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Background: Radiotherapy is an established treatment for malignant localised disease. Pan-

creatic cancer however seems relatively insensitive to this form of therapy.

Methods: Pancreatic cancer cell lines MiaPaca-2 and Panc-1 were pre-treated with 3000 IU/

ml IFNa or 100 IU/ml IFNb followed by 0, 2, 4, or 6 Gray (Gy) irradiation. Colony forming

assay was used to assess the effects on cellgrowth. To measure the surviving fraction at

the clinically relevant dose of 2 Gy (SF2), cells were pre-treated with 1000–10.000 IU/ml IFNa

or 50–500 IU/ml IFNb followed by 2 Gy irradiation.

Results: The plating efficiency was 49% for MiaPaca-2 and 22% for Panc-1. MiaPaca-2 was

more radiosensitive than Panc-1 (surviving fraction of 0.28 versus 0.50 at 4 Gray). The SF2

of MiaPaca-2 was 0.77 while the SF2 of Panc-1 was 0.70. The SF2 significantly decreased

after pretreatment with IFNa 1000 IU/ml (p < 0.001) and IFNb 100 IU/ml (p < 0.001) in Mia-

Paca-2 and with IFNa 5000 IU/ml (p < 0.001) and IFNb 100 IU/ml (p < 0.01) in Panc-1. The sen-

sitising enhancement ratio (SER) for IFNa 3000 IU/ml was 2.15 in MiaPaca-2 and 1.90 in

Panc-1. For IFNb 100 IU/ml the SER was 1.72 for in MiaPaca-2 and 1.51 in Panc-1.

Conclusions: Type I interferons have radiosensitising effects in pancreatic cancer cell lines.

This radiosensitising property might lead to an improved response to treatment in pancre-

atic cancer. Interferon b is the most promising drug due to its effect in clinically obtainable

doses.

� 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Radiotherapy is an important treatment in cancer, especially

for patients with advanced localised disease, with proven effi-

cacy in many tumours.1–5 Based on several randomised

controlled trials studying the effect of adjuvant (chemo)radio-

therapy, pancreatic and periampullary cancers are fairly

radiotherapy resistant.6–10
t of Surgery, Erasmus Me
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Often chemotherapeutics (5-fluorouracil (5-FU), gemcita-

bine) are used as radiosensitisers. Besides their direct cyto-

toxic effects caused by incorporation of the drugs as

modified nucleotides into the DNA, even low doses of these

drugs can be effective in radiosensitisation. Interference with

normal repair of radiation-induced DNA damage with an inap-

propriate progression through S phase is key in their radiosen-

sitising properties causing late, unmanageable toxicities. A
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favourable side effect of their direct cytotoxicity is a relative

increase in oxygenation, leading to an increased vulnerability

for radiotherapy.11,12 However, as mentioned, results of che-

moradiotherapy are disappointing in pancreatic cancer.6–10

In several tumours radiosensitising properties of inter-

feron alpha (IFNa) and interferon beta (IFNb) have been dem-

onstrated in vitro13–17 as well as in vivo.18,19 In pancreatic

cancer cell lines, IFNa has already shown to act as radiosensi-

tiser20 and in vivo promising therapy results have been re-

ported combining 5-FU, cisplatinum, and radiation therapy

with IFNa alone (5-year survival rate of 55%) or followed by

2 cycles of gemcitabine (median survival 25 months) in pa-

tients with resected pancreatic adenocarcinoma.21,22 These

results are currently reinvestigated in the phase III CapRI

study.23

Type I interferons such as IFNa and IFNb, sort their effect

through the same interferon receptor (IFNAR) with IFNb hav-

ing a higher affinity. In vivo studies showed that approximately

20% of pancreatic cancers express IFNARs and that expression

of the interferon receptor correlates with a significant survival

benefit in patients with resected pancreatic cancer.24

The exact mechanism by which type I interferons cause

radiosensitisation is unclear. Possibly, concomitant treatment

with IFNs causes an inappropriate progression of cells into

S-phase, thereby interfering with repair of radiation-induced

damage or increasing the proportion of lethal to sublethal

damage.17,25

In this study we aim to gain insight in the radiosensitising

abilities of type I interferons, especially IFNb, in pancreatic

cell lines. We decided to address these issues in colony form-

ing assays, because besides the apoptotic effects of radiation

and IFNs, the reproductive integrity of tumour cells (i.e. the

capacity to produce an expanding colony of descendants,

and therefore to regrow the tumour if left intact at the end

of treatment) is of pivotal importance.

2. Materials and methods

2.1. Cell lines and culture conditions

The human pancreatic cell lines MiaPaCa-2 and Panc-1 were

purchased from the American Type Culture Collection. The

cells were cultured in a humidified incubator containing 5%

CO2 at 37�C. MiaPaca-2 was cultured in RPMI 1640 and Panc-

1 in DMEM both supplemented with 10% FCS, penicillin

(1 · 105 U/l), fungizone (0.5 mg/l) and L-glutamine (2 mmol/l).

Periodically, the cells were tested for Mycoplasma contamina-

tion, which was not detected. Cells were harvested with tryp-

sin (0.05%), EDTA (0.02%) and resuspended in medium. Before

plating, the cells were counted microscopically using a stan-

dard haemocytometer. Tryphan Blue staining was used to as-

sess cell viability, which always exceeded 95%. Media and

supplements were obtained from GIBCO Bio-cult Europe

(Invitrogen, Breda, The Netherlands).

2.2. Drugs and Reagents

Human recombinant IFN-a-2b (Intron-A) was obtained from

Schering-Plough Corporation (Utrecht, The Netherlands),

while human recombinant IFN-b-1a (Rebif) was acquired from
Serono Benelux BV (Den Haag, The Netherlands). All com-

pounds were stored at )20 �C, and the stock solution was con-

stituted in distilled water according to the manufacturer

instructions. Doses of 1000–10.000 IU/ml for IFNa and

50–500 IU/ml for IFNb were used.

2.3. Irradiation

Cells were exposed to gamma radiation from a 137Cs source at

70.9 cGy/min at room temperature under aerobic conditions.

For radiation survival studies, cells were irradiated with 0, 2,

4, 6, 8, or 10 Gray. In the combined modality treatment, the

IFN treatment was given before irradiation for 72 hours. Cells

were irradiated with 0, 2, 4, or 6 Gray in the presence of the

drug.

2.4. Colony forming assay

Cells were plated onto poly-L-lysine coated, 60-mm Petri-

dishes (6–12 cells/cm2) and cultured in complete medium for

2 weeks. Poly-L-lysine (10 lg/ml; Sigma–Aldrich, Zwijndrecht,

The Netherlands) inhibited cells from dispersing from the

growing colonies.

Dose response curves for IFNa, IFNb and irradiation were

established for both cell lines using a colony-forming assay.

Therefore, seeded cells were allowed to attach for 24 hour

prior to treatment with 1000–10.000 IU/ml IFNa, 50–500 IU/

ml IFNb or 0–10 Gray irradiation. Cell lines were treated with

IFNs continuously and medium plus agents were replaced

every three or four days. Fourteen days after seeding, colonies

were fixed with 100% ethanol and stained with hematoxicil-

line to allow calculation of their average colony-forming effi-

ciency. Colonies containing >50 cells were counted

automatically with the MultiImage Light Cabinet from HpH

Innitech Corporation.

Plating efficiency was defined as the mean number of col-

onies divided by the number of inoculated cells for control

cultures not exposed to interferons or radiation. The surviv-

ing fraction (SF) was calculated as (mean number of colo-

nies)/(number of inoculated cells · plating efficiency). The

curve was plotted using X–Y log scatter (Graph Prism 3.0).

Curve-fitting parameters a and b were determined.
2.5. Radiation enhancement by type I interferons

To asses radiation enhancement by type I interferons, cells

were pretreated with IFNa 3000 IU/ml or IFNb 100 IU/ml (doses

resulting in approximately 50% decrease in surviving fraction

in both cell lines) for 72 hours. Cell lines were irradiated with

0, 2, 4, or 6 Gray. Control plates without IFNs were irradiated

simultaneously. Cell lines were treated with IFNs continu-

ously and medium plus agents were replaced every three or

four days. After 2 weeks, the formed colonies were fixed and

stained to allow counting.

SF2 is the surviving fraction of cells that were irradiated at

the clinically relevant dose of 2 Gray.

The sensitising enhancement ratio (SER) for interferon

was calculated at the 37% survival level. The radiation dose

that reduced the surviving colonies to 37% of the non-treated
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controls was divided by the radiation dose that reduced sur-

vival to 37% after interferon pre-treatment.

2.6. Cell proliferation assay

Measurement of total DNA contents, representative for the

number of cells, was performed using the bisbenzimide fluo-

rescent dye (Hoechst� 33258, Boehring Diagnostics, La Jolla,

CA) as previously described.26

2.7. Measurement of DNA fragmentation (apoptosis)

10.000 cells/dish, depending on the length of the incubation

period, were plated on 24-well plates and the cells were al-

lowed to adhere overnight. The next day the cell culture med-

ium was replaced with 1ml/well medium containing 3000 IU/

ml IFN-a or 100 IU/ml IFN-b. Each treatment was performed

in quadruplicate. After an additional incubation of 3 days,

apoptosis was assessed using a commercially available ELISA

kit (Cell Death Detection ELISAPlus, Roche Diagnostic GmbH,

Penzberg, Germany). The standard protocol supplied by the

manufacturer was used. Relative apoptosis was determined

by calculating the ratio of the average absorbance of the treat-

ment dishes to the average absorbance of the control dishes.

The data were corrected for the effect on cell number after

3 days of treatment. Intra- and inter-assay coefficients of var-

iation were 4.2% and 6.3%, respectively.
Fig. 1 – Effect of IFNa and IFNb treatment on colony forming abili

were treated with IFNa (A,C) or IFNb (B,D) during fourteen days

automatically. Data are the mean ± SEM. *p < 0.05 versus contro
2.8. Statistical analyses

All experiments were carried out in duplicates and gave com-

parable results. For statistical analysis GraphPad Prism� 3.0

(GraphPad Software, San Diego, USA) was used. The compar-

ative statistical evaluation amongst groups was firstly per-

formed by the ANOVA test. When significant differences

were found, a comparison between groups was made using

the Newman–Keuls test. The unpaired Student t-test was

used to analyse the differences in surviving fraction for each

dose point.

In all analyses, values of p < 0.05 were considered statisti-

cally significant. Data are reported as mean ± SEM. Statistical

analysis was made after logarithmic transformation.
3. Results

In vitro, the control plating efficiency (mean ± SD) was mea-

sured and amounted to 49 ± 3% for MiaPaca-2 and 22 ± 3%

for Panc-1.

3.1. Effect of type I interferons on relative clonogenic
survival

Both IFNa and IFNb inhibited colony formation for both Mia-

Paca-2 and Panc-1 cells in a dose dependent manner (Fig. 1).
ty in MiaPaca-2 (A,B) and Panc-1 (C,D). Pancreatic cancer cells

and both number and size of colonies were counted

l.
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For all doses analysed, MiaPaca-2 was significantly more vul-

nerable to both IFNa and IFNb than Panc-1.

Besides inhibiting colony formation, type I interferon

had growth inhibitory effects on both cell lines; after inter-

feron treatment, colonies were significantly smaller than

colonies from untreated cells (Fig. 1). This finding is con-

sistent with Vitale’s manuscript27 demonstrating both

growth inhibitory as well as pro-apoptotic properties of

type I interferons with IFNb being the more potent pro-

apoptotic drug than IFNa, where apoptosis only occurs in

higher doses.

3.2. Effect of radiation on relative clonogenic survival

MiaPaca-2 was more radiosensitive than Panc-1 for 4, 6 and

8 Gray (Fig. 2a). The surviving fraction at 2 Gy (SF2) of Mia-

Paca-2 was 0.77 while the SF2 of Panc-1 was 0.70. At 4 Gy how-

ever, the SF was 0.28 for MiaPaca-2 and 0.50 for Panc-1. The

size of the colonies was not considerably influenced by radio-

therapy (Fig. 2b).

3.3. Effect of type I Interferons on apoptosis

Significant apoptosis corrected for DNA content occurred

after 72 hours (Fig. 3). Apoptosis increased to 802 ± 219% for

IFNa 3000 IU/ml and 575 ± 119% for IFNb 100 IU/ml. In Panc-

1 apoptosis after 72 hours was 154 ± 14% for IFNa 3000 IU/ml

and 139 ± 7% for IFNb 100 IU/ml.
Fig. 2 – Effect of irradiation on colony forming ability in MiaPac

irradiation during 14 days and both number and size of colonie

*p < 0.05 versus control.
3.4. Surviving fraction at 2 Gray (SF2)

The SF2 of MiaPaca-2 was 0.77 while the SF2 of Panc-1 was

0.70.

Pre-incubation with IFNa for 72 hours at doses of 1000,

2000 or 5000 IU/ml changed the SF2 in MiaPaca-2 to 0.56,

0.47 and 0.18, respectively. In Panc-1 pre-incubation with IFNa

at doses of 2000, 5000, or 10.000 IU/ml changed the SF2 to 0.66,

0.22 and 0.18, respectively.

Pre-incubation with IFNb for 72 hours at doses of 50, 100,

or 200 IU/ml changed the SF2 in MiaPaca-2 to 0.70, 0.33 and

0.22, respectively. In Panc-1 pre-incubation with IFNb at doses

of 100, 200 or 500 IU/ml changed the SF2 to 0.48, 0.24 and 0.23,

respectively.

The decrease of SF2 compared to the SF2 without pre-incu-

bation was significant after IFNa 2000 IU/ml (p < 0.01) and

IFNa 5000 IU/ml (p < 0.001) and IFNb 100 IU/ml and IFNb

200 IU/ml (p < 0.001) in MiaPaca-2. In Panc-1 concentrations

of IFNaa 2000 IU/ml (p < 0.01), IFNa 5000 IU/ml (p < 0.001) and

IFNa 10.000 IU/ml (p < 0.001) and IFNb 100 IU/ml (p < 0.001)

IFNb 200 IU/ml (p < 0.001) IFNb 500 IU/ml (p < 0.001) resulted

in significant improved radiosensitivity (Fig. 4).

3.5. Effect of type I interferon on radiosensitivity

The radiotherapy dose required to reduce the surviving frac-

tion to 37% was 3.98 Gy in MiaPaca-2 for the non-treated con-

trols. After IFNa 3000 IU/ml, the required dose was 1.85 Gy
a-2 and Panc-1. Pancreatic cancer cells were treated with

s were counted automatically. Data are the mean ± SEM.



Fig. 3 – Effect of 3000 IU/ml IFNa and 100 IU/ml IFNb treatment on apoptosis (DNA fragmentation) in MiaPaCa-2 and Panc-1 cell

lines. Cells were incubated for 3 days without (control) or with the drugs indicated. Values are absorbance units and are

expressed as percent of the control. Data are the mean ± SEM. *p < 0.05 versus control.

Fig. 4 – Effect of combined treatment with type I interferons and 2 Gy irradiation on colony forming ability in MiaPaCa-2 (A,B)

and Panc-1 (C,D) cell lines. Cells were pretreated with IFNa (A,C) or IFNb (B,D) for 72 hours followed by irradiation with 2 Gy.

The formed colonies were automatically counted after 2 weeks. Data are the mean ± SEM. *p < 0.05 versus control.
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and after IFNb 100 IU/ml, the required dose was 2.32 Gy. This

leads to a sensitising enhancement ratio (SER) of 2.15 for IFNa

3000 IU/ml and a SER of 1.72 for IFNb 100 IU/ml in MiaPaca-2.

In Panc-1 the required radiotherapy dose to reduce the SF

to 37% was 4.65 Gy for the non-treated controls. After IFNa

3000 IU/ml, the required dose was 2.45 Gy and after IFNb

100 IU/ml, the required dose was 3.07 Gy. This leads to a sen-

sitising enhancement ratio (SER) of 1.90 for IFNa 3000 IU/ml

and a SER of 1.51 for IFNb 100 IU/ml in Panc-1.

The shape of the survival curves changed after treatment

resulting in an increased steepness of the survival curve with

an increase of the a-component after curve fitting (Fig. 5). For

MiaPaca-2 this increase was significant for both IFNa as IFNb
compared to the non-treated controls. In the Panc-1, we

found no significant difference between the a-component

after neither IFNa nor IFNb and the non-treated controls. In

this cell line, after comparison of the radiosensitivity between

groups using the Newman–Keuls test, only the SF after 6 Gy of

irradiation combined with IFNa or IFNb was significantly low-

er than after irradiation alone. All other SFs were similar after

treatment or no treatment.

4. Discussion

Our in vitro study shows a radiosensitising effect of type I

interferons on pancreatic cancer cell lines MiaPaca-2 and



Fig. 5 – Effect of combined treatment with 3000 IU/ml IFNa

and 100 IU/ml IFNb and irradiation on colony forming ability

in MiaPaCa-2 and Panc-1 cell lines. Cells were pretreated with

IFNa or IFNb for 72 hours followed by 0, 2, 4 or 6 Gy irradiation.

The formed colonies were automatically counted after

2 weeks. Data are the mean ± SEM. *p < 0.05 versus control.
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Panc-1. Miapaca-2 was 2.15 times more sensitive to radiother-

apy after treatment with IFNa 3000 IU/ml and 1.72 times more

sensitive after IFNb 100 IU/ml. The sensitivity to radiotherapy

of Panc-1 increased 1.90 times after treatment with IFNa

3000 IU/ml and 1.51 times after IFNb 100 IU/ml. Radiosensiti-

sation was dose dependently, with higher doses of interferons

resulting in a higher radiosensitivity, i.e. a lower surviving

fraction at 2 Gray (SF2). Both overall radiosensitivity and sen-

sitivity to interferon therapy was higher in MiaPaca-2 than in

Panc-1. Previously, IFN receptor expression (mRNA and pro-

tein) was shown by Vitale et al.27 with MiaPaCa-2 expressing

more plasma membrane located IFN receptors than Panc-1.

Furthermore, treatment with type I interferons results in

more apoptosis in MiaPaca-2 than in Panc-1, although only

extremely high doses (>1000 IU/ml) of IFNa cause apoptosis.27

Tumours are most vulnerable for radiotherapy in case of

adequate vascular supply (proper oxygenation) and appropri-

ate cell cycling.11,28 To enhance the effect of radiotherapy, ef-

fort has been made to find radiation sensitisers. Because

hypoxic cells are known to be up to three-fold more resistant

to radiotherapy than well-oxygenated cells,29 several strate-

gies have been investigated to find ways to sensitise hypoxic

cells to radiation. These strategies focus at reducing tumour

hypoxia by increasing the delivery of oxygen to the tumour,

administering oxygen mimetics and mimicking the effect of

oxygen in the radiochemical process or by selective destruc-

tion of hypoxic cells, for instance by tirapazimine.30,31 Trials

show that reducing hypoxia by any means, leads to a better

locoregional control and an improved survival, especially in

head and neck cancer and cervical cancer.30
Resistance to apoptosis is the key factor for poor responses

to therapies in pancreatic cancer. Ionising radiation alone

causes a range of lesions in the DNA of target cells such as base

damage, single-strand and double-strand breaks. Double-

strand breaks are generally considered the lethal event but

can be repaired by DNA repair mechanisms. Inadequately

repaired DNA damage causes activation of the mitochondrial

pathway of apoptosis by p53 resulting in activation of the cas-

pase cascade. Membrane damage activates the stress-activated

protein kinase pathway leading to activation of the mitochon-

drial pathway as well as a direct activation of caspases. Further-

more radiotherapy activates apoptosis due to stimulation of the

death receptor pathway, consisting of the tumour necrosis

factor (TNF) receptor superfamily (for instance TRAIL-R1 and

TRAIL-R2). Activation causes direct activation of the caspase

cascade. These cell death pathways are regulated by numerous

signalling molecules, such as nuclear factor-jB (NF-jB), phos-

phatidylinositol 3-kinase (PI3K), inhibitor of apoptosis proteins

(IAPs) and members of the Bcl-2 protein family.32,33

Pancreatic cancer cells have developed multiple resistance

mechanisms to therapy-induced apoptosis. The mitochon-

drial pathway of apoptosis is less activated due to inactivating

p53 mutations, present in >70% of the pancreatic cancers. If

activated, this pathway has a diminished ability to activate

the caspase cascade. Furthermore, pancreatic cancer cells

overexpress anti-apoptotic proteins, have inactivated pro-

apoptotic genes and express decoy receptors to prevent

activation of the death receptor pathway.34,35

In pancreatic cancer cell lines, IFNa has already shown to be

able to avoid these resistance mechanisms and act as radio-

sensitiser20 The exact mechanism by which IFN exerts this

radiosensitising activity is unclear. Both IFNa and IFNb have di-

rect anti-tumour effects including apoptosis, cell damage,

upregulation of cancer antigens and a growth inhibitory effect

with accumulation of cells in S phase. Indirect anti-tumour ef-

fects are caused by modulation of the immune system, mainly

through activation of T-cells, macrophages and natural killer

cells, and anti-angiogenesis activity by downregulation of

the vascular endothelial growth factor (VEGF) receptor and

an alteration in the expression of various oncogenes.27,36–39

In pancreatic cancer cell lines, type I interferons cause

both direct apoptosis (at lower doses in IFNb) and radiosensi-

tisation. The exact mechanism for enhancing radiosensitivity

is unclear. Apparently the accumulation of cells in S phase

caused by interferons, which is the most radioresistant part

of the cell cycle, does not prevent radiosensitisation. A possi-

ble mechanism is the inability of cells to accumulate suble-

thal DNA damage with interferon interfering in the repair of

this kind of DNA damage. Furthermore alteration in oncogene

expression levels might sensitise radioresistant cells to radio-

therapy. Because not only the pro-apoptotic effect of IFNs

combined with radiotherapy but especially the reproductive

capacity of the treated cells is related to treatment efficacy,

we chose colony forming assays for our study.

Beneficial effects of IFNa combined with chemoradiother-

apy were already demonstrated in phase II studies in patients

with resectable pancreatic cancer.21,22 However, treatment is

associated with considerable toxicity21,22,40 and the optimal

combination therapy considering efficacy as well as tolerabil-

ity is yet to be determined.
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In conclusion, our in vitro study shows that both IFNa and

IFNb have radiosensitising effects in pancreatic cancer cell

lines that are not based on immunomodulatory properties.

Radiosensitising effects are dose dependent, and lower doses

of IFNb than IFNa cause similar radiosensitisation. The effect

of interferon seems related to the receptor status. The

radiosensitising property of type I interferons might lead to

an improved response to treatment in pancreatic cancer with

interferon b being the most promising drug. Therefore, fur-

ther clinical trials involving combination therapy of type I

IFNs and radiotherapy are promising.
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