and experimental chip morphologies [15] in Ti-phase cutting modeling (\(v_c=4800 \text{ m/min}\) and \(f=35 \text{ mm/rev}\)).

The CFRP phase was validated through the comparisons of chip morphology and cutting force generation by refering to the experimental one (75 N/mm) [15], which confirmed the sufficient credibility of the established CFRP-phase cutting model.

Fig. 3. Comparison of the simulated and experimental force generation [10] in CFRP-phase cutting modeling (\(v_c = 6 \text{ m/min}, f=0.2 \text{ mm} \text{ and} \ a=0°\)).

For CFRP-phase model, it was validated through the manner of force generation and chip morphologies versus fiber orientation (\(\theta\)) as depicted in Fig.3, which was the commonly used criterion for validation of composite cutting modeling. As shown in Fig.3, it was apparent that the predicted force magnitudes yielded high correlation with the experimental results obtained by Iliescu et al. [10]. Also, the predicted chip morphology in \(\theta = 0°\) and \(45°\) also agreed with the experimental results from the literature [10], which confirmed the credibility of the established CFRP-phase cutting model.

4. Numerical results and discussion

For numerical studies, the used cutting speed (\(v_c\)) and feed rate (\(f\)) values were adopted based on a compromise selection since the CFRP-phase cutting and Ti-phase cutting require different ranges of cutting parameters [16, 17]. In addition, the fiber orientation (\(\theta\)) of the CFRP phase was also taken as a key input variable to inspect the anisotropic machinability of the hybrid CFRP/Ti stack. Table 2 summarizes the details of the input variables for cutting modeling of the hybrid CFRP/Ti stack.

Table 2. Input variables for hybrid CFRP/Ti cutting model.

Cutting speed, \(v_c\) (m/min)	10, 20, 30, 40
Feed rate, \(f\) (mm/rev)	0.05, 0.10, 0.15, 0.20
Fiber orientation, \(\theta\) (°)	\(\theta = i \cdot d_i (i = 0, 1, \ldots, 12, d_i = 15°)\)

4.1. Specific cutting energy

Machining of hybrid CFRP/Ti is usually a difficult task due to its poor machinability and anisotropic behavior. To quantitively evaluate its anisotropic machinability, the specific cutting energy (\(\alpha\)) [18] was adopted. The specific cutting energy signifies the machining energy consumed for the unit volume removal of the work material in machining, which can be expressed as follows in orthogonal cutting configuration.

\[
\alpha = \frac{F_c}{a_c \times w}
\]

(1)

Where \(F_c\) signifies the main cutting force, \(a_c\) and \(w\) denote the cutting depth and cutting width, respectively.

Note that in the present numerical configuration, the \(F_c\) was calculated based on the mean values of both \(F_{c, CFRP}\) and \(F_{c, Ti}\), the cutting depth (\(a_c\)) in Eq.(1) referred to the feed rate (\(f\)) while the cutting width (\(w\)) equaled to 1 mm.

Fig.4 shows the acquired energetic results of hybrid CFRP/Ti machining versus \(\theta\) and \(v_c\). Note that the figure was plotted in a polar map to illustrate clearly the anisotropic machinability of the stacked composite. For 180°–360° \(\theta\) range, it could be described as \(\theta\) subtracting 180°.

As depicted in Fig.4, the \(\alpha\) map of hybrid CFRP/Ti stack globally showed a “pigeon” like shape: specific cutting energy was smaller in the second and fourth quadrants where cutting was performed in the reverse fiber direction (\(\theta = 90°–180°/270°–360°\)), and larger in the first and third quadrants where cutting was performed in the forward fiber direction (\(\theta = 0°–90°/180°–270°\)). Moreover, the maximum \(\alpha\) magnitudes usually took place when cutting was undertaken in the perpendicular to fiber direction (\(\theta = 90°/270°\)), forming the wings of the “pigeon”-shaped map. The reason could be attributed to the severe chip separation mode predominating the 90° CFRP machining, which involved serious shear fracture and extrusion fracture of the chip breakage. In such case, the machinability of the CFRP/Ti stack was predicted to be the poorest in the 90° fiber orientation, resulting in a large amount of \(\alpha\) consumption. In addition, the \(\alpha\) magnitudes in the forward fiber direction increased with elevated \(\theta\), indicating the decreased machinability of the composite-to-metal alliance. In contrast, the \(\alpha\) values suffered a decreasing trend with the increase of \(\theta\) in the reverse fiber direction (\(\theta = 90°–180°/270°–360°\)), which signified the improved machinability of the stacked composite.

Furthermore, the cutting speed (\(v_c\)) was found to have a negative impact on the specific cutting energy (\(\alpha\)). Typically, with the increase of \(v_c\), the specific cutting energy map suffered a little bit shrinkage as...
depicted in Fig.4, indicating the reduced u consumption and improved machinability of the hybrid CFRP/Ti stack.

![Fig.4. Specific cutting energy (u) map of hybrid CFRP/Ti machining versus fiber orientation (θ) and cutting speed (v_c) ($f=0.20$ mm/rev).](image)

4.2. Induced damage formation

In hybrid CFRP/Ti machining, the key types of induced subsurface damage were interface delamination and composite-phase damage, as revealed in our previous research work [4, 7].

![Fig.5. Effects of (a) v_c ($f=0.2$ mm/rev and $\theta=0^\circ$) and (b) f ($v_c=40$ m/min and $\theta=0^\circ$) on D_{del} and D_{CFRP} extent.](image)

Fig.5 shows the parametric effects on the delamination extent (D_{del}) and composite-phase damage (D_{CFRP}), respectively. As can be seen from this figure, the cutting speed was found to globally have a negative impact on the D_{del} and D_{CFRP} (except the abnormal point of $v_c=10$ m/min for D_{del}) while the impact of feed rate was totally positive, i.e., an increased f typically resulted in the directly elevated D_{del} and D_{CFRP}. Moreover, from Fig.5 it can be concluded that for minimizing the induced interface damage and CFRP-phase damage, the high-speed cutting together with low feed rate should be adopted when cutting hybrid CFRP/Ti stack.

5. Conclusions

In this paper, an FE model was developed to investigate the hybrid CFRP/Ti machining process. Based on the results acquired, the following conclusions can be drawn.

(1) The fiber orientation (θ) was found to be the notable factor that directly led to the anisotropic machinability of the CFRP/Ti stack. The u map globally showed a "pigeon" like shape versus θ where u was smaller when cutting was performed in the reverse fiber direction ($\theta=90^\circ$/270°-360°), and larger when cutting was operated in the forward fiber direction ($\theta=0^\circ$/180°-270°).

(2) The parametric studies confirmed that the v_c globally had a negative impact on the D_{del} and D_{CFRP} extent while the impact of f was totally positive. To minimize the serious induced subsurface damage, a combination of high v_c and low f should be adopted in the real production of the hybrid CFRP/Ti stack.

Acknowledgements

The authors gratefully acknowledge their financial support of China Scholarship Council (CSC) (Contract No. 201306230091).

References

