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We try to understand the poles of L-functions via taking a limit in
a trace formula. This technique avoids endoscopic and Kim–Shahidi
methods. In particular, we investigate the poles of the Rankin–
Selberg L-function. Using analytic number theory techniques to
take this limit, we essentially get a new proof of the analyticity of
the Rankin–Selberg L-function at s = 1. Along the way we discover
the convolution operation for Bessel transforms.
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1. Introduction

In this paper we present further calculations using Langlands’ beyond endoscopy idea. We roughly
describe this concept here. Take a cuspidal holomorphic or Maass form φ and an associated L-function
L(s) = ∑∞

n=1
bn(φ)

ns , where bn(φ) are associated complex parameters defined by the dual group. The
focus is on

lim
X→∞

1

X

∑
n�X

bn(φ).

The limit is the residue of the pole of the associated L-function at s = 1. As it is difficult to study just
one form in this way, we rather study this limit as we sum over all modular forms. This allows us
to use the trace formula. Summing then over the spectrum φ along with the averaging of bn(φ) will
“detect” the associated L-functions that have poles.

We provide motivation for our work with a summary of Langlands original idea in [Lan04].
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2. Langlands’ beyond endoscopy

Let AQ be the ring of adeles of Q, and π be an automorphic cuspidal representation of GL2(AQ).
We define m(π,ρ) to be the order of the pole at s = 1 of L(s,π,ρ), where ρ is a representation of
the dual group GL2(C).

Langlands proposes the study of

lim
X→∞

∑
π

1

X
tr(π)( f )

∑
p�X

log(p)a(p,π,ρ). (2.1)

Here f is a nice test function on GL2(AQ), and tr(π)( f ) is the trace of the operator defined by f
on π . a(p,π,ρ) is the p-th Dirichlet coefficient of L(s,π,ρ). The quantity

lim
X→∞

1

X

∑
p�X

log(p)a(p,π,ρ),

is equal to m(π,ρ).
Therefore, summing over the range of representations π will “detect” the ones which have non-

trivial multiplicity. The tool used to study this sum over the spectrum of forms π is the trace formula.
Ultimately, one gets from use of the trace formula a sum over primes and conjugacy classes, and
hopes by analytic number theory techniques to take the limit. One hopes that after getting the limit,
one can decipher and construct the L-functions having non-trivial multiplicity of the pole at s = 1.
Sarnak addresses (2.1) in [Sar] for ρ the standard representation. He points out that such a computa-
tion can be done, but the tools used for the study of sums of primes is limited, and this problem is
perhaps more tractable if rather studied over the sum of integers.

For the standard L-function the idea then is to evaluate

lim
X→∞

∑
π

1

X
tr(π)( f )

∑
n�X

a(n,π,ρ). (2.2)

This should “detect”, rather than the multiplicities of the poles, the residue of the poles of the asso-
ciated L-functions. We do this because the trace formula with the easiest analytic application for GL2
is the Kuznetsov trace formula, and the sum over integers compliments such a limit.

Rather than use the adelic language, we use the classic Petersson–Kuznetsov trace formula. Then
for the standard L-function, Sarnak [Sar] showed, up to some weight factors needed in the trace
formula,

∑
n�X

g(n/X)
∑

f

an( f ) = O
(

X−A)

for any A > 0. This is equivalent to L(s, f ) = ∑∞
n=1

an( f )
ns being entire. Here g ∈ C∞

0 (R+) and an( f ) are
normalized Fourier coefficients of the cusp form f , and the spectral sum ranges over an orthonormal
basis of holomorphic and Maass forms of a certain level and nebentypus. Further work was done by
Venkatesh [Venk1,Venk2] for the symmetric square L-function. There the focus was taking the limit
for

lim
X→∞

1

X

∑
n�X

g(n/X)
∑

f

an2( f ).
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He showed the symmetric square L-function of a cusp form has a pole if it is induced from a Hecke
character over a quadratic field. We go further and compute

lim
X→∞

1

X

∑
n�X

∑
g

∑
f

an( f )an(g).

This would be inspecting the poles of the Rankin–Selberg L-function. From the Rankin–Selberg theory
we expect some L-functions to have a pole at s = 1. Namely, we expect the L-functions L(s, φ × φ̄),
where φ̄ is the modular form with conjugate Fourier coefficients to φ to have a pole.

3. Beyond endoscopy for the Rankin–Selberg L-function

Using a beyond endoscopic approach, we want to show only those L(s, φ × φ̄) associated to forms
φ remain.

At the heart of our study is the limit of a product of Kuznetsov trace formulas. Given a smooth
function V on R+ of compact support, and positive integers n, l, we consider the Kuznetsov trace
formula

Kn,l(V ) := Sn,l(V ) + Cn,l(V ), (3.1)

where

Sn,l(V ) :=
∑
φ

h(V , λφ)an(φ)al(φ),

Cn,l(V ) := 1

4π

∞∫
−∞

h(V , t)η(n,1/2 + it)η(l,1/2 + it)dt.

Here h(V , λ) is a certain transform of V , and an(φ) are normalized Fourier coefficients of a form φ,
which is either a holomorphic or Maass form. The term η(l,1/2 + it) is a normalized divisor func-
tion as in [Iw]. These are normalized Fourier coefficients of the Eisenstein series. We will define the
technical details of this sum in more detail in Section 4.

Suppose that W is a second function of the same type as V , and let g ∈ C∞
0 (R+) be a function

satisfying
∫ ∞

0 g(t)dt = 1.
We shall study the following limit:

lim
X→∞

1

X

∑
n∈Z

g(n/X)Kn,l(V )Kn,l′(W ). (L)

Define

V ∗ W (z) :=
∞∫

−∞

∞∫
−∞

exp

(
z

i

2

(
x

y
+ y

x

))
exp

((
1

z

)
8π2i

xy

)
V

(
4π

x

)
W

(
4π

y

)
dx

x

dy

y
, (3.2)

then we prove that V ∗ W is the convolution operation for Bessel transforms. That is, λφ is the
archimedean parameter associated to a form φ, and

h(V , λ) :=
{

ik
∫ ∞

0 V (x) Jλ−1(x)x−1 dx if λ ∈ 2Z;∫ ∞ V (x)B2iλ(x)x−1 dx if λ ∈ R − 2Z.
(3.3)
0
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Here, B2it(x) = (2 sin(π it))−1( J−2it(x) − J2it(x)), where Jμ(x) is the standard J -Bessel function of
index μ (see [IK] and [Wat]). We call it the B-Bessel function.

Theorem 3.1. For all V , W as above, h(V ∗ W , t) = Cth(V , t)h(W , t), where Ct = 2π for t an even integer,
and Ct = π for t purely imaginary.

Such results are valuable for inverting test functions in the trace formula, and are highly sought
after for higher rank trace formulae. This beyond endoscopic approach could possibly help.

The main theorem proved in the paper is

Theorem 3.2. Let l, l′ be positive integers, then

lim
X→∞

1

X

∑
n

g(n/X)Kn,l(V )Kn,l′(W ) = 12

π
Kl,l′(V ∗ W ).

We find it extremely interesting that if one looks at Theorem 3.2 strictly from the geometric sides
of the trace formula, one has

Corollary 3.3.

lim
X→∞

1

X

∑
n∈Z

g(n/X)

( ∞∑
c1=1

1

c1
S(l,n, c1)V (4π

√
nl/c1)

)( ∞∑
c2=1

1

c2
S
(
l′,n, c2

)
W

(
4π

√
nl′/c2

))

=
∞∑

d=1

1

d
S
(
l, l′,d

)
(V ∗ W )

(
4π

√
ll′/d

)
,

where

S(r, s,d) :=
∑

x∈(Z/dZ)∗
e

(
rx + sx

c

)

is the Kloosterman sum.

The average of a product of sums of Kloosterman sums is another sum of Kloosterman sums. There
is perhaps further application in this statement.

We also prove the cuspidal (resp. continuous) parts of the limit (L) match with themselves, and
the cuspidal and continuous parts are orthogonal.

Theorem 3.4. limX→∞ 1
X

∑
n g(n/X)Sn,l(V )Sn,l′ (W ) = 12

π Sl,l′ (V ∗ W ).

Theorem 3.5. limX→∞ 1
X

∑
n g(n/X)Cn,l(V )Cn,l′ (W ) = 12

π Cl,l′ (V ∗ W ).

Theorem 3.6. limX→∞ 1
X

∑
n g(n/X)Sn,l(V )Cn,l′ (W ) = 0.

In a forthcoming paper we plan to add Hecke operators into our trace formula to obtain the
analytic continuation of the Rankin–Selberg L-function.

Very generally these theorems say if we apply the trace formula to the spectral sums φ,ψ in (L)

to get the geometric sides of the formula, and take the limit as X → ∞, (L) is equal to just a single
spectral sum.
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4. Preliminaries

We start by defining the Kuznetsov trace formula used in this Chapter and its normalization. We
refer to [Iw] book on it’s derivation. Let S(Γ0(N)) be the space of holomorphic cusp forms of weight k
for the group Γ0(N). For each form φ ∈ Sk(Γ0(N)), let cn(φ) be the n-th Fourier coefficient, then define

an(φ) :=
√

π−kΓ (k)

(4n)k−1
cn(φ).

Likewise, for Maass cusp forms we define

an(φ) :=
(

4π |n|
cosh(π s)

)1/2

ρ(n),

where φ has L2 norm one and eigenvalue 1/4 + s2 with Fourier expansion

φ(z) =
∑
n �=0

ρ(n)W s(nz).

Here W s(nz) = 2
√

yKs−1/2(ny)e(x). The continuous spectrum coefficients are defined as

η(l,1/2 + it) := 2π1+itcosh(πt)−1/2 τit(n)

Γ (1/2 + it)ζ(1 + 2it)
,

where τit(n) = ∑
ab=n(a/b)it .

The Kuznetsov formula states

∑
φ

h(V , λφ)an(φ)al(φ) + 1

4π

∞∫
−∞

h(V , t)η(n,1/2 + it)η(l,1/2 + it)dt

=
∞∑

c=1

1

c
S(l,n, c)V (4π

√
ln/c) (4.1)

where the sum φ is over an orthonormal basis for Sk(Γ0),k ∈ 2Z and Maass forms w.r.t. the Petersson
inner product, and V ∈ C∞

0 (R − {0}).

5. Expectation of poles of Rankin–Selberg L-function

We focus on the holomorphic forms, the Maass forms are analogous. Classically, the Rankin–
Selberg L-function is defined as

L(s, φ × ψ) = ζ(2s)
∞∑

n=1

cn(φ)dn(ψ)n−s,

for cuspidal Hecke eigenforms φ,ψ ∈ Sk(Γ0), with Fourier (unnormalized) coefficients cn(φ), dn(ψ),
respectively. The work of Rankin and Selberg show this L-function has much of the same good analytic
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properties of Hecke and automorphic L-functions: analytic continuation, a functional equation, and an
Euler product. They show further if φ = ψ̄ , then

Ress=k

∞∑
n=1

cn(φ)dn(ψ)n−s = 3

π

(4π)k

Γ (k)
〈φ,φ〉,

and the L-function is entire else. Now taking into consideration the normalization from the previous
section, this same statement about the poles of the Rankin–Selberg L-function is

〈φ,φ〉−1Ress=1

∞∑
n=1

an(φ)bn(ψ)n−s = 12

π
.

We ask now what do we expect from a beyond endoscopy calculation for a product of two
Kuznetsov formulas. Now assuming the basis of automorphic forms is orthonormal, one studies

lim
X→∞

1

X

∑
n∈Z

g(n/X)

( ∑
φ

h(V , λφ)an(φ)al(φ) + {C .S.C .}n,l

)

×
( ∑

ψ

h(W , λψ)bn(φ)bl′(φ) + {C .S.C .}n,l′
)

, (5.1)

where {C .S.C .}i, j stands for the continuous spectrum contribution with Fourier coefficient parameters
i, j as in (4.1). If we are free to interchange sums and limits, the heart of the calculation boils down
to investigating the smooth sum over n,

1

X

∑
n∈Z

g(n/X)an(φ)bn(ψ). (5.2)

Via Mellin inversion, (5.2) equals

1

2π i

σ+i∞∫
σ−i∞

G(s)
L(s, φ × ψ)

ζ(2s)
Xs ds, (5.3)

where G(s) = ∫ ∞
0 g(x)xs−1 dx is the Mellin transform, and σ > 2 to ensure the convergence of the in-

tegral. Assuming Rankin–Selberg theory, we make a contour shift to σ1 = 1−ε , with ε > 0 sufficiently
small. Then (5.3) equals

12δφ,ψ

π
+ O

(
X−ε

)
,

where

δφ,ψ :=
{

1 if φ = ψ̄,

¯
0 if φ �= ψ.
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Therefore, we expect this sum over n to be non-trivial when φ = ψ̄ with residue 12
π , or analogously

(5.1) equals

12

π

∑
φ

h(V , λφ)h(W , λφ)al(φ)bl′(φ) + {C .S.C .}l,l′ .

This is precisely the statement of Theorem 3.2. The problem is we cannot freely interchange the
spectral sum and the limit in (5.1). However, after using the Kuznetsov trace formula for both spectral
sums and some analysis we can take this limit.

Remark. Theorem 3.2 can be proved using Voronoi summation, very similar to Chapter 3 in [Venk1].
The author focuses on using two Kuznetsov formulas instead, because the Voronoi summation argu-
ment does not work in the Asai L-function case which was the focus of the author’s thesis. The author
has notes proving the result using Voronoi summation as well, but chose not to incorporate them into
the paper.

6. Number-theoretic lemmas

We prove some number-theoretic lemmas that are crucial to our calculation. Using standard ter-
minology, let x be a representative class modulo c such that (x, c) = 1. We then denote x mod c as
the element such that xx ≡ 1(c).

Definition 6.1. Let X(c1, c2,n) denote the equivalence classes of pairs (x, y) with x, y ∈ Z such that
(x, c1) = 1, (y, c2) = 1, and

c2x + c1 y = n.

Here we say that (x, y) is equivalent to (x′, y′) if x ≡ x′ (mod c1) and y ≡ y′ (mod c2). Let X(c1, c2,n)

be a set of representatives for the classes in X(c1, c2,n).

Proposition 6.2. Let (x, y) ∈ X(c1, c2,0), then x = −y, c1 = c2 .

Proof. It is sufficient to study

c2x ≡ 0(c1).

Since (x, c1) = 1, we have c2 = xγ c1, γ ∈ Z. Likewise,

c1 y ≡ 0(c2),

implies c1 = yγ ′c2. This implies c1 = c2. Certainly then

c1(x + y) = 0,

or x = −y. �
It is assumed, unless stated otherwise, n �= 0.

Proposition 6.3. Let (x, y) ∈ X(c1, c2,n) and x ∈ Z be an inverse of x modulo c1 and y ∈ Z be an inverse of y
modulo c2 . Then there exists a pair (r1, r2) such that r1r2 ≡ 1 (mod n) and

x = c2 + c1r1
, y = c1 + c2r2

. (6.1)

n n
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The pair (r1, r2) is uniquely determined modulo n by the equivalence class of the pair (x, y), and the map from
X(c1, c2,n) to the set of pairs (r1, r2) modulo n is injective.

Proof. Set

r1 = nx − c2

c1
, r2 = ny − c1

c2
.

Note that r1 is an integer because

nx − c2 = (c2x + c1 y)x − c2 = c2(xx − 1) + c1 yx ≡ 0 (mod c1).

Similarly, r2 is an integer.
It is clear that (r1, r2) is determined by the pair (x, y). If we replace x by x′ = x + μc1, r1 is

replaced by

r′
1 = r1 + μn.

Therefore r′
1 ≡ r1 (mod n) as claimed. Similarly, (x, y) determines r2 modulo n.

If two pairs (x, y) and (x′, y′) in X(c1, c2,n) are both associated to (r1, r2), then x = x′ and y = y′ .
Therefore x ≡ x′ (mod c1) and y ≡ y′ (mod c2).

Finally,

r1r2 =
(

nx − c2

c1

)(
ny − c1

c2

)
= 1 + n2xy − nxc1 − nyc2

c1c2
= 1 + n

nxy − xc1 − yc2

c1c2
.

But

nxy = (c2x + c1 y)xy = c2xxy + c1xy y

so we have

r1r2 = 1 + n
c2xxy + c1xy y − xc1 − yc2

c1c2
= 1 + n

[
c2(xx − 1)y + c1(y y − 1)x

c1c2

]
.

The expression in brackets is an integer, so r1r2 ≡ 1 (mod n). �
Definition 6.4. Let c1, c2 be positive integers. Set d = (c1, c2). Assume that d|n. Let Y (c1, c2,n) be the
set of classes r ∈ (Z/n)∗ such that

(a′) (c1/d)r + (c2/d) ≡ 0 (mod n
d ),

(b′) (c1/d)r + (c2/d) �≡ 0 (mod n
d′ ) if d′ | d and d′ < d.

Proposition 6.5. The map i : (x, y) → r1 defines a bijection between X(c1, c2,n) and Y (c1, c2,n).

Proof. Let (x, y) ∈ X(c1, c2,n). We show that the associated r1 belongs to Y (c1, c2,n). Then

x = c1r1 + c2 = (c1/d)r1 + (c2/d)
.

n (n/d)
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Therefore, c1r1
d + c2

d ≡ 0 (mod n
d ) and (a′) is satisfied. Suppose that m is a proper divisor of d and let

d′ = d/m. We claim that c1
d r + c2

d �≡ 0 (mod n
d′ ). If this were not the case, we would have

x = (c2/d) + (c1/d)r1

(n/d)
= m

(c2/d) + (c1/d)r1

(n/d′)
.

This would imply that m divides x, which contradicts the fact that x is a unit modulo c1. Therefore (b′)
is satisfied and r ∈ Y (c1, c2,n). Furthermore, the map i is injective on X(c1, c2,n) by Proposition 6.3.
Next, assume that Y (c1, c2,n) is non-empty. Let r ∈ Z be prime to n and assume that r (mod n)

belongs to Y (c1, c2,n). Set

ξ = (c1/d)r + (c2/d)

n/d
= c2 + c1r

n
.

Then ξ is relatively prime to d because (c1/d)r + (c2/d) �≡ 0 (mod n/d′) for all proper divisors d′ of d.
On the other hand, if q is a common factor of both ξ and c1/d, then q|c2/d. But (c1/d, c2/d) = 1 so
q = 1. This proves that ξ is prime to both d and c1/d, and hence is a unit modulo c1. Now choose
x ∈ Z such that xξ ≡ 1 (mod c1) and set x = ξ . Then

xx = 1 + μc1

for some μ ∈ Z. We claim that there exists y ∈ Z such that

c2x + c1 y = n.

In fact,

y = n − c2x

c1
.

To show that y ∈ Z, observe that c2 = xn − c1r and so

y = (n − (xn − c1r)x)

c1
= (n(1 − xx) + c1r1x)

c1
= r1x − nμ.

Thus we have produced a pair (x, y) ∈ X(c1, c2,n) that maps to r (mod n). This proves the surjectiv-
ity. �
7. Rewriting the geometric side

By the Kuznetsov trace formula, the limit (L) is equal to

(L) = lim
X→∞

1

X

∑
n∈Z

g(n/X)

( ∞∑
c1=1

1

c1
S(l,n, c1)V (4π

√
nl/c1)

)

×
( ∞∑

c2=1

1

c2
S
(
l′,n, c2

)
W

(
4π

√
nl′/c2

))
. (7.1)

We first reorganize the terms,

lim
X→∞

1

X

∑
n

g(n/X)
∑
c1,c2

1

c1c2
S(l,n, c1)S

(
l′,n, c2

)
V

(
4π

√
nl

c1

)
W

(
4π

√
nl′

c2

)
. (7.2)

We can do this because the c1, c2, sums are finite.
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We now break up the Kloosterman sums and gather all the n-terms.

lim
X→∞

1

X

∑
c1,c2

1

c1c2

∑
x(c1)∗

∑
y(c2)∗

e

(
xl

c1
+ yl′

c2

)

×
{ ∑

n∈Z

e

(
n

(
x

c1
+ y

c2

))
g(n/X)V

(
4π

√
nl

c1

)
W

(
4π

√
nl′

c2

)}
, (7.3)

where x is the multiplicative inverse of x (c1) (resp. y for y(c2)). This is allowed because the support
of g is compact, and therefore the sum over n is finite.

As the term in brackets in 7.3 is a smooth function, we can apply Poisson summation to the n-sum
to get,

lim
X→∞

1

X

∑
c1,c2

1

c1c2

∑
x(c1)∗

∑
y(c2)∗

e

(
xl

c1
+ yl′

c2

)

×
{ ∑

m

∞∫
−∞

e

(
t

(
xc2 + yc1

c1c2

)
− tm

)
g(t/X)V

(
4π

√
tl

c1

)
W

(
4π

√
tl′

c2

)
dt

}
. (7.4)

Change of variables t → Xt , gives

lim
X→∞

∑
c1,c2

1

c1c2

∑
x(c1)∗

∑
y(c2)∗

e

(
xl

c1
+ yl′

c2

)

×
{ ∑

m∈Z

∞∫
−∞

e

(
Xt(c2x + c1 y − mc1c2)

c1c2

)
g(t)V

(
4π

√
Xtl

c1

)
W

(
4π

√
Xtl′

c2

)
dt

}
. (7.5)

As we have fixed l and l′ , we write

I(n, c1, c2, X) :=
∞∫

−∞
e

(
Xtn

c1c2

)
g(t)V

(
4π

√
Xtl

c1

)
W

(
4π

√
Xtl′

c2

)
dt.

Then (L) is equal to the limit as X → ∞ of

∑
c1,c2

1

c1c2

∑
x(c1)∗

∑
y(c2)∗

e

(
xl

c1
+ yl

c2

)∑
m∈Z

I(c2x + c1 y − c1c2m, c1, c2, X).

Note that for fixed X , the sums over c1 and c2 sums are finite. Let X ′(c1, c2,n) be the set of solutions
(x, y,m) of the equation

c2x + c1 y − mc1c2 = n,

where x and y range over a fixed set of representatives of (Z/c1)
∗ and (Z/c2)

∗ , respectively, and
m ∈ Z. Then (L) is equal to the limit as X → ∞ of

∑
n∈Z

∑
c1,c2

1

c1c2

∑
(x,y,m)∈X ′(c ,c ,n)

e

(
xl

c1
+ yl′

c2

)
I(n, c1, c2, X).
1 2
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Note that

c2x + c1 y − mc1c2 = c2(x − mc1) + c1 y.

Therefore, there is a bijection between the set of triples (x, y,m) ∈ X ′(c1, c2,n) and the set of equiv-
alent classes of pairs (x′, y′) in X(c1, c2,n) from Definition 6.1. Thus we may replace the sum over
X ′(c1, c2,n) with a sum over X(c1, c2,n):

(L) = lim
X→∞

∑
n∈Z

∑
c1,c2

1

c1c2

∑
(x,y)∈X(c1,c2,n)

e

(
xl

c1
+ yl′

c2

)
I(n, c1, c2, X).

Finally, let

An,X :=
∑
c1,c2

1

c1c2

∑
(x,y)∈X(c1,c2,n)

e

(
xl

c1
+ yl′

c2

)
I(n, c1, c2, X). (7.6)

Then

(L) = lim
X→∞

∑
n∈Z

An,X . (7.7)

Now define the standard Ramanajuan sum as

fn(m) :=
∑
s(n)∗

e

(
sm

n

)
.

For n = 0 using Lemma 6.2 we have x = −y and

A0,X =
∑

c1

fc1(l − l′)
c2

1

I(0, c1, c2, X). (7.8)

Now for n �= 0, we can use the bijection of Proposition 6.5 to rewrite An,X as a sum over r ∈
Y (c1, c2,n):

An,X =
∑

r∈(Z/n)∗
e

(
rl + rl′

n

) ∑
c1,c2

r∈Y (c1,c2,n)

1

c1c2
e

(
lc2

c1n
+ l′c1

c2n

)
I(n, c1, c2, X).

Definition 7.1. Let X(r) be the set of pairs (c1, c2) such that r ∈ Y (c1, c2,n).

Definition 7.2. Let

Fn(x, y) := 1

xy
e

(
1

n

(
ly

x
+ l′x

y

))

×
{ ∞∫

−∞
e

(
tn

xy

)
g(t)V

(
4π

√
tl

x

)
W

(
4π

√
tl′

y

)
dt

}
. (7.9)
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Now assuming

(L) = lim
X→∞

∑
n∈Z

An,X =
∑
n∈Z

lim
X→∞ An,X , (7.10)

the main result of the calculations can be broken down into the cases: n = 0, and n �= 0.
In Section 8 we show

lim
X→∞ A0,X = 6δl,l′

π2

∞∫
0

V (y)W (y)
dy

y
, (7.11)

where δl,l′ is the Kronecker delta function.
While for n �= 0, and for all r ∈ (Z/n)∗ ,

lim
X→∞

∑
(c1,c2)∈X(r)

1

c1c2
e

(
lc2

c1n
+ l′c1

c2n

)
I(n, c1, c2, X) = 6

π2

1

n

∞∫
0

∞∫
0

Fn(x, y)dx dy. (7.12)

Summing this result for r ∈ (Z/n)∗ , we get

An,X = 6

π2

S(l, l′,n)

n

∞∫
0

∞∫
0

Fn(x, y)dx dy.

The results from Section 8 then show

(L) = 6

π2

(
δl,l′

∞∫
0

V (y)W (y)
dy

y
+

∞∑
n=1

S(l, l′,n)

n

∞∫
0

∞∫
0

Fn(x, y)dx dy

)
.

In Section 9.3, (L) is shown to be the geometric side of a Kuznetsov trace formula. Taking the
spectral side of this trace formula completes Theorem 3.2[i.]. Reducing this to Rankin–Selberg orthog-
onality for individual cusp forms then occupies Sections 9,10, and 11.

8. Calculation for An,X

8.1. Case 1: n �= 0

Now fix r, then by Proposition 6.5, X(r) is the set of (c1, c2) such that, setting d = (c1, c2), we
have

(1) c1
d , c2

d are both prime to n
d .

(2) c1r+c2
d ≡ 0 (mod n

d ).
(3) c1r+c2

d �≡ 0 (mod n
d′ ) if d′ is a proper divisor of d.

Now for each divisor d of n, let X(r,d) be the set of pairs (c1, c2) in X(r) such that (c1, c2) = d.
We would like to prove that there is a constant R(n,d) such that

lim
X→∞

∑
(c1,c2)∈X(r,d)

1

c1c2
e

(
lc2

c1n
+ l′c1

c2n

)
I(n, c1, c2, X) = R(n,d)

6

π2

1

n

∞∫ ∞∫
Fn(x, y)dx dy (8.1)
0 0
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and ∑
d|n

R(n,d) = 1.

Let us describe X(r,d) explicitly. If (c1, c2) ∈ X(r,d), then

c2

d
= −c1

d
r + λ

n

d
. (8.2)

Lemma 8.1. Fix c1 such that c1/d is prime to n/d. Let λ be a whole number and define c2 by (8.2). Then
(c1, c2) ∈ X(r,d) if and only if (λ, c1) = 1.

Proof. We show first that (λ, c1/d) = 1 if and only if c2
d is relatively prime to n

d and c1
d . Assume that

(λ, c1/d) = 1. If p divides both c1/d and c2/d, then (8.2) gives p | n/d, which is a contradiction. And if
p divides c2/d and n/d, then (8.2) gives p|r(c1/d). But (r,n) = 1, so this implies that p divides c1/d –
again a contradiction.

On the other hand, if q = (λ, c1/d) > 1, then q divides c2/d. In this case, c2
d is not relatively

prime c1
d .

If d = 1, the only requirement is (λ, c1/d) = 1, i.e., (c1, c2) ∈ X(r,d) if and only if (λ, c1) = 1.
If d > 1, we must also require that

c1r + c2

n
�≡ 0

(
mod p

n

d

)
(8.3)

for all p | d. But

c1r + c2

d
= λ

n

d
.

Therefore (8.3) holds if and only if λ �≡ 0 (mod p) for all p|d. In other words, λ must be rel-
atively prime to d as well. But the two conditions (λ, c1/d) = 1 and (λ,d) = 1 are equivalent to
(λ, c1) = 1. �

Perhaps it is more convenient to replace the pair (c1, c2) with a pair (dc1,dc2) where c1, c2 are
relatively prime to each other and to n/d. Then X(r,d) is describe by pairs (c1, λ) and the left-hand
side of (8.1) is equal to

lim
X→∞

∑
c1: (c1,n/d)=1

∑
(λ,dc1)=1

1

d2c1c2
e

(
lc2

c1n
+ l′c1

c2n

)
I(n,dc1,dc2, X) (8.4)

where

c2 = −c1r + λ
n

d
.

Definition 8.2. Let Hn(x, y) := 1
xy e( xl′

ny + yl
nx )I(n, x, y,1).

Then (8.4) equals

lim
X→∞

1

X

∑
c1: (c1,n/d)=1

∑
(λ,dc1)=1

Hn

(
dc1√

X
,

dc2√
X

)
.

We prove:
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Proposition 8.3. There exists a 1/2 < σ0 < 1, such that

1

X

∑
c1: (c1,n/d)=1

∑
(λ,dc1)=1

Hn

(
dc1√

X
,

dc2√
X

)

= R(n,d)
6

π2

1

n

∞∫
0

∞∫
0

Fn(x, y)dx dy + O

(
1

n2 X (1−σ0)/2

)
(8.5)

where

c2 = −c1r + λ
n

d
,

and ∑
d|n

R(n,d) = 1.

The implied constant is independent of n and X.

Proof. The LHS of 8.5 equals

1

X

∑
c1: (c1,n/d)=1

∑
(λ,dc1)=1

Hn

(
dc1√

X
,

d(−c1r + λn
d )√

X

)
. (8.6)

Now fix c1, and define

G(m) := Hn

(
dc1√

X
,m

)
.

Then the condition (λ,dc1) = 1, is equivalent to λ = s + dc1q, for 1 � s < dc1, (s,dc1) = 1, q ∈ Z. We
now fix an s, and perform Poisson summation for the sum over q,

∑
q∈Z

G

(−dc1r + ns + ndc1q√
X

)
.

We get

∑
m∈Z

∞∫
−∞

G

(−dc1r + ns + ndc1t√
X

)
e(−mt)dt.

With a change of variables we are left with

√
X

ndc1

∑
m∈Z

e

(
(ns − dc1r)m

ndc1

)
Ĝ

(
m

√
X

ndc1

)
, (8.7)

where Ĝ is the Fourier transform of G . Here
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Ĝ

(
m

√
X

ndc1

)
=

∞∫
−∞

e

(
1

n

(
l
√

X y

dc1
+ l′dc1√

X y

))

×
{ ∞∫

−∞
e

(√
Xtn

dc1 y

)
g(t)V

(
4π

√
lt X

dc1

)
W

(
4π

√
l′t

y

)
dt

}
e

(−m
√

X y

ndc1

)
dy

y
,

the sum over s gives ∑
s(dc1)∗

e

(
ms

dc1

)
= μ

(
dc1

(m,dc1)

)
φ(dc1)

φ(
dc1

(m,dc1)
)
.

We denote

fl(n) := μ

(
l

(l,n)

)
φ(l)

φ( l
(l,n)

)
.

See [IK]. Note if m = 0, we have φ(dc1).
Therefore, we have

1

n
√

X

∑
c1: (c1,n/d)=1

fdc1(m)

dc1

∑
m∈Z

e

(−rm

n

)
Pm,n

(
dc1√

X

)
, (8.8)

where

Pm,n(x) := 1

x

∞∫
−∞

e

(
1

n

(
ly

x
+ l′x

y

))

×
{ ∞∫

−∞
e

(
tn

xy

)
g(t)V

(
4π

√
lt

x

)
W

(
4π

√
l′t

y

)
dt

}
e

(−my

nx

)
dy

y
.

We define the Mellin transform of a function F as

F̃ (s) =
∞∫

0

F (x)xs dx

x
.

Since Pm,n is smooth of compact support, integration by parts M times implies

P̃m,n(s) = O M

((
n

(m(1 + |t|))
)M)

, (8.9)

where s = σ + it . We now interchange the c1 and m sum. This is ok because the c1 sum is finite. We
now fix m and study

1

n
√

X
e

(−rm

n

) ∑
c1: (c1,n/d)=1

fdc1(m)

dc1

1

2π i

∫
Re(s)=σ1

P̃m,n(s)

(√
X

dc1

)s

ds, (8.10)

where σ1 is taken large enough to ensure convergence.
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As the c1 sum is finite, we can interchange it and the integral to get

1

2πni
√

X
e

(−rm

n

) ∫
Re(s)=σ1

P̃m,n(s)L(s)(
√

X)s ds, (8.11)

where

L(s) =
∑

c1: (c1,n/d)=1

fdc1(m)

(dc1)s+1
.

We have 2 parts: m = 0, and m �= 0.

8.1.1. Part 1
For m = 0,

L(s) =
( ∑

d′=∏
p p j

p|d,p� n
d

φ(d′d)

(d′d)1+s

)( ∑
c1: (c1,n)=1

φ(c1)

c1+s
1

)
. (8.12)

For simplicity, define

Z(d, s) :=
( ∑

d′=∏
p p j

p|d,p� n
d

φ(d′d)

(d′d)1+s

)
.

Then

L(s) = Z(d, s)
L(s,χ0)

L(s + 1,χ0)

where χ0 is the trivial Dirichlet character modulo n. It has a pole at s = 1.
Now we shift the contour in (8.11) from Re(s) = σ1 → 3/4. The pole at s = 1 has residue

12
π

∏
p|n 1

(1+ 1
p )

Z(d,1), and rewrite (8.11) in the case of m = 0 as

6

nπ2

∏
p|n

1

(1 + 1
p )

Z(d,1) P̃0,n(1) + 1

2πni
√

X

∫
Re(s)=3/4

P̃0,n(s)L(s)(
√

X)s ds.

Now remember

Fn(x, y) := 1

xy
e

(
1

n

(
ly

x
+ l′x

y

))

×
{ ∞∫

−∞
e

(
tn

xy

)
g(t)V

(
4π

√
tl

x

)
W

(
4π

√
tl′

y

)
dt

}
. (8.13)

Integration by parts k-times in (8.13) gives

Fn(x, y) = O x,y

(
1

nk

)
. (8.14)
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Using trivial bounds on the integral and the bound (8.14), we have

6

nπ2

∏
p|n

1

(1 + 1
p )

Z(d,1) P̃0,n(1) + O n

(
1

n2 X1/8

)
. (8.15)

8.1.2. Part 2
For m �= 0, the arguments are similar, but the L-function equals

L(s) =
( ∑

d′=∏
p p j

p|d,p� n
d

φ(d′d)

(d′d)1+s

)( ∑
c1: (c1,n)=1

fc1(m)

c1+s
1

)
. (8.16)

As everything is multiplicative, we can rewrite it as Z(d, s)M(s), where

M(s) = 1

ζ(s + 1)

∑
�|n

μ2(�)

�1+s

∑
d|m

μ(d)

d1+s
.

Now Z(d, s) is entire, and M(s) is analytic for �(s) > 0. There exists σ0 < 1 such that
ζ(1 + σ0 + it) �= 0 for all t ∈ R. We shift the contour of the integral to �(s) = σ0 and get

1

2πni
√

X

∫
�(s)=σ0

P̃m,n(s)L(s)(
√

X)s ds. (8.17)

To bound (8.17), we use the bounds (8.9) and (8.14). Specifically, we can choose M = 2 for (8.9)
and k = M + 2 = 4 for (8.14). This gives the bound

1

2πni
√

X

∫
�(s)=σ0

P̃m,n(s)L(s)(
√

X)s ds = O

(
1

(nm)2 X (1−σ0)/2

)
. (8.18)

Now for both cases m = 0 and m �= 0, we have estimates (8.15) and (8.18), respectively, to get (8.8)
equaling

6

nπ2

∏
p|n

1

(1 + 1
p )

Z(d,1) P̃0,n(1) + O

(
1

n2 X (1−σ0)/2

)
, (8.19)

after executing the m-sum.
Finally, notice P̃0,n is Fn , and we have

6

nπ2

∏
p|n

1

(1 + 1
p )

Z(d,1)

∞∫
0

∞∫
0

Fn(x, y)dx dy + O

(
1

n2 X (1−σ0)/2

)
. (8.20)

Now let

R(n,d) := Z(d,1)
∏
p|n

1

(1 + 1
p )

.

Lemma 8.4.
∑

d|n R(n,d) = 1.
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Proof. It suffices to do this for n = pl , p a prime, l ∈ N. We note in this case d = pi , 0 � i � l. Here

R
(

pl,1
) = 1

(1 + 1
p )

,

and

R
(

pl, p j) = 1

(1 + 1
p )

(
φ(p j)

p2 j

)
,

for 1 < j < l. Lastly,

R
(

pl, pl) = 1

(1 + 1
p )

( ∞∑
k=0

φ(pl+k)

p2l+2k

)
.

Thus we only have to prove

1 +
(

l−1∑
j=1

φ(p j)

p2 j

)
+

( ∞∑
k=0

φ(pl+k)

p2l+2k

)
= 1 + 1

p
. (8.21)

For the middle sum of (8.21), we get

(
l−1∑
j=1

φ(p j)

p2 j

)
=

(
1 − 1

p

) l−1∑
j=1

1

p j
= pl−1 − 1

pl
.

For the last sum of (8.21). we have( ∞∑
k=0

φ(pl+k)

p2l+2k

)
= (1 − 1

p )

pl

∞∑
k=0

1

pk
= (1 − 1

p )

pl(1 − 1
p )

= 1

pl
.

Summing the 3 terms then gives

1 + pl−1 − 1

pl
+ 1

pl
= 1 + 1

p
. �

This completes Proposition 8.3. �
8.2. Case 2: n = 0

From (7.8) we have,

∑
c1

fc1(l − l′)
c2

1

I(0, c1, c2, X) =
∑

c1

fc1(l − l′)
c2

1

{ ∞∫
−∞

g(t)V

(
4π

√
Xlt

c1

)
W

(
4π

√
Xl′t

c1

)
dt

}
. (8.22)
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Proposition 8.5.

∑
c1

fc1(l − l′)
c2

1

{ ∞∫
−∞

g(t)V

(
4π

√
Xlt

c1

)
W

(
4π

√
Xl′t

c1

)
dt

}

= 6δl,l′

π2

∞∫
0

∞∫
0

V (y)W (y)
dy

y
+ O

(
1

X3/4

)
. (8.23)

The implied constant is independent of X .

Proof. We define

F (x) := 1

x

∞∫
−∞

g(t)V

(
4π

√
lt

x

)
W

(
4π

√
l′t

x

)
dt. (8.24)

Denoting again the Mellin transform of F (x) as F̃ (s), and using the estimate (8.9), we use Mellin
inversion to write (8.23) as

1√
X

∑
c1

fc1(l − l′)
c1

F

(
c1√

X

)
= 1√

X

{
1

2π i

σ+i∞∫
σ−i∞

F̃ (s)L(s)(
√

X)s ds

}
, (8.25)

where

L(s) =
∞∑

c=1

fc(l − l′)
cs+1

, (8.26)

and σ is sufficiently large to ensure convergence of the integral.
Now using the fact that

fn(m) =
∑

r|(m,n)

μ

(
n

r

)
r,

we rewrite (8.26) as

L(s) = 1

ζ(1 + s)

∑
r|(l−l′)

1

rs
. (8.27)

This is certainly analytic for �(s) > 0.
If l = l′ , then

L(s) = ζ (s)
.

ζ (s + 1)
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Shifting contour of the integral to σ = 3/4, L(s) has a simple pole at only s = 1, only if l = l′ with
residue 6

π2 . After the shift, (8.25) equals

6δl,l′

π2
F̃ (1) + O

(
1

X3/4

)
. (8.28)

With a change of variables y → 4π
√

tl
y , we get

6δl,l′

π2

∞∫
0

∞∫
0

g(t)V (y)W (y)dt
dy

y
. (8.29)

Using the fact
∫ ∞

0 g(t)dt = 1, we are left with

6δl,l′

π2

∞∫
0

V (y)W (y)
dy

y
+ O

(
1

X3/4

)
. � (8.30)

We now show the n-sum and limit can be interchanged.

Lemma 8.6. limX→∞
∑

n∈Z An,X = ∑
n∈Z limX→∞ An,X .

Proof. We show An,X is uniformly convergent in X . Fix any ε > 0, by Proposition 8.3, we have

|An,X − Am,X | =
∣∣∣∣∣ C

X (1−σ0)/2

n∑
m

1

n2

∣∣∣∣∣ �
∣∣∣∣∣ C

X (1−σ0)/2

n∫
m

dx

(x + 1)2

∣∣∣∣∣,
where C is a fixed constant independent of n and X and 1/2 < σ0 < 1. Suppose n � m �= 0 then,

∣∣∣∣∣ C

X (1−σ0)/2

n∫
m

dx

(x + 1)2

∣∣∣∣∣ �
∣∣∣∣ C

X (1−σ0)/2

2

m + 1

∣∣∣∣.
Since we only take X in the range [1,∞), and (1 − σ0)/2 > 0, we have uniform convergence in X by
taking n,m � M(ε), such that M(ε) := 2C

ε − 1. Thus the sum and limit can be interchanged. �
9. Analysis of

∫ ∞
0

∫ ∞
0 Fn(x, y)dx dy

We extend the integrals from (−∞,∞) so we can write this as

∞∫
−∞

∞∫
−∞

e

(
1

n

(
l′x
y

+ ly

x

)){ ∞∫
−∞

e

(
tn

xy

)
g(t)V

(
4π

√
lt

x

)
W

(
4π

√
l′t

y

)
dt

}
dx

x

dy

y
. (9.1)

After a change in variables x → x
√

tl, y → y
√

tl′ , we get
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∞∫
−∞

∞∫
−∞

Fn,l,l′(x, y)dx dy =
∞∫

−∞

∞∫
−∞

e

(√
ll′

n

(
x

y
+ y

x

))
e

(
n√
ll′xy

)

× V

(
4π

x

)
W

(
4π

y

)
dx

x

dy

y

{ ∞∫
−∞

g(t)dt

}
. (9.2)

Let

F (z) :=
∞∫

−∞

∞∫
−∞

exp

(
z

i

2

(
x

y
+ y

x

))
exp

((
1

z

)
8π2i

xy

)
V

(
4π

x

)
W

(
4π

y

)
dx

x

dy

y
(9.3)

and G(z) := F (z) + F (−z). So (9.2) equals F ( 4π
√

ll′
n ). We include F (−z) for in (7.4) the sum is over

the integers. The analysis in the previous sections is identical for n or −n, but this integral must be
accounted for in the final calculation.

9.1. Computation for J -Bessel function

Remembering that the J -Bessel transform is

h(V ,k) = ik

∞∫
0

V (x) Jk−1(x)
dx

x
. (9.4)

Proposition 9.1. Let k be an even integer, then

h(G,k) = 2πh(V ,k) · h(W ,k) (9.5)

Proof. It is sufficient to study this for F (z). We note first

h(F ,k) = ik

∞∫
0

F (w) Jk−1(w)
dw

w
=

∞∫
−∞

∞∫
−∞

V

(
4π

x

)
W

(
4π

y

)

×
(

ik

∞∫
0

exp

(
w

i

2

(
x

y
+ y

x

))
exp

((
1

w

)
8π2i

xy

)
Jk−1(w)

dw

w

)
dx

x

dy

y
. (9.6)

Now make a change of variables x → 4π
x , y → 4π

y , to get

h(F ,k) =
∞∫

−∞

∞∫
−∞

V (x)W (y)

×
(

ik

∞∫
exp

(
w

i

2

(
x

y
+ y

x

))
exp

(
ixy

2w

)
Jk−1(w)

dw

w

)
dx

x

dy

y
. (9.7)
0
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Notice the test functions V and W are chosen to be supported on the positive real numbers. We
study the integral in the w variable in (9.7). First we make a change of variables w → xy

−iw , yielding

ik

−i∞∫
0

exp

(
−

(
x2 + y2

2w

))
exp

(
w

2

)
Jk−1

(−iyx

w

)
dw

w
. (9.8)

The J -Bessel function transforms by Jk−1(ix) = ik−1 Ik−1(x) and Jk−1(−x) = − Jk−1(x), since k − 1
is odd. Thus

1

i

0∫
−i∞

exp

(
w

2
−

(
x2 + y2

2w

))
Ik−1

(
xy

w

)
dw

w
. (9.9)

Now doing the same analysis for F (−z), we obtain

1

i

i∞∫
0

exp

(
w

2
−

(
x2 + y2

2w

))
Ik−1

(
xy

w

)
dw

w
. (9.10)

Adding (9.9) and (9.10) we get

1

i

i∞∫
−i∞

exp

(
w

2
−

(
x2 + y2

2w

))
Ik−1

(
xy

w

)
dw

w
. (9.11)

We now state a formula from [Wat],

Jν(Z) Jν(y) = 1

2π i

i∞∫
−i∞

exp

(
t/2 −

(
Z 2 + y2

2t

))
Iν

(
y Z

t

)
dt

t
. (9.12)

Using (9.12), (9.11) equals

2π Jk−1(x) Jk−1(y). (9.13)

Incorporating (9.11) into h(G,k) we get

∞∫
−∞

∞∫
−∞

V (x)W (y)
(
2π Jk−1(x) Jk−1(y)

)dx

x

dy

y

= 2π ik

∞∫
−∞

V (x) Jk−1(x)
dx

x
ik

∞∫
−∞

W (y) Jk−1(y)
dy

y
= 2πh(V ,k) · h(W ,k). � (9.14)

We now must show F (z) is also the convolution for the B-Bessel function.
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9.2. Computation for B-Bessel function

Again, B2it(x) := (2 sin(π it))−1( J−2it(x) − J2it(x)), and h(V , t) := ∫ ∞
0 V (x)B2it(x)x−1 dx, t ∈ R, V ∈

C∞
0 (R).

Proposition 9.2. Let G(z) := F (z) + F (−z), and t purely imaginary, then h(G, t) = πh(V , t)h(W , t).

Proof. The goal is study F (z), similar calculations can be done for F (−z). We note first

h(F , t) =
∞∫

0

F (w)B2it(w)
dw

w
=

∞∫
−∞

∞∫
−∞

V

(
4π

x

)
W

(
4π

y

)

×
( ∞∫

0

exp

(
w

i

2

(
x

y
+ y

x

))
exp

((
1

w

)
8π2i

xy

)
B2it(w)

dw

w

)
dx

x

dy

y
. (9.15)

Now make a change of variables x → 4π
x , y → 4π

y , to get

h(F , t) =
∞∫

−∞

∞∫
−∞

V (x)W (y)

×
( ∞∫

0

exp

(
w

i

2

(
x

y
+ y

x

))
exp

(
ixy

2w

)
B2it(w)

dw

w

)
dx

x

dy

y
. (9.16)

Using that the B-Bessel function is a difference of imaginary order J -Bessel functions it is sufficient
to focus on

1

2 sin(π it)

∞∫
−∞

∞∫
−∞

V (x)W (y)

( ∞∫
0

exp

(
w

i

2

(
x

y
+ y

x

))
exp

(
ixy

2w

)
J−2it(w)

dw

w

)
dx

x

dy

y
. (9.17)

The integral in J2it will be a similar calculation. We study the integral in the w variable in (9.17).
First a change of variables w → xy

−iw is made, yielding

T −
F (x, y) :=

−i∞∫
0

exp

(
−

(
x2 + y2

2w

))
exp

(
w

2

)
J−2it

(−iyx

w

)
dw

w
. (9.18)

The J -Bessel function of imaginary order transforms by J−2it(±ix) = e±πt I−2it(x) and J2it(±ix) =
e∓πt I2it(x) by inspection of the power series. Thus T −

F (x, y) equals

e−πt

−i∞∫
0

exp

(
w

2
−

(
x2 + y2

2w

))
I−2it

(
xy

w

)
dw

w
. (9.19)

From [Wat, Chap. 13.7], we now borrow two formulas
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H (1)
ν (Z) Jν(y) = 1

π i

c+i∞∫
0

exp

(
t/2 −

(
Z 2 + y2

2t

))
Iν

(
y Z

t

)
dt

t
, (9.20)

H (2)
ν (Z) Jν(y) = −1

π i

c−i∞∫
0

exp

(
t/2 −

(
Z 2 + y2

2t

))
Iν

(
y Z

t

)
dt

t
. (9.21)

Here H(i) is the i-th order Hankel function. Therefore, T −
F (x, y) equals −π ie−πt H(2)

−2it(x) J−2it(y).
Likewise, the term from (9.17) with Bessel transform J2it , which we will call T +

F (x, y) is π ieπt ×
H(2)

2it (x) J2it(y).
This gives (

T −
F + T +

F

)
(x, y) = π i

(−e−πt H (2)
−2it(x) J−2it(y) + eπt H (2)

2it (x) J2it(y)
)
. (9.22)

Remember the aim of the proposition is for the function G(z) := F (z)+ F (−z). Similar calculations
are now done for F (−z). The calculations up to (9.18) are the same except we make the change of
variables w → xy

iw here giving

T −
F (−z)(x, y) :=

i∞∫
0

exp

(
−

(
x2 + y2

2w

))
exp

(
w

2

)
J−2it

(
iyx

w

)
dw

w
. (9.23)

By a similar use of Eqs. (9.20), (9.21), one obtains for (9.23) π ieπt H(1)
−2it(x) J−2it(y). For the J2it

transform, which we label T +
F (−z)(x, y) one gets analogously −π ie−πt H(1)

2it (x) J2it(y).
Thus,

W (x, y) := T −
F (x, y) + T +

F (x, y) + T −
F (−z)(x, y) + T +

F (−z)(x, y)

= 1

2 sin(π it)
π i

(−e−πt(H (2)
−2it(x) J−2it(y) + H (1)

2it (x) J2it(y)
)

+ eπt(H (1)
−2it(x) J−2it(y) + H (2)

2it (x) J2it(y)
))

. (9.24)

H(i)
α (x) can be expanded into J -Bessel functions as:

H (1)
α (x) = J−α(x) − e(−απ i) Jα(x)

i sin(απ)
, (9.25)

and

H (2)
α (x) = J−α(x) − e(απ i) Jα(x)

−i sin(απ)
. (9.26)

Then expanding the LHS of (9.24) using these identities we have,

−πe−πt

2 sin(π it) sin(2π it)

[(
J2it(x) J−2it(y) − e2πt J−2it(x) J−2it(y)

)
+ (

J−2it(x) J2it(y) − e2πt J2it(x) J2it(y)
)]

. (9.27)
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The RHS of (9.24) is

−πeπt

2 sin(π it) sin(2π it)

[(
J−2it(x) J2it(y) − e2πt J2it(x) J2it(y)

)
+ (

J2it(x) J−2it(y) − e2πt J−2it(x) J−2it(y)
)]

. (9.28)

Regathering terms, W (x, y) equals

−π

2 sin(π it) sin(2π it)

(
J2it(x) J2it(y)

[
e−πt + eπt] + J−2it(x) J2it(y)

[−e−πt − eπt]
+ J2it(x) J−2it(y)

[−e−πt − eπt] + J−2it(x) J−2it(y)
[
e−πt + eπt]). (9.29)

Using sin(2π it) = 2 cos(π it) sin(π it) and cos(π it) = e−πt+eπt

2 and regathering terms again,

π

2 sin(π it) sin(2π it)

[
e−πt + eπt][ J−2it(x) − J2it(x)

][
J−2it(y) − J2it(y)

]
= π B2it(x)B2it(y). (9.30)

Incorporating (9.30) into h(G, t) we get

∞∫
−∞

∞∫
−∞

V (x)W (y)
(
π B2it(x)B2it(y)

)dx

x

dy

y

= π

∞∫
−∞

V (x)B2it(x)
dx

x

∞∫
−∞

W (y)B2it(y)
dy

y
= πh(V , t)h(W , t). � (9.31)

This proves Theorem 3.1, and for now we define V ∗ W (z) := G(z).

9.3. Sears–Titchmarsh inversion

Definition 9.3. Let f ∈ L2(R+, dx
x ), then

f (x) = 4

∞∫
0

h( f , t) tanh(πt)B2it(x)t dt + 2
∑

k>0, k even

(k − 1) Jk−1(x)h( f ,k), (9.32)

where h( f , t) := ∫ ∞
0 f (x)B2it(x) dx

x and h( f ,k) := ik
∫ ∞

0 f (x) Jk−1(x) dx
x . Further if

f ∞(x) := 4

∞∫
0

h( f , t) tanh(πt)B2it(x)t dt

and

f 0(x) := 2
∑

k>0, k even

(k − 1) Jk−1(x)h( f ,k),

then f (x) = f 0(x) + f ∞(x).

This is the Sears–Titchmarsh inversion formula. See [Iw] for reference.
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Proposition 9.4. Let M(t) = h(V , t)h(W , t) then,

∞∫
0

V (x)W (x)
dx

x
=

[ ∞∫
0

V (x)W ∞(x)
dx

x

]
+

[ ∞∫
0

V (x)W 0(x)
dx

x

]
(9.33)

= 2

([ ∞∫
−∞

M(t) tanh(πt)t dt

]
+

[ ∑
k>0, k even

(k − 1)M(k)

])
. (9.34)

Proof. Expressing B2it(x) as a difference of J -Bessel functions, it is easy to see it is an even function
in the variable t . Exploiting this, we see by a change of variables,

2

∞∫
−∞

M(t) tanh(πt)t dt = 4

∞∫
0

M(t) tanh(πt)t dt.

Expanding M(t) we have

4

∞∫
0

( ∞∫
0

V (x)B2it(x)
dx

x

)
h(W , t) tanh(πt)t dt. (9.35)

Now since V has compact support we can and do interchange the integrals,

4

∞∫
0

V (x)

( ∞∫
0

B2it(x)h(W , t) tanh(πt)t dt

)
dx

x
. (9.36)

By Sears–Titchmarsh inversion, this equals

∞∫
0

V (x)W ∞(x)
dx

x
. (9.37)

We now focus on 2
∑

2k>0,k∈N(k − 1)M(k). Expanding M(k) again, we get

2
∑

k>0, k even

(k − 1)

( ∞∫
0

V (x) Jk−1(x)
dx

x

)
h(V ,k). (9.38)

Interchanging the sum and the integral gets

∞∫
0

V (x)

(
2

∑
k>0, k even

(k − 1)h(W ,k) Jk−1(x)

)
dx

x
=

∞∫
0

V (x)W 0(x)
dx

x
. (9.39)

Summing the parts from the B-Bessel and J -Bessel functions, we get our proposition

=
[

2

∞∫
M(t) tanh(πt)t dt

]
+

[
2

∑
k>0, k even

(k − 1)M(k)

]
=

∞∫
V (x)W (x)

dx

x
. � (9.40)
−∞ 0
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From Section 8 we have shown

L = 6

π2

(
δl,l′

∞∫
0

V (y)W (y)
dy

y
+

∞∑
n=1

S(l, l′,n)

n
(V ∗ W )

(
4π

√
ll′

n

))
. (9.41)

We now use the Sears–Titchmarsh inversion formula for V ∗ W (z) getting,

V ∗ W (z) = 4π

( ∞∫
0

M(t) tanh(πt)B2it(z)t dt +
∑

k>0, k even

(k − 1) Jk−1(z)M(k)

)
, (9.42)

where as before

M(t) = h(V , t)h(W , t).

Remember the π factor comes from Theorem 3.1.
While also using Proposition 9.4 and Eq. (9.42), we can write (9.41) as[

12

π2

∞∫
−∞

M(t) tanh(πt)t dt

]
+

[
12

π2

∑
k>0, k even

(k − 1)M(k)

]

+ 48

π

( ∞∑
c=1

S(l, l′, c)

c

( ∞∫
0

M(t) tanh(πt)B2it

(
4π

√
ll′

c

)
t dt

+
∑

k>0, k even

(k − 1) Jk−1

(
4π

√
ll′

c

)
M(k)

))
. (9.43)

Theorem 9.5 (Kuznetsov trace formula). Denote the Maass form of eigenvalue 1/4 + t2 by φt , and let η(l,
1/2 + it) := 2π1+it cosh(πt)−1/2 τit (n)

Γ (1/2+it)ζ(1+2it) , where τit(n) = ∑
ab=n(a/b)it . Then

∑
φt

G(tφ)al(φt)a′
l(φt) + 1

4π

∞∫
−∞

G(t)η(l,1/2 + it)η
(
l′,1/2 + it

)
dt

= δl,l′ G0 +
∑
c=1

S(l, l′, c)

c
G+(

4π
√

ll′/c
)
, (9.44)

where G0 := 1
π

∫ ∞
−∞ G(t) tanh(πt)t dt, and G+(x) := 4

∫ ∞
0 G(t) tanh(πt)B2it(x)t dt.

Theorem 9.6 (Petersson trace formula). Let the holomorphic forms of weight k be denoted as φk, then

∑
k>0, k even

∑
φk

G(kφ)al(φk)a′
l(φk) = 1

π

∑
k>0, k even

(k − 1)δl,l′ G(k) +
∞∑

c=1

S(l, l′, c)

c
Ĝ
(
4π

√
ll′/c

)
, (9.45)

where

Ĝ(x) = 4
∑

k>0, k even

(k − 1)G(k) Jk−1(x). (9.46)
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See [Iw] for more details of these two trace formulas.
Incorporating these trace formulas into (9.43), we get (9.41) equals

12

π

(∑
φt

M(tφ)al(φt)a′
l(φt) + 1

4π

∞∫
−∞

M(t)η(l,1/2 + it)η
(
l′,1/2 + it

)
dt

+
∑

k>0, k even

∑
φk

M(kφ)al(φk)a
′
l(φk)

)
. (9.47)

This proves Theorem 3.2.

10. Matching for the continuous spectrum

We prove Theorems 3.4, 3.5, and 3.6 in this section. For Rankin–Selberg orthogonality one needs to
match cuspidal terms with cuspidal terms, and continuous terms with continuous terms, i.e. showing

lim
X→∞

1

X

∑
n∈Z

g(n/X)Sn,l(V )Sn,l′(W ) = 12

π
Sl,l′(V ∗ W ), (10.1)

and

lim
X→∞

1

X

∑
n∈Z

g(n/X)Cn,l(V )Cn,l′(W ) = 12

π
Cl,l′(V ∗ W ). (10.2)

We must also show cuspidal terms must be orthogonal to the continuous terms, or

lim
X→∞

1

X

∑
n∈Z

g(n/X)Sn,l(V )Cn,l′(W ) = 0. (10.3)

We prove these propositions here.

Proposition 10.1.

lim
X→∞

1

X

∑
n∈Z

g(n/X)Cn,l(V )Cn,l′(W ) = 12

π
Cl,l′(V ∗ W ). (10.4)

Proof. Our claim fully written out is

lim
X→∞

1

X

∑
n

g(n/X)

[
1

4π

∞∫
−∞

h(V , T )η(n,1/2 + iT )η(l,1/2 + iT )dT

]

×
[

1

4π

∞∫
−∞

h(W , T ))η(n,1/2 + it)η
(
l′,1/2 + it

)
dt

]

= 3

π2

∞∫
h(V , z)h(W , z)η(l,1/2 + iz)η

(
l′,1/2 + iz

)
dz.
−∞
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Assuming the interchanging of sums and using the functional equation for the gamma function:

Γ (1/2 + it)Γ (1/2 − it) = π

coshπt
,

this boils down to studying∫
T

h(V , T )τiT (l)

|ζ(1 − 2iT )|2
∫
t

h(W , t)τit(l′)
|ζ(1 − 2it)|2

1

2π i

∫
σ=4

ĝ(s)
[
Π±,±ζ(s ± iT ± it)

] Xs

ζ(2s)
ds dt dT . (10.5)

The last equation follows from mellin inversion and Ramanujan’s formula.
Now doing a contour shift from σ → 1/2, we pick up poles at 1 ± iT ± it ,. The left over integral is

O T ,t(X1/2), and is negligible. The term to compute then is

lim
X→∞

1

2π i

∫
T

h(V , T )τiT (l)

∫
t

h(W , t)τit
(
l′
)

×
[

X−iT

ζ(1 + 2iT )

(
X−it ĝ(1 − iT − it)ζ(1 − 2iT − 2it)

ζ(1 + 2it)ζ(2 − 2iT − 2it)

)
+

(
Xit ĝ(1 − iT + it)ζ(1 − 2iT + 2it)

ζ(1 − 2it)ζ(2 − 2iT + 2it)

)]
+

[
XiT

ζ(1 − 2iT )

(
X−it ĝ(1 + iT − it)ζ(1 + 2iT − 2it)

ζ(1 + 2it)ζ(2 + 2iT − 2it)

)
+

(
Xit ĝ(1 + iT + it)ζ(1 + 2iT + 2it)

ζ(1 − 2it)ζ(2 + 2iT + 2it)

)]
dt dT . (10.6)

The term X has been factored out of the residue calculation, so (10.6) should be O (1) after taking the
limit. It is sufficient to study the first of these four integrals. We make a change of variables T → T − t
to get

lim
X→∞

1

2π i

∫
t

h(W , t)
τit(l′)

ζ(1 + 2it)

∞∫
−∞

h(V , T − t)τi(T −t)(l)X−iT ĝ(1 − iT )ζ(1 − 2iT )dT

ζ(2 − 2iT )ζ(1 + 2i(T − t))
. (10.7)

Here ζ(1 − 2iT ) has a pole at T = 0, and to understand this we use the following lemma.

Lemma 10.2. Let H be a differentiable function in L1(R), then

PV

∞∫
−∞

H(x)eikx dx

x
:= lim

ε→0+

∫
|x|�ε

H(x)eikx dx

x
→ ±π iH(0) as ± k → ∞.

Proof. See [Venk1, Lemma 10]. �
Applying this lemma for k = − log X , we obtain:

ĝ(1)
1

2ζ(2)

∞∫
h(V ,−t)h(W , t)τit(l′)τ−it(l)

ζ(1 + 2it)ζ(1 − 2it)
dt. (10.8)
−∞
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Now ĝ(1) = 1 by definition, and h(V ,−t) = h(V , t), because B2it(x) is real-valued. Likewise, τ−it(l) =
τit(l).

In recovering η(l,1/2 + it) from τit(l), (10.8) becomes

3

4π2

∞∫
−∞

h(V , t)h(W , t)η(l,1/2 + it)η
(
l′,1/2 + it

)
dt.

Summing then over the four integrals in (10.6) completes our proposition and Theorem 3.5. �
Proposition 10.3.

lim
X→∞

1

X

∑
n∈Z

g(n/X)Sn,l(V )Cn,l′(W ) = 0. (10.9)

Proof. Using Mellin inversion (10.9) is written as

lim
X→∞

1

X

1

4π

∑
φ

h(V , λφ)

∞∫
−∞

h(V , t)

[
1

2π i

∫
σ=4

ĝ(s)L(s)Xs ds

]
dt, (10.10)

where

L(s, t) =
∞∑

n=1

an(φ)η(l,1/2 + it)

ns
.

Now up to some analytically harmless factors, which come from normalizations from the trace for-
mula,

L(s, t) ≈ L(φ, s + it)L(φ, s − it)

ζ(2s)
.

This has no pole at s = 1, and thus we can do a contour shift in the ĝ integral from 4 → 3/4. The
integral in the s variable is certainly bounded and the limit is

lim
X→∞ O t,φ

(
X−1/4) = 0.

This completes Theorem 3.6. �
Incorporating these propositions into Theorem 3.2 gives Theorem 3.4.

11. Reduction to a single archimedean parameter

In the last section we showed

lim
X→∞

1

X

∑
n∈Z

g(n/X)Sn,l(V )Sn,l′(W ) = Sl,l′(V ∗ W ). (11.1)

We can reduce (11.1) from an infinite spectral sum equality to an equality of cusp forms of the
same weight or eigenvalue parameter. This is done in this section using the fact that (L) holds for
a large class of test functions V , W and their associated transforms h(V , t),h(W , t). This reduces
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the problem to a “finite dimensional” matching problem. The argument we use is summarized in 2
propositions in the appendix of [Venk1].

Remark. We mean “finite dimensional” in the sense that for a given even positive integer k, there
are finitely many cusp forms of weight k. Likewise, we expect the space of Maass forms of eigenvalue
1/4 + t2

j to be one dimensional.

Proposition 11.1. Let t j be a discrete subset of R with { j: t j � T } � T r for some r. Let, for each j, there be

given a function c X (t j) depending on X, so that c X (t j) � tr′
j for some r′- the implicit constant independent of

X ; similarly, for each k odd, let there be given a function c X (k) depending on X so that c X (k) � kr′
. Suppose

that one has an equality

lim
X→∞

( ∑
j

c X (t j)h(V , t j) +
∑

k odd

c X (k)h(V ,k)

)
= 0 (11.2)

for all (h(V , t j),h(V ,k)) that correspond via Sears–Titchmarsh inversion to V . Then limX→∞ c X (t j) exists for
each t j and equals 0, and similarly the same holds for limX→∞ c X (k). This equality holds for all functions h for
which both sides converge.

Proposition 11.2. Given j0 ∈ N, ε > 0 and an integer N > 0, there is a V of compact support so that
h(V , t j) = 1, and for all j′ �= j0 , h(V , t j′) � ε(1 + |t j′ |)−N , and for all k odd, h(V ,k) � εk−N .

Given k0, ε > 0 and an integer N > 0, there is a V of compact support so that h(v,k0) = 1, h(V ,k) �
εk−N for k odd k �= k0 , and h(V , t) � (1 + |t|)−N for all R.

Using Propositions 11.1 and 11.2, we can choose our test functions V , W such that their associated
Bessel transforms are supported on weights k or eigenvalue parameters t j . Upon expanding the right-
hand side of (11.1),

12

π

∑
φ

h(V , tφ)h(W , tφ)al(φ)al′(φ) (11.3)

one sees that only choosing both the test functions to be supported on the same weight or eigen-
value will have an associated non-zero contribution. Certainly this agrees with Rankin–Selberg theory.
Choose now V , W to be supported on an eigenvalue parameter t j , say, as in Proposition 11.2. Then
(11.1) reduces to

lim
X→∞

1

X

∑
n∈Z

g(n/X)

( ∑
φt

t=t j

an(φ)al(φ)

)( ∑
ψt

t=t j

an(ψ)al′(ψ)

)
= 12

π

∑
φt

t=t j

al(φ)al′(φ). (11.4)

Here as in Proposition 11.2, we choose the transforms such that h(V , t) = 1 for t = t j .
We would like to interchange the limit and the spectral sum, but this requires knowing that the

limit

lim
X→∞

1

X

∑
n

g(n/X)an(φ)an(ψ)

exists. If we assume Rankin–Selberg orthogonality then we certainly get this. However the point of
the beyond endoscopy approach is to not make such assumptions.



1722 P.E. Herman / Journal of Number Theory 131 (2011) 1691–1722
What one needs to interchange the limit and spectral sum is to build in Hecke operators into
our trace formula. This and the analytic continuation of the Rankin–Selberg L-function we show in a
following paper.
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