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1. Introduction

Every topological group G admits a “largest” compact Hausdorff group bG and a continuous homomorphism ρG : G → bG
such that every continuous homomorphism ϕ : G → K into a compact Hausdorff group K factors uniquely through ρG :

G
ϕ

ρG

K

bG

∃!ϕ̃
(1)

The group bG is called the Bohr-compactification of G , and the image ρG(G) is dense in bG . The kernel of ρG is called the
von Neumann radical of G , and is denoted by n(G). One says that G is maximally almost-periodic if n(G) = 1, and minimally
almost-periodic if n(G) = G (cf. [8]).

It is well known that the discrete topology is maximally almost-periodic on every abelian group (cf. [6, 4.23]). Ajtai,
Havas, and Komlós, and independently, Zelenyuk and Protasov, showed that every infinite abelian group admits a (Hausdorff)
group topology that is not maximally almost-periodic (cf. [1] and [13, Theorem 16]). While these results provide a group
topology where the von Neumann radical is non-trivial, they remain silent about the size of the von Neumann radical of
the group. In particular, they do not guarantee that the von Neumann radical is finite. Motivated by these observations,
Lukács called a Hausdorff topological group G almost maximally almost-periodic if n(G) is non-trivial, but finite (cf. [7]). He
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proved, among other results, that for every prime p �= 2, the Prüfer group Z(p∞) admits a (Hausdorff) almost maximally
almost-periodic group topology (cf. [7, 4.4]).

The aim of this paper is to substantially extend the results of Lukács in several directions. The main results of the paper
are as follows:

Theorem A. Let A be an abelian group with an infinite torsion subgroup. Then A admits a (Hausdorff ) almost maximally almost-
periodic group topology.

Theorem B. Let p be a prime, and x ∈ Z(p∞) a non-zero element. Then there is a (Hausdorff ) group topology τ on Z(p∞) such that
n(Z(p∞), τ ) = 〈x〉.

Most of the effort in this paper is put toward proving Theorem B, which implies Theorem A. Once Theorem B has been
established, Theorem A follows from it and from another result of Lukács (cf. [7, 3.1]). Since Theorem B was proven by
Lukács for all primes p > 2 (cf. [7, 4.4]), it remains to be shown that the statement also holds for p = 2.

The paper is structured as follows: In order to make the manuscript more self-contained, in Section 2, we have collected
some preliminary results and techniques that will be used throughout the paper. Section 3 is a somewhat technical prepa-
ration for the proof of Theorem B, which is presented in Section 4 along with the proof of Theorem A. Finally, in Section 5,
we formulate two open problems stemming from the results presented in this paper, and discuss what is known to us, at
this point, about their solution.

2. Preliminaries

In this section, we have collected some preliminary results and techniques that are used throughout the paper. Thus, the
experienced or expert reader may wish to skip this section.

In this paper, all groups are abelian, and all group topologies are Hausdorff, unless otherwise stated. For a topological
group A, let Â = H(A,T) denote the Pontryagin dual of A—in other words, the group of continuous characters of A (i.e.,
continuous homomorphisms χ : A → T, where T = R/Z) equipped with the compact-open topology. It follows from the

famous Peter–Weyl Theorem [10, Theorem 33] that the Bohr-compactification of A can be quite easily computed: b A = ̂̂Ad ,
where Âd stands for the group Â with the discrete topology. Thus,

n(A) =
⋂
χ∈ Â

kerχ. (2)

The group Z(p∞) can be seen as the subgroup of Q/Z generated by elements of p-power order, or as the group formed
by all pnth roots of unity in C. Throughout this note, the additive notation provided by Q/Z is used, and we set en = 1

pn +Z.

The Pontryagin dual Ẑ(p∞) of Z(p∞) is the p-adic group Zp . We let χ1 denote the natural embedding of Z(p∞) into T.
Lukács, who proved Theorem B for p �= 2 (cf. [7, 4.4]), used so-called T -sequences as his main machinery to produce almost
maximally almost-periodic group topologies on Z(p∞). While the outstanding case of p = 2 requires special attention, the
techniques used in this paper are nevertheless similar.

A sequence {an} in a group G is a T -sequence if there is a Hausdorff group topology τ on G such that an
τ−→ e. In

this case, the group G equipped with the finest group topology with this property is denoted by G{an}. The notion of a
T -sequence was introduced and extensively investigated by Zelenyuk and Protasov, who characterized T -sequences (and
so-called T -filters), and studied the topological properties of G{an}, where {an} is a T -sequence (cf. [13, Theorems 1–2]
and [11, 2.1.3, 2.1.4, 3.1.4]). These two authors used the technique of T -sequences to prove the following results (some of
which were also obtained independently by Ajtai, Havas, and Komlós [1]).

Theorem 2.1.

(a) ([1, §2], [13, Example 4]) Z admits a minimally almost-periodic group topology.
(b) ([1, §4], [13, Example 6]) Z(p∞) admits a minimally almost-periodic group topology for every prime p.
(c) ([13, Example 6], [2, 3.3]) Let χ ∈ Ẑ(p∞) = Zp . One has χ(en) −→ 0 if and only if there is m ∈ Z such that χ = mχ1 .

Since Z(2∞) is an abelian group, we need only the abelian version of the Zelenyuk–Protasov criterion:

Theorem 2.2. ([11, 2.1.4], [13, Theorem 2]) Let a = {ak} be a sequence in an abelian group A. For l,m ∈ N, put

A(l,m)a =
{

m1ak1 + · · · + mhakh

∣∣∣ m � k1 < · · · < kh,mi ∈ Z\{0},
∑

|mi| � l

}
. (3)

Then {ak} is a T -sequence if and only if for every l ∈ N and g �= 0, there exists m ∈ N such that g /∈ A(l,m)a.
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For a group A, we put A[n] = {a ∈ A | na = 0} for every n ∈ N. The group A is almost torsion-free if A[n] is finite for
every n ∈ N (cf. [12]). Clearly, the Prüfer groups Z(p∞) are almost torsion-free. Lukács characterized T -sequences in almost
torsion-free groups as follows.

Theorem 2.3. ([7, 2.2]) Let A be an almost torsion-free group, and let a = {ak} be a sequence in A. The following statements are
equivalent:

(i) For every l,n ∈ N, there exists m0 ∈ N such that A[n] ∩ A(l,m)a = {0} for every m � m0 .
(ii) {ak} is a T -sequence.

Lukács also provided sufficient conditions for a sequence in Z(p∞) to be a T -sequence.

Lemma 2.4. ([7, 4.1]) Let {ak} be a sequence in Z(p∞) such that o(ak) = pnk . If nk+1 − nk −→ ∞, then {ak} is a T -sequence.

It turns out that the class of abelian groups that admit an almost maximally almost-periodic group topology is upward
closed in the sense that if a group A belongs there, then so does every abelian group B that contains A as a subgroup (cf.
Theorem 4.2). Thus, in the proof of Theorem A, we restrict our attention to torsion groups. In particular, we rely on the
following result on the structure of infinite abelian groups to confine our attention further to two special subgroups.

Lemma 2.5. ([3, Theorems 8.4, 23.1, 27.2]) Every infinite abelian group contains a subgroup that is isomorphic to Z, or Z(p∞), or an
infinite direct sum of non-trivial finite cyclic groups.

It follows from the above lemma that in the proof of Theorem A, we can focus on the following two types of subgroups:
Prüfer groups (which are taken care of by Theorem B), and direct sums of infinitely many finite groups, which are addressed
by the following result.

Theorem 2.6. ([7, 3.1]) If A is a direct sum of infinitely many non-trivial finite abelian groups, then A admits an almost maximally
almost-periodic group topology.

3. The canonical form in ZZZ(2∞)

The aforementioned result of Lukács concerning Z(p∞) is based on a canonical form, which he introduced for writing
each element of Z(p∞) uniquely as an integer combination of the elements {en}n∈N with certain additional conditions on
the coefficients (cf. [7, 4.6]). The canonical form of Lukács, however, requires the prime p to be odd, and thus fails in the
case of p = 2. In this section, we remedy this, provide a unique canonical form for elements of Z(2∞), and establish some
technical properties of the canonical form that are needed for the proof of Theorem B.

Each element y ∈ Z(2∞) admits many representations of the form y = ∑
σnen , where σn ∈ Z with only finitely many

of the σn being non-zero. In order to find a canonical form for these elements, we first eliminate the summands with odd
indices.

Lemma 3.1. Let y = ∑
σnen ∈ Z(2∞). Then y can be represented in the form of y = ∑

σ ′
2ne2n, where σ ′

2n ∈ N and
∑ |σ ′

2n| � 2
∑ |σn|.

Proof. Let K be the largest index such that σK �= 0, and N the smallest integer that satisfies K � 2N . Since e2n−1 = 2e2n for
every n ∈ N, one has

y =
2N∑

n=1

σnen =
N∑

n=1

σ2n−1e2n−1 +
N∑

n=1

σ2ne2n (4)

=
N∑

n=1

2σ2n−1e2n +
N∑

n=1

σ2ne2n =
N∑

n=1

(2σ2n−1 + σ2n)e2n. (5)

Thus, by setting σ ′
2n = 2σ2n−1 + σ2n for every n ∈ N, one obtains y = ∑

σ ′
2ne2n and

N∑
n=1

∣∣σ ′
2n

∣∣ =
N∑

n=1

|2σ2n−1 + σ2n| �
N∑

n=1

(|2σ2n−1| + |σ2n|
)

(6)

�
N∑

n=1

(
2|σ2n−1| + 2|σ2n|

) = 2
2N∑

n=1

|σn|, (7)

as desired. �
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Definition 3.2. Let y ∈ Z(2∞). We say that y = ∑
σ2ne2n is the canonical form of the element y if σ2n ∈ {−1,0,1,2} for every

n ∈ N (and σ2n = 0 for all but finitely many indices n); in this case, we put Λ(y) = {n ∈ N | σ2n �= 0} and λ(y) = |Λ(y)|.

In order for Λ(y) and λ(y) to be well-defined, we first show that each y ∈ Z(2∞) admits a unique canonical form. We
put e = {en}∞n=1, and use the notation introduced in Theorem 2.2.

Theorem 3.3. Let y = ∑
σ2ne2n ∈ Z(2∞). Then,

(a) y admits a canonical form y = ∑
σ ′

2ne2n that satisfies∑
f
(
σ ′

2n

)
�

∑
f (σ2n), (8)

where f : R → R is defined by f (x) = max{−2x, x};
(b) the canonical form is unique;
(c) λ(z) � 4l for every z ∈ Z(2∞)(l,1)e and l ∈ N.

In order to make the proof of Theorem 3.3 more transparent, we summarize the properties of the function f (x) in the
following lemma, whose easy, but nevertheless technical, proof is omitted.

Lemma 3.4. Let f : R → R be defined by f (x) = max{−2x, x}. Then, for every a,b ∈ R:

(a) f (a) � 2|a|;
(b) f (a) � |b| if and only if − 1

2 |b| � a � |b|;
(c) f (a) � |b| if and only if a � − 1

2 |b| or a � |b|;
(d) f (a + b) � f (a) + f (b);
(e) f (a) + f (b) � f (a + 4b), provided that a ∈ [−1,2] and |b| � 1 or b = 0.

In what follows, we also rely on the following well-known property of p-groups.

Remark 3.5. Let o(x) denote the order of an element x in a group. If P is a p-group, a,b ∈ P , and o(a) �= o(b), then
o(a + b) = max{o(a),o(b)}.

Proof of Theorem 3.3. (a) Let 2N be the largest index such that σ2N �= 0. We proceed by induction on N . If N = 1, then
y = σ2e2, and one may write σ2 = σ ′

2 + 4m with σ ′
2 ∈ {−1,0,1,2} and m ∈ Z. Since 4e2 = 0,

y = (
σ ′

2 + 4m
)
e2 = σ ′

2e2 + m(4e2) = σ ′
2e2, (9)

and by Lemma 3.4(e), f (σ ′
2) + f (m) � f (σ2). In particular, f (σ ′

2) � f (σ2).
Suppose that the statement holds for all elements with a representation where the maximal non-zero index less than 2N

and N > 1. Let σ2N = σ ′
2N +4m be a division of σ2N by 4 with residue in Z such that σ ′

2N ∈ {−1,0,1,2}. Since 4e2N = e2N−2,
one obtains that

y =
N∑

n=1

σ2ne2n =
N−2∑
n=1

σ2ne2n + σ2N−2e2N−2 + σ2N e2N (10)

=
N−2∑
n=1

σ2ne2n + σ2N−2e2N−2 + (
σ ′

2N + 4m
)
e2N (11)

=
N−2∑
n=1

σ2ne2n + (σ2N−2 + m)e2N−2 + σ ′
2N e2N . (12)

The element z = ∑N−2
n=1 σ2ne2n + (σ2N−2 + m)e2N−2 satisfies the inductive hypothesis, and so it can be represented in the

canonical form z = ∑N−1
n=1 σ ′

2ne2n , where σ ′
n ∈ {−1,0,1,2} and

N−1∑
n=1

f
(
σ ′

2n

)
�

N−2∑
n=1

f (σ2n) + f (σ2N−2 + m). (13)

Thus, one has

y = z + σ ′
2N e2N =

N∑
σ ′

2ne2n. (14)

n=1
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By Lemma 3.4(d),

f (σ2N−2 + m) � f (σ2N−2) + f (m), (15)

and by Lemma 3.4(e),

f (m) + f
(
σ ′

2N

)
� f (σ2N). (16)

Therefore, one obtains that
N∑

n=1

f
(
σ ′

2n

) (13)

�
N−1∑
n=1

f
(
σ ′

2n

) + f
(
σ ′

2N

)
�

N−2∑
n=1

f (σ2n) + f (σ2N−2 + m) + f
(
σ ′

2N

)
(17)

(15)

�
N−2∑
n=1

f (σ2n) + f (σ2N−2) + f (m) + f
(
σ ′

2N

) =
N−1∑
n=1

f (σ2n) + f (m) + f
(
σ ′

2N

)
(18)

(16)

�
N−1∑
n=1

f (σ2n) + f (σ2N) =
N∑

n=1

f (σ2n). (19)

Hence, (8) holds for y, as desired.
(b) Suppose that

∑
σ2ne2n = ∑

ν2ne2n are two distinct canonical representations of the same element in Z(2∞). Then,∑
(σ2n −ν2n)e2n = 0 and |σ2n −ν2n| � 3. Let 2N be the largest index such that σ2N �= ν2N . (Since all coefficients are zero, ex-

cept for a finite number of indices, such an N exists.) This means that 0 < |σ2N −ν2N | � 3, and so 22N−1 � o((σ2N −ν2N )e2N).
On the other hand,

o

( ∑
n<N

(σ2n − ν2n)e2n

)
� max

n<N
o
(
(σ2n − ν2n)e2n

)
� 22N−2 < o

(
(σ2N − ν2N)e2N

)
. (20)

Therefore, by Remark 3.5,

o

(∑
(σ2n − ν2n)e2n

)
= max

{
o

( ∑
n<N

(σ2n − ν2n)e2n

)
,o

(
(σ2N − ν2N)e2N

)}
� 22N−1, (21)

contrary to the assumption that
∑

(σ2n − ν2n)e2n = 0. Hence, σ2n = ν2n for every n ∈ N.
(c) Let z = ν1en1 + · · · + νtent , where

∑ |νi | � l and n1 < · · · < νt . By Lemma 3.1, z can be expressed as z = ∑
σ2ne2n ,

such that
∑ |σ2n| � 2

∑ |νn| � 2l. By Lemma 3.4(a), f (σ2n) � 2|σ2n|, so one obtains that
∑

f (σ2n) � 2
∑ |σ2n| � 4l. By (a),

z admits a canonical form z = ∑
σ ′

2ne2n where
∑

f (σ ′
2n) �

∑
f (σ2n) � 4l. Since f (σ ′

2n) � 0, there can only be at most 4l
indices with non-zero coefficients σ ′

2n . �
Lemma 3.6. Let m ∈ Z\{0}, and put l = �log4 |m|�. If n > l, then Λ(me2n) ⊆ {n − l, . . . ,n − 1,n} and 1 � λ(me2n).

Proof. Since n > l, we have that 22n > |m|, and so me2n �= 0. Thus, 1 � λ(me2n). One may expand m in the form of m =
μ0 + μ222 + · · · + μ2l22l , where μi ∈ {−1,0,1,2}. Therefore,

me2n = μ0e2n + μ2e2n−2 + · · · + μ2le2n−2l (22)

is in the canonical form. Hence, Λ(me2n) ⊆ {n − l, . . . ,n − 1,n}, as desired. �
Lemma 3.7. Let y, z ∈ Z(2∞) be such that λ(y) > λ(z), and suppose that Λ(y) = {k1, . . . ,kg} where k1 < · · · < kg and g = λ(y).
Then, o(y − z) > 4kg−λ(z)−1 .

Proof. Let y = ∑
ν2ne2n and z = ∑

μ2ne2n be the canonical forms of y and z. Since Theorem 3.3(b) provides that the
canonical form is unique, λ(y) > λ(z) implies that y �= z, and thus y − z �= 0. Let N be the largest integer such that ν2N −
μ2N �= 0. Then, ν2n = μ2n for every n > N . In particular, μ2ki �= 0 for every ki > N . Therefore, there are at most λ(z) many
indices ki that satisfy ki > N . Hence, N � kg−λ(z) . Since 0 < |ν2N − μ2N | � 3, one has 22N−1 � o((ν2N − μ2N)e2N). On the
other hand,

o

( ∑
n<N

(ν2n − μ2n)e2n

)
� max

n<N
o
(
(ν2n − μ2n)e2n

)
� 22N−2 < o

(
(ν2N − μ2N)e2N

)
. (23)

Consequently, by Remark 3.5,

o

(∑
(ν2n − μ2n)e2n

)
= max

{
o

( ∑
n<N

(ν2n − μ2n)e2n

)
,o

(
(ν2N − μ2N)e2N

)}
� 22N−1 > 4N−1. (24)

Hence, o(y − z) = o(
∑

(ν2n − μ2n)e2n) > 4kg−λ(z)−1, as desired. �
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Remark 3.8. If y1, y2 ∈ Z(2∞) and Λ(y1) ∩ Λ(y2) = ∅, then Λ(y1 + y2) = Λ(y1) ∪ Λ(y2) and λ(y1 + y2) = λ(y1) + λ(y2).

Proposition 3.9. Let y = ν1e2n1 + · · · + νte2nt , where νi �= 0 and 0 < n1 < · · · < nt are integers. Put li = �log4 |νi |�, and suppose
that ni < ni+1 − li+1 for each 1 � i < t. Then,

(a) t � λ(y);
(b) if z ∈ Z(2∞) is such that λ(z) < λ(y), then o(y − z) > 4nt−λ(z)−lt−λ(z)−1 .

Proof. (a) By Lemma 3.6,

Λ(νie2ni ) ⊆ {ni − li, . . . ,ni} (25)

for each 1 � i � t . Thus, the sets Λ(νie2ni ) are pairwise disjoint, because ni < ni+1 − li+1. Therefore, by Remark 3.8, one
obtains that λ(y) = λ(ν1e2n1) + · · · + λ(νte2nt ) � t , and

Λ(y) =
t⋃

i=1

Λ(νie2ni ) ⊆
t⋃

i=1

{ni − li, . . . ,ni}. (26)

(b) Suppose that Λ(y) = {k1, . . . ,kg} (increasingly ordered). For any i such that t − i � 0, define nt−i = n1 and lt−i = l1.
We proceed by induction on i to show that kg−i � nt−i − lt−i for all 0 � i � g − 1.

For i = 0, Lemma 3.6 yields that Λ(y)∩Λ(νte2nt ) = Λ(νte2nt ) �= ∅. Since ni < ni+1 − li+1 for each 0 � i < t , Λ(νte2nt ) con-
tains the largest elements of

⋃t
i=1{ni − li, . . . ,ni}, and thus contains the largest value in Λ(y), namely kg . Hence, kg � nt − lt .

Suppose that the statement holds for all integers i < N . For i = N , if kg−N < nt−N − lt−N , then for all N � i � g − 1,
kg−i � kg−N < nt−N − lt−N . Moreover, by the inductive hypothesis, for all 0 � i < N , one has that kg−i � nt−i − lt−i > nt−N ,
because ni < ni+1 − li+1. So,

Λ(νt−N e2nt−N ) ∩ {nt−N − lt−N , . . . ,nt−N } ⊆ Λ(y) ∩ {nt−N − lt−N , . . . ,nt−N } = ∅. (27)

Thus, by (25), Λ(νt−N e2nt−N ) = ∅, which contradicts 1 � λ(νt−N e2nt−N ) from Lemma 3.6. Hence, one has that kg−N � nt−N −
lt−N for all N . It follows from (26) that ki � n1 − l1 for all i. So, kg−i � nt−i − lt−i holds even for t − i � 0. Thus, for i = λ(z),
kg−λ(z) � nt−λ(z) − lt−λ(z) . By Lemma 3.7, o(y − z) > 4kλ(y)−λ(z)−1 � 4nt−λ(z)−lt−λ(z)−1, as desired. �
Corollary 3.10. Let l ∈ N, z ∈ Z(2∞)(l,1)e , and y = e2n1 + · · · + e2nt such that n1 < · · · < nt , 4l < t, and ni < ni+1 − l. Then,
o(μy + z) > 4nt−4l−l−1 � 4n1−l−1 for every μ ∈ Z such that 0 � |μ| � l.

Proof. Since |μ| � l, one has that log4 |μ| < l and �log4 |μ|� � l. So, μy = μe2n1 + · · · + μe2nt satisfies the conditions of
Proposition 3.9. By Proposition 3.9(a), one obtains that 4l < t � λ(μy). Moreover, if z = ν1en1 + · · · + νsens ∈ Z(2∞)(l,1)e ,
where n1 < · · · < ns and

∑s
i=1 |νi | � l, then

−z = (−ν1)en1 + · · · + (−νs)ens ∈ Z
(
2∞)

(l,1)e, (28)

since
∑s

i=1 | − νi | = ∑s
i=1 |νi | � l. By Theorem 3.3(c), λ(−z) � 4l < λ(μy). Thus, μy and −z satisfy the conditions of Propo-

sition 3.9(b), and so one has that

o(μy + z) = o
(
μy − (−z)

)
> 4nt−λ(z)−�log4 |μ|�−1 � 4nt−λ(z)−l−1 > 4nt−4l−l−1 � 4n1−l−1, (29)

as desired. �
4. Proofs of Theorems A and B

In this section, we first prove Theorem B, and then we apply this result to prove Theorem A. For Theorem B, Lukács
has already established this result for all primes but p = 2 (cf. [7, 4.4]). Thus, we confine our attention to the Prüfer
group Z(2∞). Clearly, Theorem 4.1 below, together with the result of Lukács, implies Theorem B. In Theorem 4.1, we con-
struct a T -sequence in Z(2∞), and show that its von Neumann radical n(G) is a prefixed cyclic subgroup.

Theorem 4.1. For x ∈ Z(2∞)\{0} such that o(x) = 2k0 , put

bk = −x + e2(k3−k2) + · · · + e2(k3−2k) + e2(k3−k) + e2k3 . (30)

Consider the sequence {dk}, defined as b1, e1,b2, e2,b3, e3, . . . . Then,

(a) {dk} is a T -sequence in Z(2∞);
(b) the underlying group of ̂Z(2∞){dk} is 〈2k0χ1〉;
(c) n(Z(2∞){dk}) = 〈x〉.
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Proof. (a) To shorten the notation, we denote A = Z(2∞).
In order to show that {dk} is a T -sequence, we prove that it satisfies statement (i) of Theorem 2.3. To that end, let

l,n ∈ N. For every k � k0, we have that

o(e2(k3−k2) + · · · + e2(k3−k) + e2k3) = 22k3
> 2k0 = o(−x), (31)

and so by Remark 3.5,

o(bk) = max
{

o(−x),o(e2(k3−k2) + · · · + e2(k3−k) + e2k3)
} = 22k3

. (32)

Since ek −→ 0, in the subgroup topology inherited from Q/Z, {ek} is a T -sequence. Thus, by Theorem 2.3, there exists M1

such that for every m � M1, A[n] ∩ A(l,m)e = {0}. On the other hand, since o(bk) = 22k3
for every k � k0, and 2(k + 1)3 −

2k3 −→ ∞, by Lemma 2.4, {bk} is also a T -sequence. So, by Theorem 2.3, there exists M2 such that for any m � M2,
A[n] ∩ A(l,m)b = {0}.

Put m0 = max{M1, M2,4l + n + k0}. For any m � m0, one has that

A[n] ∩ A(l,m)e = A[n] ∩ A(l,m)b = {0}. (33)

Since

A(l,2m)d ⊆ A(l,m)e ∪ A(l,m)b ∪ (
A(l,m)e\{0} + A(l,m)b\{0}), (34)

it suffices to show that for every m � m0,(
A(l,m)e\{0} + A(l,m)b\{0}) ∩ A[n] = ∅. (35)

Let z ∈ A(l,m)e\{0} and w = m1bk1 +· · ·+mhbkh ∈ A(l,m)b\{0} where 0 <
∑ |mi| � l and m � k1 < · · · < kh . There are kh +1

summands in y = e2(k3
h−k2

h) + · · · + e2(k3
h−kh) + e2k3

h
. Moreover, the indices of every two consecutive summands differ by kh ,

and kh + 1 > kh > m � m0 > 4l. Since |mh| �
∑ |mi| � l, y and z satisfy the hypothesis of Corollary 3.10, and one obtains

that o(mh y + z) > 4k3
h−k2

h−l−1. Since kh > l � 1,

k3
h − k2

h − l − 1 > k3
h − k2

h − kh − 1 � k3
h − 3k2

h + 3kh − 1 = (kh − 1)3. (36)

So, o(mh y + z) > 4(k3
h−k2

h−l−1) > 4(kh−1)3
. Moreover, one has that k0 < m0 −1 < kh −1, because m0 = max{M1, M2,4l+n+k0}.

Thus,

o(−mhx) � 2k0 < 4(kh−1)3
< o(mh y + z). (37)

Thus, o(−mhx) �= o(mh y + z), and by Remark 3.5,

o(mhbkh + z) = o
(
(−mhx) + (mh y + z)

)
(38)

= max
{

o(−mhx),o(mh y + z)
} = o(mh y + z) > 4(kh−1)3

. (39)

On the other hand,

o(w − mhbkh ) � o(bkh−1) = 4k3
h−1 � 4(kh−1)3

< o(mhbkh + z). (40)

By Remark 3.5,

o(w + z) = o
(
(w − mhbkh ) + (mhbkh + z)

)
(41)

= max
{

o(w − mhbkh ),o(mhbkh + z)
}

> 4(kh−1)3
> 4(m0−1)3

> n. (42)

Therefore, A[n] ∩ A(l,2m)d = {0} for every m � m0. Hence, by Theorem 2.3, {dk} is a T -sequence.

(b) Since every continuous character of Z(2∞){dk} is also a continuous character of Z(2∞), ̂Z(2∞){dk} is contained in
Z2 = Ẑ(2∞). By the universal property of Z(2∞){dk}, χ ∈ Ẑ(2∞) is a continuous character of Z(2∞){dk} if and only if
χ(dk) −→ 0, that is, χ(bk) −→ 0 and χ(ek) −→ 0. By Theorem 2.1(c), χ(ek) −→ 0 holds if and only if χ = mχ1 for some
m ∈ Z. On the other hand, since

0 � 1

22(k3−k2)
+ · · · + 1

22(k3−2k)
+ 1

22(k3−k)
+ 1

22k3 � k + 1

22(k3−k2)
−→ 0, (43)

one has that χ1(bk) −→ −x in T. Thus, χ(bk) = mχ1(bk) −→ 0 if and only if −mx = 0, which means that x ∈ kerχ , and
o(x) = 2k0 | m. So, χ ∈ Ẑ(2∞) is a continuous character of Z(2∞){dk} if and only if χ = mχ1 for m ∈ Z and 2k0 | m. Therefore,

the underlying group of ̂Z(2∞){dk} is 2k0 Z.
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(c) It follows from the argument in part (b) that x ∈ kerχ for every continuous character χ of Z(2∞){dk}, and so x ∈⋂
kerχ = n(Z(2∞){dk}). Thus, 〈x〉 ⊆ n(Z(2∞){dk}). On the other hand, since 2k0χ1 is a continuous character of Z(2∞){dk},

one has that

n
(
Z

(
2∞){dk}

) =
⋂

kerχ ⊆ ker 2k0χ1 = 〈x〉. (44)

Therefore, n(Z(2∞){dk}) = 〈x〉, as desired. �
We proceed by introducing some notations prior to the proof of Theorem A. We denote by Ab and Ab(Haus) the cate-

gories of abelian groups and abelian Hausdorff topological groups, respectively (with the usual morphisms). To abbreviate
the notations, we introduce the following class of abelian groups:

A = {
A ∈ Ab

∣∣ (∃τ )
(
(A, τ ) ∈ Ab(Haus) ∧ (A, τ ) is almost maximally almost-periodic

)}
. (45)

As indicated in Section 2, the proof of Theorem A is based on establishing certain algebraic properties of the class A.

Theorem 4.2. Let B ∈ Ab, and let A be a subgroup of B. If A ∈ A, then B ∈ A.

Proof. Let π : B → B/A denote the canonical projection, and let τA be a Hausdorff group topology on A such that n(A, τA)

is non-trivial and finite. Then, τA can be extended to a Hausdorff group topology τB on B by taking the neighborhoods of 0
with respect to τA as a base for the neighborhoods of 0 with respect to τB . It remains to be seen that n(A, τA) = n(B, τB).
Let x ∈ n(A, τA). Since every continuous character χ ∈ (̂B, τB) restricted to A is a continuous character of A, one has
that χ(x) = χ|A(x) = 0. Thus, x ∈ n(B, τB). This shows that n(A, τA) ⊆ n(B, τB). Conversely, let x ∈ n(B, τB). Assume that
x /∈ A. Then, π(x) �= 0. Since A is an open subgroup of B , the quotient B/A is a discrete abelian group. Consequently, there
exists a continuous character ψ : B/A → T such that ψ(π(x)) �= 0 (cf. [10, Theorem 39]). So, ψπ ∈ (̂B, τB) and ψπ(x) �= 0,
which contradicts the assumption that x ∈ n(B, τB). This shows that x ∈ A. To conclude, we prove that x ∈ n(A, τA). Every
continuous character ψ ∈ (̂A, τA) can be extended to a character χ on B (because T is divisible). Since χ|A = ψ is continuous

on A, which is an open subgroup of B , χ is continuous on B . Thus, χ ∈ (̂B, τB), and it follows that ψ(x) = χ(x) = 0.
Therefore, x ∈ n(A, τA). Hence, n(B, τB) = n(A, τA), which is non-trivial and finite. �
Proof of Theorem A. Let B be an abelian group with an infinite torsion subgroup A. Since A is infinite and torsion, by
Lemma 2.5, A contains a subgroup that is isomorphic to either Z(p∞) or

⊕∞
i=1 Ci , where each Ci is a non-trivial finite

cyclic group. Moreover, one has that Z(p∞) ∈ A by Theorem B, and
⊕∞

i=1 Ci ∈ A by Theorem 2.6. Therefore, it follows from
Theorem 4.2 that A ∈ A, and hence one has that B ∈ A, as desired. �
Remark 4.3. In the original version of this manuscript, it was only shown that Theorem A holds for abelian torsion groups G
where |G| = ℵ0 or |G| > c. I am grateful to the anonymous referee for suggesting Theorem 4.2, which led to an improvement
in the statement of Theorem A, as well as great simplification of its proof.

5. Two open problems

Theorem A naturally leads to the following problem.

Problem I. Is there an infinite abelian group E with a non-trivial torsion subgroup that does not admit an almost maximally
almost-periodic group topology?

Discussion 5.1. Theorem A implies that if such an infinite abelian group E exists, then its torsion subgroup must be finite.
At the time this manuscript is being revised, a negative answer to this problem was conjectured by Gabriyelyan (cf. [4,
Theorem 5]), but his proof dated February 4, 2009, available on the ArXiv preprint server, is incomplete. In Gabriyelyan’s
manuscript, a variation of Theorem 4.2 was also presented.

Theorem A also raises another non-trivial question.

Problem II.

(a) Which abelian topological groups occur as the von Neumann radical of a (Hausdorff) abelian topological group?
(b) Which abelian groups occur (algebraically) as the von Neumann radical of a (Hausdorff) abelian topological group?
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Discussion 5.2. Due to the algebraic nature of this discussion, we are more interested in part (b) of this problem. We put
∼=a to denote an isomorphism in Ab. To abbreviate the notations, we introduce the following class of abelian groups:

B = {
A ∈ Ab

∣∣ ∃G ∈ Ab(Haus),n(G) ∼=a A
}
. (46)

(a) By Theorem 2.1(a) and (b), Z ∈ B and Z(p∞) ∈ B for every prime p.
(b) One has that R ∈ B, because R admits a minimally almost periodic Hausdorff group topology coarser than the Euclidean

topology of R (cf. [9, Theorem]).
(c) Since every continuous character of Q can be extended uniquely to a continuous character of R, and every continuous

character of R restricted to Q is a continuous character of Q, n(R, τ ) ∩ Q = n(Q, τ|Q). Thus, Q ∈ B.
(d) If {Aα}α∈I is an arbitrary family in B, then G ∈ B for every abelian group G such that

⊕
α∈I Aα ⊆ G ⊆ ∏

α∈I Aα ; in
particular,

⊕
α∈I Aα ∈ B, and

∏
α∈I Aα ∈ B.

(e) Due to the algebraic structures of abelian groups, it follows from the foregoing observations that the class B includes the
following types of abelian groups: free abelian groups, divisible groups, direct sums of cyclic groups, bounded torsion
groups, and finitely generated groups.

(f) We feel that we have not exploited the full strength of (d). Therefore, this task is left to another day.

Remark 5.3. (Added on March 16, 2009.) After this paper was accepted for publication, the following noteworthy details
came to the author’s attention:

(a) On March 8, 2009, Gabriyelyan posted a complete solution of Problem I on the ArXiv preprint server (cf. [5]).
(b) It appears that Gabriyelyan is claiming credit for Theorem 4.2. Although, as noted in Discussion 5.1, a variant of this

result appeared in Gabriyelyan’s February 4, 2009 preprint (cf. [4]), Theorem 4.2 was suggested to the author by the
referee for this paper (see Remark 4.3). The principle behind Theorem 4.2 is not a novel one, though; it was already
known to Ajtai, Havas, and Komlós (see paragraph below Theorem′ in [1, p. 22]) and to Zelenyuk and Protasov (see
proof of Theorem 16 in [13, top of p. 459]). The author of this paper did not claim credit for Theorem 4.2. Thus, as a
courtesy to Gabriyelyan, the author hereby explicitly disclaims all credit for Theorem 4.2 (which the author considers
folklore).
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