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In a recent paper, K. Soundararajan showed, roughly speaking, that
the integers smaller than x whose prime factors are less than
y are asymptotically equidistributed in arithmetic progressions to
modulus q, provided that y4

√
e−δ � q and that y is neither too

large nor too small compared with x. We show that these latter
restrictions on y are unnecessary, thereby proving a conjecture of
Soundararajan. Our argument uses a simple majorant principle for
trigonometric sums to handle a saddle point that is close to 1.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

For y � 1, let S(y) denote the set of y-smooth numbers: that is, the set of numbers all of whose
prime factors are less than or equal to y. For x � 1, and natural numbers a, q, we define the following
counting functions:

Ψq(x, y) :=
∑

n�x, (n,q)=1

1{n∈S(y)}, and Ψ (x, y;q,a) :=
∑

n�x,n≡a (mod q)

1{n∈S(y)},

where 1 denotes the indicator function.
In his 2008 article [8], K. Soundararajan makes the following equidistribution conjecture:
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Conjecture 1. (See [8].) Let A be a given positive real number. Let y and q be large with q � y A , and let
(a,q) = 1. Then as log x/ log q → ∞ we have

Ψ (x, y;q,a) ∼ 1

φ(q)
Ψq(x, y).

As Soundararajan [8] discusses, in our current state of knowledge about character sums it would
be very hard to prove the conjecture for A � 4

√
e; for if the conjecture is true, then e.g. the least

quadratic non-residue modulo q must lie below q1/A . However, Soundararajan is able to prove the
conjecture for A < 4

√
e, on the additional assumption that e y1−ε � x � y(log log y)4

. In this note we
establish the following result, confirming that this assumption on y is not needed.

Theorem 1. Let δ > 0, and suppose that y � x, that 2 � q � y4
√

e−δ , and (a,q) = 1. If y is large enough
depending on δ, then as log x/ log q → ∞ we have

Ψ (x, y;q,a) ∼ 1

φ(q)
Ψq(x, y).

In fact, following Soundararajan [8], we work with a smooth weight function Φ(n/x) throughout:
see Section 2.1 for further details. We obtain a smoothly weighted version of Theorem 1 with a
quantitative error term

O Φ

(
Ψq(x, y)

φ(q)

(
min

{
q
√

y

(log log x)1/3
,

1

log y

}
+ log q

uc log y
+ log w

(cδwδ/2)c log(2+(log x)/y)

))
,

where c > 0 is an absolute constant, and we write u = log x/ log y, v = log x/ log q and w = min{v, y}.
We caution that the reader should not try to read off the necessary dependence of y on δ from this
bound, as it is not valid unless y is large enough that the error term O δ(y−δ2

log2 y) in Character
Sum Bound 1 (see Section 2.5, below) is smaller than δ/2, say.

Soundararajan’s article [8] also contains an ‘equidistribution in cosets’ result, which gives infor-
mation towards Conjecture 1 in the case A � 4

√
e. This is again proved on the assumption that

e y1−ε � x � y(log log y)4
, which we can now remove.

Theorem 2. Let A be a given positive real number, and let y and q be large with q � y A . There is a subgroup H
of (Z/qZ)∗ , of index bounded in terms of A only, such that whenever a,b ∈ (Z/qZ)∗ satisfy a/b ∈ H we have

Ψ (x, y;q,a) − Ψ (x, y;q,b) = o
(
Ψq(x, y)/φ(q)

)
as log x/ log q → ∞.

We will not say much about Theorem 2, which follows from the proof of Theorem 1 as in
Soundararajan’s paper [8]. The author has tried to keep explicit dependence on A in the arguments
below, so a keen reader may check that provided log y/((A + 1) log(A + 2)) and log v/((A + 1) log(A +
2)) are sufficiently large we have a smoothly weighted version with a better error term than above
(the term involving w can be removed). The error term is better in Theorem 2 because we do not
need Character Sum Bound 1 for the proof. In Appendix A we comment briefly on how to pass from
the smoothly weighted to the unweighted version of Theorem 2, which seems to require a slightly
different procedure2 now that y is unrestricted in terms of x.

2 A reader who is checking Theorem 2 may wish to consult this appendix first. The unsmoothing procedure that we use will
allow one to prove Theorem 2 without needing to analyse the characters χ ∈ B (defined in Section 2.5, below), which is quite
a helpful simplification.
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Soundararajan [8] argues, roughly, by observing the usual decomposition

Ψ (x, y;q,a) = 1

φ(q)

∑
χ(mod q)

χ(a)Ψ (x, y;χ), where Ψ (x, y;χ) :=
∑
n�x

χ(n)1{n∈S(y)},

and analysing Ψ (x, y;χ) using knowledge of the L-series L(s,χ). His key innovation, perhaps,
is to exploit the fact that we are interested in all characters to modulus q taken together, and
that we can make much stronger statistical statements than we can statements about individual
L-series.

Perhaps surprisingly, it is when y is close to x that Soundararajan’s argument is difficult to extend.
This is because of a ‘saddle point problem’: as y approaches x, the (Euler product) terms from which
one can gain by making non-trivial estimations carry progressively less weight, so it is important
not to lose anywhere else. To achieve this we avoid applying absolute value bounds to integrals, and
instead exploit a majorant principle for trigonometric sums. See Sections 2.3–2.5. It is the author’s
opinion that this argument is the most interesting new aspect of this work.

A further difficulty in establishing Theorem 1 is that two parts of Soundararajan’s proof, his “basic
argument” and “Rodosskiı̆ argument”, are valid respectively when a quantity k (explained in Sec-
tion 2.1) is quite large depending on x, or is quite small depending on u. When y approaches x
a gap emerges between these ranges, and to deal with this we need an argument based on Tay-
lor expansion and a smoothed explicit formula. See Section 2.3 and Section 3. When y is small
Soundararajan’s proofs [8] almost go through, except for minor technical problems and some diffi-
culties if y does not tend to infinity with x. In Sections 2.6–2.7 we give an argument that addresses
these problems.

The author has tried to write this note in a reasonably self-contained way, whilst not simply
repeating arguments that appear in Soundararajan’s paper [8]. To this end, three important pieces of
‘L-function information’ obtained by Soundararajan are stated without proof in Section 2, as Rodosskiı̆
Bound 1, Rodosskiı̆ Bound 2 and Character Sum Bound 1. Except in the application of these bounds,
(and the general set-up, which we recall in Section 2.1), many details of our argument are different
from that of Soundararajan [8], and so we give a detailed account.

Since it adds very little complication, and may be illuminating, we shall prove Theorem 1 for all y,
and not only the range not covered by Soundararajan’s results. We distinguish in our work between
“large y”, namely elog1/10 x < y � x; “small y”, namely (log log x)3 � y � elog1/10 x; and “very small y”,
namely y < (log log x)3.

If q <
√

y, say, a result of Granville [3] shows Ψ (x, y;q,a) is Ψq(x, y)φ(q)−1(1 + O (log−1 y(1 +
u−c log q))). We invoke this result except when q

√
y � (log log x)1/3 (for which see Section 2.7), and

can therefore always assume that q � √
y except in that case. This will be convenient in applying

various L-function computations, so that log q is somewhat comparable to log y. The reader should
also bear in mind, when checking that our proof supplies the bound claimed, that if

√
y � q � y4

√
e

then u = log x/ log y is comparable in size to v = log x/ log q.

2. Overview of the argument

2.1. Initial set-up

This subsection records some preliminary observations, mostly from Section 2 of Soundararajan’s
paper [8] (which may be consulted for a more detailed description).

Let Φ : [0,∞) → [0,1] be a function supported on [0,2], which equals 1 on [0,1/2], and which is
nine times continuously differentiable (say). We set

Ψ (x, y;q,a,Φ) :=
∑

n∈S(y),n≡a (mod q)

Φ(n/x),
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which has a decomposition into weighted character sums Ψ (x, y;χ,Φ) as in the introduction. We
will work to show that Ψ (x, y;q,a,Φ) is approximately equal for all (a,q) = 1, and by choosing Φ to
bound 1[0,1] from above and then below (in a way explained further in Appendix A) this will imply
Theorem 1.

We define a truncated Euler product corresponding to y-smooth numbers, viz.

L(s,χ ; y) :=
∏
p�y

(
1 − χ(p)

ps

)−1

=
∑

n∈S(y)

χ(n)

ns
, 	(s) > 0.

Then, as usual, we can represent Ψ (x, y;χ,Φ) as a contour integral involving L(s,χ ; y):

Ψ (x, y;χ,Φ) = 1

2π i

c+i∞∫
c−i∞

L(s,χ ; y)xsΦ̆(s)ds, c > 0,

where Φ̆(s) = ∫ ∞
0 Φ(t)ts−1 dt is the Mellin transform of Φ . Because Φ is so smooth, integration by

parts shows |Φ̆(s)| 
Φ |s|−1(|s| + 1)−8 for 	(s) > 0, which will be used several times. We also note
that Φ̆(c) �

∫ 1/2
0 tc−1 dt � 1/(2c) for 0 < c � 1.

We choose c to be α = α(x, y), a quantity coming from a saddle-point argument of Hildebrand
and Tenenbaum [5] (that was extended3 to treat Ψq(x, y) by de la Bretèche and Tenenbaum [2]). In
practice this means the following: provided that y, u = log x/ log y and log2 y/ log q (say) are larger
than certain absolute constants, as we assume throughout, we have

α(x, y) =
⎧⎨
⎩

1 − log(u log u)
log y + O ( 1

log y ) if y > log x,

Θ(
y

u log2 y
) otherwise

and, writing χ0 for the principal Dirichlet character to modulus q, we have

Ψ (x, y;χ0,Φ) � xα L(α,χ0; y)Φ̆(α)√
2π(1 + log x/y) log x log y

.

Finally we present some notation concerning the zeros of the L-series L(s,χ). For 0 � k � (log q)/2,
write

Ξ(k) :=
{
χ : χ �= χ0, L(σ + it,χ) �= 0 for σ > 1 − k

log q
, |t| � q, but L(σ + it,χ) = 0

for some σ > 1 − k + 1

log q
, |t| � q

}
.

As Soundararajan [8] describes, the so-called log-free zero density estimate implies that #Ξ(k) �
C1eC2k for all k, for certain absolute constants C1, C2. Thus

3 Hildebrand and Tenenbaum [5] studied Ψ (x, y) := ∑
n�x 1{n∈S(y)} , and later de la Bretèche and Tenenbaum [2] showed

that some ‘obvious’ adaptations of their results also hold for Ψq(x, y), on a wide range of q. The bound that we record for
Ψ (x, y;χ0,Φ), involving the smoothing 1[0,1/2] � Φ � 1[0,2] , is an easy consequence of Théorème 2.1 of de la Bretèche and
Tenenbaum [2] (e.g. because, as in Appendix A, Ψq(x/2, y) is comparable in size to Ψq(2x, y)).
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Ψ (x, y;q,a,Φ) = Ψ (x, y;χ0,Φ)

φ(q)
+ O

(
1

φ(q)

∑
0�k�log q/2

eC2k max
χ∈Ξ(k)

∣∣∣∣∣
α+i∞∫

α−i∞
L(s,χ ; y)xsΦ̆(s)ds

∣∣∣∣∣
)

.

To prove Theorem 1, we will show that the “big Oh” term in the preceding equation is of smaller
order than our lower bound for the main term. To this end we will separate the summation over
k into summations over different ranges, as described in Section 2.2. We see immediately, however,
that

∣∣∣∣∣
α+i∞∫

α+i(yq)1/4

L(s,χ ; y)xsΦ̆(s)ds

∣∣∣∣∣ � L(α,χ0; y)xα

α+i∞∫
α+i(yq)1/4

∣∣Φ̆(s)
∣∣ds 
 L(α,χ0; y)xαΦ̆(α)

Φ̆(α)y2q2
,

because of the rapid decay of Φ̆(s). This is of smaller order than Ψ (x, y;χ0,Φ)/yq2 (using the lower
bound Φ̆(α) � 1/(2α) � (log x log y)/y if y � log x), and clearly the same holds for the integral over
(α − i∞,α − i(yq)1/4]. Thus, unless y is very small (for which see Section 2.7), it will suffice to prove

satisfactory bounds for
∫ α+i(yq)1/4

α−i(yq)1/4 L(s,χ ; y)xsΦ̆(s)ds, for χ ∈ Ξ(k). Note that (yq)1/4 � q3/4 on our

assumption that q � √
y.

2.2. Ranges of k

For “large” y, in the sense of the introduction, we separate the summation over 0 � k � (log q)/2
into three different ranges, as follows:

• the “basic range”,
√

u � k � (log q)/2;
• the “Rodosskiı̆ range”, 4A log A + D � k <

√
u, where D is the absolute constant appearing in

Rodosskiı̆ Bound 1 in Section 2.4;
• the “problem range”, 0 � k < 4A log A + D .

(In Theorem 1 we have A = 4
√

e − δ, and the reader may think of A simply as O (1). We continue to
explicitly record dependence on A to aid anyone checking Theorem 2.)

This is analogous to Soundararajan’s argument [8], but our definitions of the ranges are different.
In Sections 2.3–2.5 we study these ranges in turn, and the reader may compare with Sections 3–5 of
Soundararajan’s article [8].

For smaller y the situation is simpler because one can treat the “basic range” and the “Rodosskiı̆
range” in a unified way. This is discussed in Sections 2.6–2.7.

2.3. A modified zero-free region argument

In Section 3 we will prove the following result, which we will need in place of Lemma 3.2 of
Soundararajan [8]:

Proposition 1. Let B > 0 be fixed, and let y � 2 and
√

y � q � y A . If log x/((B + 1) log q) and k/((A +
1) log(u log u)) are larger than certain absolute constants, and if y is “large” then the following holds. For any
χ ∈ Ξ(k), any α − Bk/ log x � σ � α, and any |t| � q/2, we have

∣∣ log L(σ + it,χ ; y) − log L(α + it,χ ; y)
∣∣ � k/50 + O (1).

The proof of this involves using a smoothed explicit formula to analyse the first and second deriva-
tives of log L(σ + it,χ ; y).
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We will also use the following consequence of Fubini’s theorem and the Cauchy–Schwarz inequal-
ity, whose proof is an easy exercise:

Lemma 1. Suppose that β, r > 0, and that F (s) is any integrable function on the interval [β,β + ir] ⊆ C. Let
G(s) be an Euler product of the following form:

G(s) :=
∏
p�y

(
1 − g(p)

ps

)−1

,

where y � 0 is fixed, and |g(p)| � 1 for all primes p. Then

∣∣∣∣∣
β+ir∫
β

G(s)F (s)ds

∣∣∣∣∣ � M

(∣∣G(β)
∣∣ +

√√√√√√
β+ir∫
β

∣∣∣∣ G ′
G

(s)

∣∣∣∣
2

d|s|
β+ir∫
β

∣∣G(s)
∣∣2

d|s|
)

,

where

M = M(β, r, F ) := sup
0�t�r

∣∣∣∣∣
β+ir∫

β+it

F (s)ds

∣∣∣∣∣.

We apply Proposition 1 with B chosen as C2 + 2, where C2 is the constant in the log-free zero
density estimate in Section 2.1. Using this together with the rapid decay of Φ̆(s), we note firstly that,
under the conditions of Proposition 1,

α+i(yq)1/4∫
α−i(yq)1/4

L(s,χ ; y)xsΦ̆(s)ds

=
α− Bk

log x +i log1/4 y∫
α− Bk

log x −i log1/4 y

L(s,χ ; y)xsΦ̆(s)ds +
α− Bk

log x −i log1/4 y∫
α− Bk

log x −i(yq)1/4

L(s,χ ; y)xsΦ̆(s)ds

+
α− Bk

log x +i(yq)1/4∫
α− Bk

log x +i log1/4 y

L(s,χ ; y)xsΦ̆(s)ds + O
(
ek/50L(α,χ0; y)xα/y2q2).

The second and third integrals may also be estimated just using Proposition 1, showing they are
O (ek/50L(α,χ0; y)xα−Bk/ log x/ log2 y). Both “big Oh” terms are


 L(α,χ0; y)xα

(
1

y2q199/100
+ e−(C2+99/50)k√u√

log x log3/2 y

)

 Ψ (x, y;χ0,Φ)

(
1

yq199/100
+ e−(C2+1)k

log y

)
,

on recalling our lower bound for Ψ (x, y;χ0,Φ) and that log(u log u) 
 k � (log q)/2.
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Combining Lemma 1 (with the choices F (s) = xsΦ̆(s) and G(s) = L(s,χ ; y)) with Proposition 1, we
see the first integral is


 sup
0�t�log1/4 y

∣∣∣∣∣
α− Bk

log x +i log1/4 y∫
α− Bk

log x +it

xsΦ̆(s)ds

∣∣∣∣∣ ·
(∣∣∣∣L

(
α − Bk

log x
,χ ; y

)∣∣∣∣

+

√√√√√√√
α− Bk

log x +i log1/4 y∫
α− Bk

log x −i log1/4 y

∣∣∣∣ L′(s,χ ; y)

L(s,χ ; y)

∣∣∣∣
2

d|s|
α− Bk

log x +i log1/4 y∫
α− Bk

log x −i log1/4 y

∣∣L(s,χ ; y)
∣∣2

d|s|
)


 e−Bk+k/50xα sup
0�t�log1/4 y

∣∣∣∣∣
log1/4 y∫

t

xirΦ̆

(
α − Bk

log x
+ ir

)
dr

∣∣∣∣∣

·
(

L(α,χ0; y) +

√√√√√√√
α− Bk

log x +i log1/4 y∫
α− Bk

log x −i log1/4 y

∣∣∣∣ L′(s,χ ; y)

L(s,χ ; y)

∣∣∣∣
2

d|s|
α+i log1/4 y∫

α−i log1/4 y

∣∣L(s,χ ; y)
∣∣2

d|s|
)

.

At this point we invoke the following majorant principle for trigonometric sums, which we quote
from Chapter 7.3 of Montgomery’s book [6]:

Majorant Principle 1 (Wirsing, and others). Let λ1, . . . , λN be real numbers, and suppose that |an| � An

for all n. Then

T∫
−T

∣∣∣∣∣
N∑

n=1

ane2π iλnt

∣∣∣∣∣
2

dt � 3

T∫
−T

∣∣∣∣∣
N∑

n=1

Ane2π iλnt

∣∣∣∣∣
2

dt.

The point is that L(s,χ ; y) and its logarithmic derivative L′(s,χ ; y)/L(s,χ ; y) are Dirichlet se-
ries, so in particular are trigonometric series with λn chosen as − log n/2π . (The majorant principle
is stated for finite sums, but it remains valid for uniformly convergent Dirichlet series, as Mont-
gomery [6] remarks.4) Thus it will suffice to estimate the above with the squareroot term replaced
by

√√√√√√√
α− Bk

log x +i log1/4 y∫
α− Bk

log x −i log1/4 y

∣∣∣∣ L′(s,1; y)

L(s,1; y)

∣∣∣∣
2

d|s|
α+i log1/4 y∫

α−i log1/4 y

∣∣L(s,χ0; y)
∣∣2

d|s|.

In Appendix B we show how to estimate the remaining integrals, which is fairly standard. It turns
out, provided y is “large” and Bk/ log x � 1/8, say (so α − Bk/ log x � 3/4), that the whole of the
above is

4 See Chapter III.4.3 of Tenenbaum [9] for an application of Majorant Principle 1 to Dirichlet series, concerning means of
multiplicative functions. The author thanks K. Soundararajan for this reference.
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 e−Bk+k/50xα · L(α,χ0; y)

log x

(
1 +

√
y2Bk/ log xu2 log u

)

 Ψ (x, y;χ0,Φ)

√
u log ue−(C2+99/50−B/u)k.

Thus if u/(A + 1)3 is larger than an absolute constant, (so
√

u/((A + 1) log(u log u)) is large, and
therefore Proposition 1 is applicable for k in the “basic range”), we have the more than satisfactory
estimate

∣∣∣∣∣
α+i(yq)1/4∫

α−i(yq)1/4

L(s,χ ; y)xsΦ̆(s)ds

∣∣∣∣∣ 
 Ψ (x, y;χ0,Φ)

(
1

yq199/100
+ e−(C2+1)k

)

when k is in that range.5

2.4. A modified Rodosskiı̆ argument

We modify the “Rodosskiı̆ type argument” from Soundararajan’s paper [8] (in which zeros of
L-series are studied with carefully chosen weights) in the same kind of way as the zero-free region
argument, by using Fubini’s theorem and Majorant Principle 1. We begin with a variant of Lemma 1.

Lemma 2. Suppose that β , r, F (s), G(s) are as in the statement of Lemma 1. Then

∣∣∣∣∣
β+ir∫
β

G(s)F (s)ds

∣∣∣∣∣ � M∗
(∣∣G∗(β)

∣∣ +

√√√√√√
β+ir∫
β

∣∣∣∣ G ′
G

(s)

∣∣∣∣
2

d|s|
β+ir∫
β

∣∣G∗(s)
∣∣2

d|s|
)

,

where

G∗(s) :=
∏

p�√
y

(
1 − g(p)

ps

)−1

, and M∗ := sup
0�t�r

(∣∣∣∣∣
β+ir∫

β+it

F (s)ds

∣∣∣∣∣
∏

√
y<p�y

∣∣∣∣1 − g(p)

pβ+it

∣∣∣∣
−1

)
.

Similarly to Section 2.3, the rapid decay of Φ̆(s) implies that

α+i(yq)1/4∫
α−i(yq)1/4

L(s,χ ; y)xsΦ̆(s)ds =
α+i log1/4 y∫

α−i log1/4 y

L(s,χ ; y)xsΦ̆(s)ds

+ O

(
xα L(α,χ0;√y )

log2 y
sup

log1/4 y<|t|�(yq)1/4

∏
√

y<p�y

∣∣∣∣1 − χ(p)

pα+it

∣∣∣∣
−1)

.

5 We could use our argument on a much wider range of k than the “basic range”. However, this would not quite be large
enough to dispense with the “Rodosskiı̆ range” argument in Section 2.4, and splitting into ranges as we do yields better quan-
titative bounds on our integrals.
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Combining Lemma 2 with Majorant Principle 1, for “large” y we see

α+i log1/4 y∫
α−i log1/4 y

L(s,χ ; y)xsΦ̆(s)ds


 sup
0�t�log1/4 y

∣∣∣∣∣
α+i log1/4 y∫

α+it

xsΦ̆(s)ds

∣∣∣∣∣ · sup
|t|�log1/4 y

∏
√

y<p�y

∣∣∣∣1 − χ(p)

pα+it

∣∣∣∣
−1

·
(

L(α,χ0;√y ) +

√√√√√√
α+i log1/4 y∫

α−i log1/4 y

∣∣∣∣ L′(s,1; y)

L(s,1; y)

∣∣∣∣
2

d|s|
α+i log1/4 y∫

α−i log1/4 y

∣∣L(s,χ0;√y )
∣∣2

d|s|
)


 xα L(α,χ0;√y )u
√

log u

log x
sup

|t|�log1/4 y

∏
√

y<p�y

∣∣∣∣1 − χ(p)

pα+it

∣∣∣∣
−1

.

Here the final inequality again used the estimates from Appendix B.
Obtaining a non-trivial bound has now reduced to obtaining a sufficiently non-trivial estimate for

the products over primes. This will follow from the next result, which is the content of Lemmas 4.2
and 4.3 of Soundararajan [8].

Rodosskiı̆ Bound 1. (See [8].) There is an absolute constant D for which the following is true. Suppose
that χ ∈ Ξ(k) for some k � 4A log A + D . If q � y A , and |t| � q/2, and y/(A + 1)2 is large enough,
then

∑
√

y�p�y, p�q

1 − 	(χ(p)p−it)

p
log p � log y

5
.

Then

∣∣∣∣1 − χ(p)p−α−it

1 − p−α

∣∣∣∣ =
∣∣∣∣1 + 1 − χ(p)p−it

pα − 1

∣∣∣∣ � 1 +
∞∑

k=1

1 − 	(χ(p)p−it)

pkα
� e(1−	(χ(p)p−it))/pα

,

so (as in the argument of Lemma 4.2 of Soundararajan [8]) we find

L(α,χ0;√y )

L(α,χ0; y)
sup

|t|�(yq)1/4

∏
√

y<p�y

∣∣∣∣1 − χ(p)

pα+it

∣∣∣∣
−1

= sup
|t|�(yq)1/4

∏
√

y<p�y

∣∣∣∣1 − χ(p)p−α−it

1 − χ0(p)p−α

∣∣∣∣
−1

� sup
|t|�(yq)1/4

e−∑√
y<p�y,p�q(1−	(χ(p)p−it))/pα


 e−y(1−α)/2/5


 e−Θ(
√

u log u).

We conclude that, under the conditions of Rodosskiı̆ Bound 1 (and for “large” y),
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∣∣∣∣∣
α+i(yq)1/4∫

α−i(yq)1/4

L(s,χ ; y)xsΦ̆(s)ds

∣∣∣∣∣ 
 √
u log ue−Θ(

√
u log u )Ψ (x, y;χ0,Φ).

This estimate more than suffices for χ ∈ Ξ(k) with k in the “Rodosskiı̆ range”.

2.5. The remaining characters

It remains to analyse Ψ (x, y;χ,Φ) when χ ∈ A := ⋃
k<4A log A+D Ξ(k). Soundararajan’s arguments

work reasonably for this, the only adaptations being of the kind that we have demonstrated in Sec-
tions 2.3–2.4, so a brief discussion seems sufficient.

We write B = B(A) := #A, which is bounded in terms of A and D because of the log-free
zero density estimate (recall Section 2.1). The following result (which is proved by considering the
corresponding sums with χ(p)p−it replaced by χ(p)k p−itk , for 1 � k � B +1) is the content of Propo-
sition 5.1 of Soundararajan [8]:

Rodosskiı̆ Bound 2. (See [8].) Suppose that χ is a character of order exceeding B = B(A). If q � y A ,
and |t| � q/(2(B + 1)), and y/(A + 1)2 is large, then

∑
√

y�p�y, p�q

1 − 	(χ(p)p−it)

p
log p � log y

5(B + 1)2
.

Using Rodosskiı̆ Bound 2 in place of Rodosskiı̆ Bound 1, one can proceed as in Section 2.4 to bound

Ψ (x, y;χ,Φ) for characters χ of order at least B + 1 (with e−Θ(
√

u log u/(B+1)2) ultimately replacing

e−Θ(
√

u log u ) in the estimates).
It now remains to treat χ ∈ B, where B := A ∩ {χ : χ has order � B}. To simplify our formulae,

we temporarily set g = log u/
√

log x log y = log u/(
√

u log y). A very small adaptation of the argument
in Section 2.4 yields

∣∣∣∣∣
α+i(yq)1/4∫

α−i(yq)1/4

L(s,χ ; y)xsΦ̆(s)ds

∣∣∣∣∣



∣∣∣∣∣

α+ig∫
α−ig

L(s,χ ; y)xsΦ̆(s)ds

∣∣∣∣∣ + √
u log uΨ (x, y;χ0,Φ) sup

g<|t|�(yq)1/4
e
−∑√

y<p�y
(1−	(χ(p)p−it ))

pα


 xαΦ̆(α) log u√
log x log y

L(α,χ0; y) sup
|t|�g

e
−∑

p�y,p�q
(1−	(χ(p)p−it ))

pα

+ √
u log uΨ (x, y;χ0,Φ) sup

g<|t|�(yq)1/4
e
−∑√

y<p�y,p�q
(1−	(χ(p)p−it ))

pα ,

if y is “large”. By the argument of Lemma 5.2 of Soundararajan [8] (which is proved by a neat reduc-
tion from working with characters of order at most B(A) to working with the principal character),
provided that u � B3 (say) the exponential in the second term is 
 e−Θ(log2 u) . This gives an accept-
able bound for that term.
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Finally we apply the following result, which may be extracted6 from Lemmas 5.2 and 5.3 of
Soundararajan [8].

Character Sum Bound 1. (See [8].) Let δ > 0 be sufficiently small, and suppose that q � y4
√

e−20δ . If
χ �= χ0 is a character of order at most B , and if |t| � 1/(B log y), then

∑
p�y, p�q

1 − 	(χ(p)p−it)

pα
� 1

B
log

((
δ + O

(
1

log y

)
+ O δ

(
B3δ/2 log2 y

yδ2

))
yδ(1−α)/2

)
+ O (1).

Using this to bound the exponential in the first term, we complete the proof of Theorem 1 for
“large” values of y. Character Sum Bound 1 imports Burgess’s character sum estimates (with the
modification of Heath-Brown [4] for characters of bounded order): indeed, it is clear that when |t|
is so small, cancellation in L(α + it,χ ; y) amounts to cancellation in sums of χ . If one could prove
non-trivial bounds for shorter character sums, one could introduce them at this point and thereby
extend the range of q in Theorem 1. These remarks apply equally to Soundararajan’s proof [8] on the
range of y where it is valid.

2.6. The case of small y

When y is “small” the argument from Soundararajan’s paper [8] almost goes through, even in a
simplified form. The complication is that the parameter α(x, y) behaves differently when y � log x
than otherwise, and in particular is very small, which necessitates a few changes. We sketch these
briefly.

Thus when y � log x we have

∣∣∣∣ L(α + it,χ ; y)

L(α,χ0; y)

∣∣∣∣ =
∏

p�y, p�q

∣∣∣∣1 + 1 − χ(p)p−it

pα − 1

∣∣∣∣
−1

�
∏

p�y, p�q

∣∣∣∣1 + 1 − 	(χ(p)p−it)

yα − 1

∣∣∣∣
−1

�
∏

p�y, p�q

∣∣∣∣1 + c log x(1 − 	(χ(p)p−it))

y

∣∣∣∣
−1

for a small constant c > 0, since α(x, y) = O (y/ log x log y) for y � log x. By calculus, 1 + ct � (1 + t)c

for t � 0 and 0 � c � 1, so the above is at most

(
1 + log x

y

)−c
∑

p�y,p�q(1−	(χ(p)p−it))

�
(

1 + log x

y

)−c
√

y
log y

∑√
y�p�y,p�q

1−	(χ(p)p−it )
p log p

.

It follows, using the decay of Φ̆ to control the large range of integration, that

6 It requires a little care to obtain the explicit error terms in Character Sum Bound 1. The reader should note that if χ is a
(primitive) non-principal character to modulus q, of order l, and δ > 0 is small, then Heath-Brown’s [4] refined character sum
estimate shows in particular that

∑
n�H

χ(n) 
δ Hl3δ/2(
q1/4 H−1)δ

qδ2/2.

This should be applied with H = z/d � y
√

e−3δ/2 � q1/4 y7δ/2 in the proof of Soundararajan’s [8, Lemma 5.3].
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∣∣∣∣∣
α+i(yq)1/4∫

α−i(yq)1/4

L(s,χ ; y)xsΦ̆(s)ds

∣∣∣∣∣


 xαΦ̆(α)L(α,χ0; y) sup
|t|�(yq)1/4

(
1 + log x

y

)−c
√

y
log y

∑√
y�p�y,p�q

1−	(χ(p)p−it )
p log p

.

If χ ∈ Ξ(k) for some k � 4A log A + D then Rodosskiı̆ Bound 1 shows the above is O (Ψ (x, y;χ0,Φ)/

(log x + 2y1/3
)), say (since we assume 1 
 y � log x).

When log x < y � elog1/10 x , one can argue instead (as in Section 2.4) that

∣∣∣∣ L(α + it,χ ; y)

L(α,χ0; y)

∣∣∣∣ �
∏

p�y, p�q

(
1 +

∞∑
k=1

1 − 	(χ(p)p−it)

pkα

)−1

� e− y(1−α)/2

log y

∑√
y�p�y,p�q

1−	(χ(p)p−it )
p log p

,

so Rodosskiı̆ Bound 1 implies that the integral is O (Ψ (x, y;χ0,Φ)/2log4 y), say (as y1−α � u �
log9/10 x � log9 y). These estimates are more than acceptable for χ ∈ Ξ(k), 4A log A + D � k �
(log q)/2.

We must still deal with χ ∈ Ξ(k) for k in the “problem range”. As in Section 2.5, if χ has order at
least B(A)+1 then we need only apply Rodosskiı̆ Bound 2 instead of Rodosskiı̆ Bound 1 in the preced-

ing calculations. If χ ∈ B we set h = log u/
√

min{log x log y, y log y}, so | ∫ α+i(yq)1/4

α−i(yq)1/4 L(s,χ ; y)xsΦ̆(s)ds|
is


 xαΦ̆(α)
(

h sup
|t|�h

∣∣L(α + it,χ ; y)
∣∣ + L(α,χ0; y) sup

h<|t|�(yq)1/4
e
−c

∑
p�y,p�q

(1−	(χ(p)p−it ))
pα

)
.

Provided that u � B3 and y � B7 (say), the argument of Lemma 5.2 of Soundararajan [8] shows the
exponential is 
 e−Θ(log2 u) + e−Θ(y2/3) , which is 
 e−Θ((log log x)2) for “small” y (that is (log log x)3 �
y � elog1/10 x). This is also acceptable.

Finally we apply Character Sum Bound 1 to estimate sup|t|�h |L(α + it,χ ; y)|. If y � log x this
works precisely as in Section 2.5. If (log log x)3 � y � log x we have

sup
|t|�h

∣∣L(α + it,χ ; y)
∣∣ �

(
1 + log x

y

)−(c/B) log((δ+o(1))yδ(1−α)/2)+O (1)

L(α,χ0; y),

noting that h � 1/ log2 y (say) for such y, so Character Sum Bound 1 is applicable. Now xαΦ̆(α)hL(α,

χ0; y) 
 (Ψ (x, y;χ0,Φ) log u log x)/y when y � log x, and that is 
 Ψ (x, y;χ0,Φ) log y((log x)/y)2.
This all implies an acceptable bound for xαΦ̆(α)h sup|t|�h |L(α + it,χ ; y)|, finishing the proof of The-
orem 1 for “small” y.

2.7. The case of very small y

If y is “very small”, two changes are needed to the argument for “small” y in Section 2.6 (and at
the end of Section 2.1).

Firstly, if q
√

y � (log log x)1/3 we cannot bound integrals like
∫ α+i∞
α+i(yq)1/4 L(s,χ ; y)xsΦ̆(s)ds accept-

ably just using the decay of Φ̆ , necessarily. As an alternative, if y �
√

log x, if p0 � y is any prime not
dividing q, and if ε > 0, then as in Section 2.6 we have
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∣∣∣∣
∫

|t|�ε

L(α + it,χ ; y)xα+itΦ̆(α + it)dt

∣∣∣∣


 xα L(α,χ0; y)

∫
|t|�ε

(
1 + log x

y

)−c(1−	(χ(p0)p−it
0 )) 1

|t|(|t| + 1)8
dt


 Ψ (x, y;χ0,Φ)

√
y

log y

∫
|t|�ε

(log x)−c(1−	(χ(p0)p−it
0 ))/2 1

|t|(|t| + 1)8
dt,

on recalling the lower bound for Ψ (x, y;χ0,Φ) (and Φ̆(α)) from Section 2.1. But

1 − 	(
χ(p0)p−it

0

) = 1 − cos
(
arg

(
χ(p0)

) − t log p0
)
,

which is clearly � 1/(log log x)4/5, say, except on a progression of intervals of t having lengths
Θ(1/(log p0(log log x)2/5)) and spacing Θ(1/ log p0). Thus if ε � 1/(log log x)2/5−1/3, the integral is


 Ψ (x, y;χ0,Φ)

√
y

log y

1

ε

(
1

(log log x)2/5
+ e−Θ((log log x)1/5)

)



√
yΨ (x, y;χ0,Φ)

(log log x)1/3
.

Note that this holds for all Dirichlet characters χ to modulus q. If q
√

y � (log log x)1/3 then we
apply this with ε chosen as min{q/(2(B(A) + 1)),1} (which is at least 1/y2/5−1/3 by assump-
tion that y is large in terms of A, and thus at least 1/(log log x)2/5−1/3). Then we can estimate∫
|t|�ε L(α + it,χ ; y)xα+itΦ̆(α + it)dt for χ /∈ B using the Rodosskiı̆ Bounds, exactly as demonstrated

in Section 2.6.
(Note that we need not assume that q � √

y, as previously, for the Rodosskiı̆ Bounds to apply,
since we are concerned with |t| � ε � q/(2(B + 1)) rather than |t| � (yq)1/4.)

Secondly, to deal with χ ∈ B we just set h = 1/ log2 y, rather than choosing h as in Section 2.6.

Then | ∫ α+i(yq)1/4

α−i(yq)1/4 L(s,χ ; y)xsΦ̆(s)ds|, or | ∫ α+iε
α−iε L(s,χ ; y)xsΦ̆(s)ds|, is


 xαΦ̆(α)

(
h sup

|t|�h

∣∣L(α + it,χ ; y)
∣∣ + L(α,χ0; y) sup

h<|t|�(yq)1/4

(
1 + log x

y

)−c
∑

p�y,p�q
(1−	(χ(p)p−it ))

pα
)

,

where these terms may be bounded as in Section 2.6. In particular the exponential is 
 (log x)−Θ(y2/3)

if B7 � y � (log log x)3, which is more than satisfactory. �
3. Proof of Proposition 1

To start the proof of Proposition 1, as used in Section 2.3, we shall establish the following lemma.
We will need the result, and the techniques of the proof will also be used again.

Lemma 3. Under the assumptions of Proposition 1, and for primitive χ , we have

∣∣∣∣ L′(σ + it,χ)

L(σ + it,χ)

∣∣∣∣ 
 log q.
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To see this, we note that the left-hand side is certainly at most

∣∣∣∣ L′(1 + 1/ log q + it,χ)

L(1 + 1/ log q + it,χ)

∣∣∣∣ +
(

1 + 1

log q
− σ

)
sup

σ�σ ′�1+1/ log q

∣∣∣∣ d

dσ ′
L′(σ ′ + it,χ)

L(σ ′ + it,χ)

∣∣∣∣.
Here the first term is at most ζ ′(1 + 1/ log q)/ζ(1 + 1/ log q), which is O (log q). We also note that

1 + 1/ log q − σ �
(
1 − α(x, y)

) + 1/ log q + Bk/ log x � k/(4 log q),

say, in view of the assumptions on y,q and k in Proposition 1.
For primitive χ , differentiation of the explicit formula for L′(s,χ)

L(s,χ)
(which is e.g. formula (17) in

Chapter 12 of Davenport [1]) yields

d

dσ ′
L′(σ ′ + it,χ)

L(σ ′ + it,χ)
= −

∞∑
n=0

1

(2n + σ ′ + it + a(χ))2
−

∑
ρ

1

(σ ′ + it − ρ)2
,

where the second sum is over the non-trivial zeros of L(s,χ), and a(χ) is 0 or 1 according as χ(−1)

is 1 or −1. (Thus the first sum is really over the trivial zeros of L(s,χ): see e.g. Chapters 9 and 19
of Davenport [1].) The sum over n is clearly O (1), and since σ ′ � σ � 1 − k/(4 log q), |t| � q/2 and
χ ∈ Ξ(k) we have

∑
ρ

1

|σ ′ + it − ρ|2 �
∑

|�(ρ)−t|�1,
|�(ρ)|�q

1

|σ ′ + it − ρ|2 +
∑

|�(ρ)−t|>1,
|�(ρ)|�q

1

|σ ′ + it − ρ|2 +
∑

|�(ρ)|>q

4

|�(ρ)|2



∑

|�(ρ)−t|�1

1

|1 + 1/ log q + it − ρ|2 + log q + log q

q
,

using the fact that 	(ρ) � 1−k/ log q in the first sum, and standard results on the vertical distribution
of zeros of L(s,χ) (as in e.g. Chapter 16 of Davenport [1]).

To bound the remaining sum, we again use the fact that χ ∈ Ξ(k), noting that

∑
|�(ρ)−t|�1

1

|1 + 1/ log q + it − ρ|2

=
∑

|�(ρ)−t|�1

1

	(1 + 1/ log q + it − ρ)
	

(
1

1 + 1/ log q + it − ρ

)

� log q

k
	

( ∑
|�(ρ)−t|�1

1

1 + 1/ log q + it − ρ

)

= log q

k
	

(
L′(1 + 1/ log q + it,χ)

L(1 + 1/ log q + it,χ)
+ O (log q)

)


 log2 q

k
.

Here the second equality is a classical approximation for L′(s,χ)/L(s,χ), as in formula (4) of Chap-
ter 16 of Davenport [1]. See Section 4 of Soundararajan [8], and especially Chapter 9.2 of Mont-
gomery [6], for further illustration of this argument.
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Combining the estimates we obtained proves Lemma 3. �
Now we note that, under the conditions of Proposition 1,

∣∣ log L(σ + it,χ ; y) − log L(α + it,χ ; y)
∣∣ � (α − σ) sup

σ�σ ′�α

∣∣∣∣ L′(σ ′ + it,χ ; y)

L(σ ′ + it,χ ; y)

∣∣∣∣
� Bk

log x

(
sup

α− Bk
log x �σ ′�α

∣∣∣∣∑
n�y

Λ(n)χ(n)

nσ ′+it

∣∣∣∣ + O (1)

)
.

We suppose initially that χ is a primitive Dirichlet character, and also that it will suffice to bound the

above with the sum over n replaced by
∑

n�R y w(n)
Λ(n)χ(n)

nσ ′+it , where R := max{2, y y−k/2 log q } and

w(n) :=
⎧⎨
⎩

1 if 1 � n � y,

1 − log(n/y)
log R if y � n � R y,

0 otherwise.

At the end of the argument we will show how to remove these assumptions.
Recall that for 	(s) > 1 we have

∑∞
n=1

Λ(n)χ(n)
ns = − L′(s,χ)

L(s,χ)
. Then a fairly standard contour integra-

tion procedure, as in e.g. Chapters 13.2 and 12.1 of Montgomery and Vaughan [7], reveals that

∑
n�R y

w(n)
Λ(n)χ(n)

ns
= − L′(s,χ)

L(s,χ)
− 1

log R

∞∑
n=0

(R y)−2n−a(χ)−s − y−2n−a(χ)−s

(2n + a(χ) + s)2

− 1

log R

∑
ρ

(R y)ρ−s − yρ−s

(ρ − s)2

whenever L(s,χ) �= 0. Here our notation is exactly as above. As always, the purpose of introducing
the smoother weight w(n) was to obtain nicer behaviour in these sums, namely that all denominators
are raised to at least the second power. This is also the reason that it was a good idea to switch to
studying d

dσ ′
L′(σ ′+it,χ)
L(σ ′+it,χ)

in proving Lemma 3.

Putting s = σ ′ + it , Lemma 3 and a trivial estimation show the first two terms in the above are
O (log q). To estimate the sum over ρ we proceed as in the proof of Lemma 3, noting that we can
extract a power saving O (y−3k/(4 log q)) on the range |�(ρ)| � q (since σ ′ � 1 − k/(4 log q) and χ ∈
Ξ(k)). Thus we have

∣∣∣∣∣ 1

log R

∑
ρ

(R y)ρ−σ ′−it − yρ−σ ′−it

(ρ − σ ′ − it)2

∣∣∣∣∣ 
 y−3k/(4 log q) log2 q

k log R
+ 1

log R

∑
|�(ρ)|>q

(R y)k/(4 log q)

|�(ρ)|2


 A log q

k
+ y1/4 log q

q
,

since log R � y−k/(2 log q) log y but R y � y2. This is acceptable for Proposition 1.
It remains to justify the two assumptions that we made at the start of the proof. Firstly, if k is

such that R = y y−k/2 log q � 2 then

∣∣∣∣∣
∑

y<n�R y

w(n)
Λ(n)χ(n)

nσ ′+it

∣∣∣∣∣ �
∑

y<n�R y

Λ(n)

nσ ′ 
 y1−σ ′
(R1−σ ′ − 1)

1 − σ ′ ,
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and since 1 −σ ′ � k/(4 log q) this is 
 y1−σ ′
log R , which is at most log y. If k is such that R = 2, the

same argument produces a bound O (y1−σ ′
), or alternatively

∣∣∣∣ ∑
y<n�2y

w(n)
Λ(n)χ(n)

nσ ′+it

∣∣∣∣ � 1

yσ ′ max
y<m�2y

∣∣∣∣ ∑
y<n�m

Λ(n)χ(n)

nit

∣∣∣∣ 
 y1−σ ′−k/ log q log2 q.

Here the first inequality follows from Abel’s partial summation lemma, and the second from
Lemma 3.1 of Soundararajan [8] (or directly by an explicit formula argument rather easier than
the above calculations). Comparing our two bounds, we see that when R = 2 the sum must be

 y1−σ ′−k/2 log q log q, which is at most log q. These error estimates are acceptable for Proposition 1.

Finally, if χ is not primitive we can apply the above techniques to the primitive character induc-
ing χ . This results in an error term of size at most

∑
p|q

log p
∑
r�1

1

prσ ′ 

∑
p|q

log p � log q

when estimating
∑

n�y
Λ(n)χ(n)

nσ ′+it , which again is acceptable for Proposition 1. �
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Appendix A. Unsmoothing

In this appendix we briefly explain how to pass from results about Ψ (x, y;q,a,Φ), which we
actually proved, to results about the unsmoothed version Ψ (x, y;q,a).

To “unsmooth” one notes that if ε > 0, and 1[0,1−ε] � Φ � 1[0,1] , then

Ψ (x, y;q,a) � Ψ (x, y;q,a,Φ) = 1

φ(q)
Ψ (x, y;χ0,Φ)

(
1 + oΦ(1)

)

� 1

φ(q)
Ψq(x, y)

(
1 − (Ψq(x, y) − Ψq((1 − ε)x, y))

Ψq(x, y)
+ oΦ(1)

)
,

where the first equality is what we proved in the body of this paper. One can similarly obtain an
upper bound for Ψ (x, y;q,a), so to deduce Theorem 1 we need to know that for any η > 0, the ratio
(Ψq(x, y)−Ψq((1−ε)x, y))/Ψq(x, y) will be at most η if ε is chosen sufficiently small (and log x/ log q
is large enough). This local result about Ψq(x, y) follows from Théorème 2.4 of de la Bretèche and
Tenenbaum [2], (also see Theorem 3 of Hildebrand and Tenenbaum [5]), except when y does not tend
to infinity with x. However, if 2 � y �

√
log x one has

Ψq(x, y) = 1

(#{p � y: p is prime, p � q})!
∏

p�y, p�q

(
log x

log p

)(
1 + O

(
y2

log x log y

))
,

exactly similarly to an expression for Ψ (x, y) due to Ennola (and explained in Chapter III.5.2 of Tenen-
baum’s book [9]), which directly implies that Ψq((1 − ε)x, y) is (1 + O (ε))Ψq(x, y), say. Actually one
obtains a bound O (ε) for our ratio in all cases, provided that log x/ log q is large enough in terms of ε .

For the proof of Theorem 2, one should apply this procedure to Ψ (x, y;χ,Φ) for all of the
(bounded number of) characters χ ∈ B. The “analytic” unsmoothing procedure used by Soundarara-
jan [8] appears not to work on our extended range of y, because one cannot replace Ψ (x, y;χ,Φ) by
a contour integral over a suitably short range of t for Φ̆ to be removed from it.
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Appendix B. Estimates for Dirichlet series involving the principal character

In this appendix we prove two estimates for Dirichlet series involving the principal character, and
a bound for an oscillating integral, which were needed in Sections 2.3–2.5. These results are of a
rather standard type (see e.g. Lemma 8 of Hildebrand and Tenenbaum [5]), but we include the short
proofs in the interests of completeness.

We suppose that 3/4 � β � 1, say: in Sections 2.3–2.5 we had β = α(x, y) or β = α(x, y) −
Bk/ log x. We also suppose that log q � log2 y, which certainly implies that

∑
p�log y,p|q 1/p 
 1. By

partial summation from the prime number theorem, if 2 � z � y and if t �= 0 then

∑
z�p�y

1 − cos(t log p)

p
= log log y − log log z −

t log y∫
t log z

cos w

w
dw + O

((
1 + |t|)e−d

√
log z),

for a certain constant d > 0. Choosing z = e(log log y)3
, we find that if 1/ log y � |t| � 1/(log log y)3

then the sum is log log y + log |t| + O (1), whilst if 1/(log log y)3 � |t| � log1/4 y, say, then the sum is
log log y − 3 log log log y + O (1). Thus we have

∣∣∣∣ L(β + it,χ0; y)

L(β,χ0; y)

∣∣∣∣ � e−∑
p�y,p�q(1−cos(t log p))/p


 e−∑
log y�p�y(1−cos(t log p))/p


 max{|t|−1, (log log y)3}
log y

,

provided that 1/ log y � |t| � log1/4 y, and so

β+i log1/4 y∫
β−i log1/4 y

∣∣L(s,χ0; y)
∣∣2

d|s| = O
(∣∣L(β,χ0; y)

∣∣2
/ log y

)
.

Next, we note that

∣∣∣∣ L′(β + it,1; y)

L(β + it,1; y)

∣∣∣∣ =
∣∣∣∣∑

p�y

log p

pβ+it − 1

∣∣∣∣ =
∣∣∣∣∑
n�y

Λ(n)

nβ+it

∣∣∣∣ + O (1),

since β is large. By partial summation from the prime number theorem, if y � 2 then

∑
n�y

Λ(n)

nβ+it
= y1−β−it − 1

1 − β − it
+ O

((
1 + |t|)

y∫
1

e−d
√

log w

wβ
dw

)

= y1−β−it − 1

1 − β − it
+ O

((
1 + |t|)y1−β

)
,

so if β � α = α(x, y) then certainly

∑
n�y

Λ(n)

nβ+it

 yα−βu min

{
log u

|t| , log y

}
+ (

1 + |t|)yα−βu log u,
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on recalling the definition of α. It follows, provided log u � log1/4 y (which certainly holds if y is
“large”, in the sense of the introduction), that

β+i log1/4 y∫
β−i log1/4 y

∣∣∣∣ L′(s,1; y)

L(s,1; y)

∣∣∣∣
2

d|s| = O
(

y2(α−β)u2 log u log y
)
.

Finally note that if measurable 0 � Φ � 1 is supported on [0,2], then

log1/4 y∫
t

xirΦ̆(β + ir)dr =
2∫

0

Φ(v)vβ−1

log1/4 y∫
t

(xv)ir dr dv,

by definition of the Mellin transform. Splitting the integral over v at 1/
√

x, and evaluating the integral
over r, we find that this is O (1/ log x).
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