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We investigate unitarity bounds in the most general two Higgs doublet model without a discrete Z2
symmetry nor CP conservation. S-wave amplitudes for two-body elastic scatterings of Nambu–Goldstone 
bosons and physical Higgs bosons are calculated at high energies for all possible initial and final states 
(14 neutral, 8 singly-charged and 3 doubly-charged states). We obtain analytic formulae for the block-
diagonalized scattering matrix by the classification of the two body scattering states using the conserved 
quantum numbers at high energies. Imposing the condition of perturbative unitarity to the eigenvalues 
of the scattering matrix, constraints on the model parameters can be obtained. We apply our results to 
constrain the mass range of the next-to-lightest Higgs state in the model.
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1. Introduction

The Higgs boson was discovered at LHC in 2012 [1,2], and its 
mass and coupling constants turned out to be consistent with the 
predictions in the standard model (SM) [3,4]. However, although 
the Higgs boson was found, the structure of the Higgs sector re-
mains unknown. There are possibilities of non-minimal Higgs sec-
tors which contain additional Higgs bosons. They also can satisfy 
the current data. In fact, in large number of new physics scenarios, 
extended Higgs sectors are predicted. The structure of the Higgs 
sector is strongly connected to these new physics scenarios. There-
fore, the Higgs sector is a probe of new physics.

Although parameters of an extended Higgs sector are basically 
free, they can be constrained by imposing some compelling theo-
retical conditions, such as those of perturbative unitarity, vacuum 
stability and triviality. The requirement of perturbative unitarity [5]
is known to give a conservative bound on the parameters of a 
model, beyond which the perturbation calculation does not work. 
It goes without saying that the parameters can also be constrained 
by taking into account various experimental results such as elec-
troweak precision data [6], observables in flavor physics [7], the 
Higgs boson signal strength [3,4] and so on. By the combination 
of the bounds from the theoretical consistency and those from the 
experimental data, a parameter space in extended Higgs sectors 
can be further restricted.
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The theoretical constraints have been intensively studied in the 
two Higgs doublet model (THDM). Nice reviews for the THDMs 
have been presented in Refs. [8,9]. Previously, the unitarity bound 
was mainly studied for the model with a (softly-broken) discrete 
Z2 symmetry [10] with CP-conservation [11–15]. The softly-broken 
discrete Z2 symmetry is phenomenologically important in order to 
avoid flavor changing neutral currents (FCNCs),1 under which there 
are four types of Yukawa interactions [17–22]. Bounds from vac-
uum stability and triviality have also been studied in Refs. [23–26]
and in Refs. [26–28], respectively, in Z2 symmetric THDMs. These 
theoretical bounds have been used to limit magnitudes of cross 
sections and decay rates of tree level processes [20,29,30], radia-
tive corrections due to additional Higgs bosons to the Higgs cou-
plings [31,32] and one-loop induced processes [33].

However, analyses in the most general THDM without the Z2
symmetry is getting important as an effective description of more 
various new physics scenarios, such as supersymmetric SMs with 
non-holomorphic Yukawa couplings [34] and also general models 
with CP-violation [35] which is required for successful scenario of 
electroweak baryogenesis [36–38].

In this letter, we investigate unitarity bounds in the most gen-
eral THDM without the Z2 symmetry or CP-conservation. We 
calculate S-wave amplitudes for two-body elastic scatterings of 
Nambu–Goldstone (NG) bosons and physical scalar bosons at high 
energies for all possible initial and final states (14 neutral [14], 

1 As an alternative way to avoid the tree level FCNCs, the aligned THDMs [16]
have also been known, where two Yukawa matrices are assumed to be proportional 
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8 singly-charged [15] and 3 doubly-charged states). By choosing 
appropriate bases of the scattering states which are deduced using 
the conserved quantum numbers at high energies such as the hy-
percharge, weak isospin and the third component of the latter [39], 
the scattering matrix is given as a block-diagonalized form with at 
most 4 × 4 submatrices. Thus, all of the eigenvalues of the scatter-
ing matrix can be easily evaluated numerically. The analytic result 
for the block diagonalized S-wave matrix is consistent with that 
given in Ref. [40]. By requiring that each of the eigenvalues is not 
too large to break validity of perturbation calculation, the model 
parameters, e.g., the masses of extra Higgs bosons and mixing an-
gles, can be constrained. Our results can be useful to constrain 
parameter spaces whenever one evaluates physics quantities in the 
most general THDM.

We then numerically demonstrate that the bound on the mass 
M2nd of the second lightest Higgs boson, whatever it is, is obtained 
by inputting the mass of the discovered Higgs boson h under the 
assumption of non-zero deviations in the Higgs boson coupling 
hVV with the weak boson (V = W and Z ) from the SM value. Cur-
rently, the hVV coupling was measured with ∼10% accuracy by the 
LHC Run-I experiment (see Ref. [41] and references therein), and 
that is expected to be measured more accurately at future collider 
experiments. If a deviation is detected in the hVV coupling, we can 
obtain the constraint on the region of M2nd even without its direct 
discovery.

2. Model setup

2.1. Higgs potential

The most general Higgs potential under the SU(2)L × U (1)Y

gauge symmetry is given by

V = m2
1|�1|2 + m2

2|�2|2 − (m2
3�

†
1�2 + h.c.)

+ 1

2
λ1|�1|4 + 1

2
λ2|�2|4 + λ3|�1|2|�2|2 + λ4|�†

1�2|2

+ 1

2

[
λ5(�

†
1�2)

2 + h.c.
]

+
[
λ6|�1|2�†

1�2 + λ7|�2|2�†
1�2 + h.c.

]
, (1)

where �i (i = 1, 2) are the isospin doublet scalar fields with hy-
percharge Y = 1/2. In general, m2

1, m2
2 and λ1–λ4 are real, while 

m2
3 and λ5–λ7 are complex. Thus, there are totally fourteen real 

parameters. If there is a symmetry in the potential, the num-
ber of parameters is reduced. For example, when the potential 
is exact (softly-broken) Z2 invariant under the transformation of 
(�1, �2) → (�1, −�2), the m2

3, λ6 and λ7 (λ6 and λ7) terms are 
forbidden.

By using the U (1)Y invariance and rephasing the doublet fields, 
the vacuum expectation values (VEVs) of the two doublet fields 
can be taken to be real without loss of generality [42–44]. The two 
doublet fields are then described in terms of the component fields 
as

�i =
[

ω+
i

1√
2
(vi + hi + izi)

]
, (i = 1,2), (2)

where v1 and v2 are the VEVs of �1 and �2, respectively, which 
are satisfied v =

√
v2

1 + v2
2 = (

√
2G F )−1/2 � 246 GeV. By introduc-

ing tan β = v2/v1, two VEVs are described by v and tan β as the 
usual notation. In the following, both the VEVs are assumed to be 
non-zero, except for the case of the inert doublet model discussed 
in Section A.2.
The stationary conditions of the scalar potential are given as 
follows

∂V

∂ϕa

∣∣∣∣
0
= 0, (ϕa = h1, h2, z1, and z2), (3)

where the left hand side of the above equation for each ϕ is cal-
culated by

∂V

∂h1

∣∣∣∣
0
= vcβ

[
m2

1 − M2s2
β

+ v2

2

(
λ1c2

β + λ345s2
β + 3λR

6 sβcβ + λR
7 s2

β tanβ
)]

, (4)

∂V

∂h2

∣∣∣∣
0
= vsβ

[
m2

2 − M2 cos2 β

+ v2

2

(
λ2s2

β + λ345c2
β + λR

6 c2
β cot β + 3λR

7 sβcβ

)]
, (5)

∂V

∂z1

∣∣∣∣
0

= −v tanβ
∂V

∂z2

∣∣∣∣
0

= vsβ

[
Im m2

3 + v2

2

(
λI

5sβcβ + λI
6c2

β + λI
7s2

β

)]
, (6)

where we used the abbreviation of sθ = sin θ and cθ = cos θ . In 
Eqs. (4)–(6), we introduced

λ345 = λ3 + λ4 + λR
5 , M2 = Re m2

3

sβcβ

, (7)

and

λR
k = Reλk, λI

k = Im λk, (k = 5, 6, 7). (8)

From the stationary conditions in Eq. (3), we can eliminate m2
1, m2

2
and Im m2

3 in the Higgs potential.
In order to calculate the masses for the scalar bosons, it is con-

venient to introduce the so-called Higgs basis [45] defined as(
�1

�2

)
=

(
cβ −sβ

sβ cβ

)(
�

	

)
, (9)

where

� =
[

G+
1√
2
(v + h′

1 + iG0)

]
, 	 =

[
H+

1√
2
(h′

2 + ih′
3)

]
, (10)

where G± and G0 are the NG bosons which are absorbed into the 
longitudinal components of W ± and Z by the Higgs mechanism, 
respectively. The physical singly-charged scalar state is denoted 
as H± . The three neutral states h′

1, h′
2 and h′

3 are not the mass 
eigenstates at this stage, which generally mix with each other.

2.2. Mass spectrum

We give the mass formulae for the Higgs bosons in the most 
general case. First, the squared mass of H± is calculated by

m2
H± = M2 − v2

2

(
λ4 + λR

5 − λR
6 cot β − λR

7 tanβ
)

. (11)

Next, the mass term for the neutral scalar states is expressed 
by the 3 × 3 matrix as

V mass
neutral = 1

2
(h′

1,h′
2,h′

3)

⎛
⎜⎝

M2
11 M2

12 M2
13

M2
12 M2

22 M2
23

M2 M2 M2

⎞
⎟⎠

⎛
⎜⎝

h′
1

h′
2

h′

⎞
⎟⎠ , (12)
13 23 33 3
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where each of the matrix elements is given by

M2
11 = v2

[
λ1c4

β + λ2s4
β + λ345

2
s2

2β + 2(λR
6 c2

β + λR
7 s2

β)s2β

]
,

(13a)

M2
22 = M2 + v2

4

[
(λ1 + λ2 − 2λ345)s2

2β

− 2λR
6 (s4β + cot β) − 2λR

7 (s4β − tanβ)
]
, (13b)

M2
33 = M2 − v2

(
λR

5 + λR
6

2
cotβ + λR

7

2
tanβ

)
, (13c)

M2
12 = v2

2

[
(λ2s2

β − λ1c2
β + λ345c2β)s2β

+ 2λR
6 (2c2β − 1)c2

β + 2λR
7 (2c2β + 1)s2

β

]
, (13d)

M2
13 = − v2

2

(
λI

5s2β + 2λI
6c2

β + 2λI
7s2

β

)
, (13e)

M2
23 = − v2

2

(
λI

5c2β − λI
6c2

β + λI
7s2

β

)
. (13f)

The mass eigenvalues m2
Hi

(i = 1–3) are obtained by introducing 
the 3 × 3 orthogonal matrix R as

RT
ik M2

kl Rlj = diag(m2
H1

,m2
H2

,m2
H3

), (14)

where mH1 ≤ mH2 ≤ mH3 is assumed. Mass eigenstates for the neu-
tral Higgs bosons are also defined using R as⎛
⎜⎝

h′
1

h′
2

h′
3

⎞
⎟⎠ = R

⎛
⎜⎝

H1

H2

H3

⎞
⎟⎠ , (15)

where H1 is defined to be the SM-like Higgs boson with the mass 
of about 125 GeV, i.e., mH1

� 125 GeV. In the following, we rep-
resent H1 and its mass mH1

by h and mh , respectively. In the 
CP-conserving limit, H2 and H3 respectively correspond to the 
additional CP-even (H) and CP-odd (A) Higgs bosons. The mass 
formulae for the CP-conserving case will be discussed in the next 
subsection. We here note that R can be described by three mix-
ing angles [42]. In our numerical analysis given in Section 4, the 
matrix elements of R are derived by inputting the mass matrix el-
ements given in Eq. (13).

By using Eqs. (11), (13a), (13b), and (13c), the five parameters 
(λ1–4 and λR

5 ) can be rewritten as follows

λ1 v2 = M2
11 + (M2

22 − M2) tan2 β − 2M2
12 tanβ

+ 1

2
(λR

7 tan2 β − 3λR
6 ) tanβ, (16)

λ2 v2 = M2
11 + (M2

22 − M2) cot2 β + 2M2
12 cot β

+ 1

2
(λR

6 cot2 β − 3λR
7 ) cot β, (17)

λ3 v2 = M2
11 − (M2

22 + M2) + 2M2
12 cot 2β + 2m2

H±

− 1

2
(λR

6 cot β + λR
7 tanβ), (18)

λ4 v2 = M2 + M2
33 − 2m2

H± − 1

2
(λR

6 cotβ + λR
7 tanβ), (19)

λR
5 v2 = M2 − M2

33 − 1

2
(λR

6 cot β + λR
7 tanβ). (20)

Therefore, we can choose thirteen input parameters as v , tan β , 
M2, M2

11, M2
22, M2

12, M2
33, m2

H± , λR
6,7 and λI

5,6,7. Instead of M2
11, 

M2 and M2 , we can take α̃, m̃2 and m̃2 as inputs by
22 12 H h
M2
11 = m̃2

hs2
β−α̃ + m̃2

H c2
β−α̃ , (21)

M2
22 = m̃2

hc2
β−α̃ + m̃2

H s2
β−α̃ , (22)

M2
12 = (m̃2

h − m̃2
H )s

β−α̃c
β−α̃ . (23)

In addition, we rewrite M2
33 as

M2
33 = m̃2

A . (24)

In the CP-conserving limit (Imm2
3 → 0 and λI

5,6,7 → 0), m̃2
h , m̃2

H , 
m̃2

A and α̃ describe the physical squared masses for h, H and A, 
and the mixing angle for the CP-even Higgs state, respectively.

Consequently, by using experimental values of v (= 246 GeV) 
and mh (= 125 GeV), eleven input parameters can be chosen as 
follows

{m̃2
H , m̃2

A, m2
H± , M2, tanβ, sin(β − α̃), |λ6|, |λ7|, θ5, θ6, θ7},

(25)

where θ5,6,7 are the complex phases of λ5,6,7. Notice that m̃h is 
determined so as to keep mh = 125 GeV.

3. Unitarity bounds

We calculate the S-wave amplitude matrix for the elastic 
B B ′ → B ′′B ′′′ scatterings in the high energy limit, where the fields 
B , B ′ , B ′′ and B ′′′ represent either W ±

L , Z L , H1, H2, H3 or H± . In 
this case, all the longitudinal components of the weak gauge bo-
son states can be replaced by the corresponding NG boson states 
because of the equivalence theorem. Furthermore, only the scalar 
boson contact interactions contribute to the S-wave amplitude. 
Therefore, the calculation of the S-wave amplitude matrix is quite 
simply done just by extracting the coefficient of the scalar boson 
quartic terms.

There are 14 neutral, 8 singly-charged and 3 doubly-charged 
2 body scalar boson channels. First, the 14 neutral channels are 
expressed in the weak eigenbasis as

|ω+
i ω−

i 〉, 1√
2
|zi zi〉, 1√

2
|hihi〉, |hi zi〉,

|ω+
1 ω−

2 〉, |ω+
2 ω−

1 〉, |z1z2〉, |h1h2〉, |h1z2〉, |h2z1〉, (26)

where i = 1, 2. By taking an appropriate basis transformation, we 
obtain the following block-diagonalized S-wave amplitude matrix:

a0
0 = 1

16π

⎛
⎜⎜⎜⎝

X4×4 0 0 0

0 Y4×4 0 0

0 0 Z3×3 0

0 0 0 Z3×3

⎞
⎟⎟⎟⎠ , (27)

where each submatrix is given by

X4×4 =

⎛
⎜⎜⎝

3λ1 2λ3 + λ4 3
√

2λR
6 3

√
2λI

6

2λ3 + λ4 3λ2 3
√

2λR
7 3

√
2λI

7

3
√

2λR
6 3

√
2λR

7 λ3 + 2λ4 + 3λR
5 3λI

5

3
√

2λI
6 3

√
2λI

7 3λI
5 λ3 + 2λ4 − 3λR

5

⎞
⎟⎟⎠ ,

(28)

Y4×4 =

⎛
⎜⎜⎜⎜⎝

λ1 λ4
√

2λR
6

√
2λI

6

λ4 λ2
√

2λR
7

√
2λI

7√
2λR

6

√
2λR

7 λ3 + λR
5 λI

5√
I

√
I I R

⎞
⎟⎟⎟⎟⎠ , (29)
2λ6 2λ7 λ5 λ3 − λ5
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Z3×3 =
⎛
⎜⎝

λ1 λR
5 + iλI

5

√
2(λR

6 + iλI
6)

λR
5 − iλI

5 λ2
√

2(λR
7 − iλI

7)√
2(λR

6 − iλI
6)

√
2(λR

7 + iλI
7) λ3 + λ4

⎞
⎟⎠ . (30)

Each of the submatrices is obtained in the following basis:

	N
i (X4×4) = 1√

2

∣∣∣∣ω+
1 ω−

1 + z1z1

2
+ h1h1

2

〉
,

1√
2

∣∣∣∣ω+
2 ω−

2 + z2z2

2
+ h2h2

2

〉
,

1

2

∣∣ω+
1 ω−

2 + ω+
2 ω−

1 + z1z2 + h1h2

〉
,

1

2

∣∣−iω+
1 ω−

2 + iω+
2 ω−

1 − h1z2 + h2z1

〉
, (31)

	N
j (Y4×4) = 1√

2

∣∣∣∣ω+
1 ω−

1 − z1z1

2
− h1h1

2

〉
,

1√
2

∣∣∣∣ω+
2 ω−

2 − z2z2

2
− h2h2

2

〉
,

1

2

∣∣−ω+
1 ω−

2 − ω+
2 ω−

1 + z1z2 + h1h2

〉
,

1

2

∣∣iω+
1 ω−

2 − iω+
2 ω−

1 − h1z2 + h2z1

〉
, (32)

	N
k (Z3×3) = 1√

2

∣∣∣∣+ z1z1

2
− h1h1

2
+ ih1z1

〉
,

1√
2

∣∣∣∣+ z2z2

2
− h2h2

2
+ ih2z2

〉
,

1

2

∣∣+z1z2 − h1h2 + ih1z2 + ih2z1

〉
, (33)

	N ′
l (Z3×3) = 1√

2

∣∣∣∣− z1z1

2
+ h1h1

2
+ ih1z1

〉
,

1√
2

∣∣∣∣− z2z2

2
+ h2h2

2
+ ih2z2

〉
,

1

2

∣∣−z1z2 + h1h2 + ih1z2 + ih2z1

〉
, (34)

where the indices i and j (k and l) run over 1–4 (1–3). Each of 
the above bases give the submatrix indicated in the parenthesis. 
We note that at the high energy limit, the hypercharge Y , the 
isospin I and the third component of the isospin I3 are used to 
classify the two body scattering states [39], namely �a × �b with 
Y = 1 and �a × �̃b (�̃b ≡ iτ2�

∗
b ) with Y = 0. In fact, the above 

bases are obtained by finding the two scalar states which belong 
to the same set of the quantum numbers, i.e., the states in the 
	N

i (X4×4), 	N
j (Y4×4), 	N

k (Z4×4) and 	N ′
l (Z4×4) bases respectively 

belong to the state with (Y , I, I3) = (0, 0, 0), (0, 1, 0), (1, 1, −1)

and (1, 1, −1).
Next, eight (positive) singly-charged channels are expressed as:

|ω+
i zi〉, |ω+

i hi〉, |ω+
1 z2〉, |ω+

1 h2〉, |ω+
2 z1〉, |ω+

2 h1〉. (35)

We obtain the following block diagonalized S-wave amplitude ma-
trix:

a+
0 = 1

16π

⎛
⎜⎝

Y4×4 0 0

0 Z3×3 0

0 0 λ3 − λ4

⎞
⎟⎠ . (36)

Each of the submatrices and the eigenvalue λ3–λ4 are obtained in 
the following basis:
	C
i (Y4×4) = 1√

2

∣∣−iω+
1 z1 + ω+

1 h1
〉
,

1√
2

∣∣−iω+
2 z2 + ω+

2 h2
〉
,

1

2

∣∣−iω+
1 z2 − iω+

2 z1 + ω+
1 h2 + ω+

2 h1
〉
,

1

2

∣∣−ω+
1 z2 + ω+

2 z1 − iω+
1 h2 + iω+

2 h1
〉
,

	C
j (Z3×3) = 1√

2

∣∣iω+
1 z1 + ω+

1 h1
〉
,

1√
2

∣∣iω+
2 z2 + ω+

2 h2
〉
,

1

2

∣∣iω+
1 z2 + iω+

2 z1 + ω+
1 h2 + ω+

2 h1
〉
,

	C (λ3 − λ4) = 1

2

∣∣−iω+
1 z2 + iω+

2 z1 − ω+
1 h2 + ω+

2 h1
〉
, (37)

where i = 1–4 and j = 1–3. Similar to the discussion for the 
neutral states, the states in the bases 	C

i (Y4×4), 	C
i (Z3×3) and 

	C (λ3 − λ4) respectively correspond to the states with (Y , I, I3) =
(0, 1, 1), (1, 1, 0) and (1, 0, 0).

Finally, three (positive) doubly-charged channels are expressed 
as:

1√
2
|ω+

1 ω+
1 〉, 1√

2
|ω+

2 ω+
2 〉, |ω+

1 ω+
2 〉. (38)

We obtain

a++
0 = 1

16π
Z3×3. (39)

We note that the negative charged states are obtained by taking 
charge conjugation for each positive charged channel, which give 
the same set of eigenvalues of the matrix for the corresponding 
positive charged channels.

When we impose symmetries in the potential, we obtain the 
block-diagonalized S-wave amplitude matrix with a smaller size of 
submatrices. For example, if we assume the CP-invariance (for the 
case of λI

5 = λI
6 = λI

7 = 0), the maximal size of the submatrices re-
duces into 3 × 3, or if we impose the (softly-broken) Z2 symmetry 
(for the case of λ6 = λ7 = 0), the maximal size of the submatrices 
reduces into 2 × 2 as they have already known in Refs. [14,15].

In order to constrain the parameters in the potential, we impose 
the following condition for each eigenvalue of the S-wave ampli-
tude matrix:

|Re(xi)| < ξ, i = 1, . . . 12, (40)

where ξ is conventionally taken to be 1/2 [8] or 1 [5], and

xi = {Eigenvalues(X4×4), Eigenvalues(Y4×4),

Eigenvalues(Z3×3), λ3 − λ4}, (41)

with all xi being real due to the hermitian nature of the S-wave 
amplitude matrix. We call the bound given by the inequality (40)
as the unitarity bound. We note that the analytic expressions for 
the eigenvalues in Eq. (41) are given by solving the fourth and 
third order equations. In general, the solutions of such an equation 
is given as a too complicated form to explicitly show in this letter. 
Therefore, we do not show the explicit formula, and we numeri-
cally calculate the eigenvalues in the numerical study given in the 
next section.

4. Numerical studies

We here discuss the constraint on the parameter space using 
the unitarity bound. The unitarity bound in Eq. (40) sets upper 
limits on xi (i = 1, . . . , 12) given in Eq. (41), which are expressed 
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Fig. 1. The upper limit on the mass of the second lightest Higgs boson M2nd from the unitarity bound in the softly-broken Z2 symmetric case. The left and right panels show 
the κV and tanβ dependences of the upper limit for fixed values of tanβ = 1 (black), 3 (blue), 5 (green) and 10 (red) and those of κV = 0.99 (black), 0.97 (blue) and 0.95 
(red), respectively. The solid (dashed) curve shows the case with ξ = 1/2 (1) in Eq. (40). In both panels, we take mH± = mA = mH (= M2nd), and scan the value of M2. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
by combinations of λ parameters. Using Eqs. (16)–(23), this con-
straint can be translated into the bound on physical parameters 
such as the masses of Higgs bosons and mixing angles.

It is worthful to mention here that we can obtain an upper limit 
on the masses of extra Higgs bosons even when the SM-like Higgs 
boson h (= H1) coupling with the gauge bosons (hVV , V = W , Z ) 
slightly deviates from the SM prediction. This can be intuitively 
understood as follows.

First, in the Higgs basis defined in Eq. (10), the kinetic terms 
for the Higgs fields are given by

Lkin = |Dμ�|2 + |Dμ	|2, (42)

where Dμ is the covariant derivative. The Higgs–Gauge–Gauge 
type vertex, i.e., h′

1V V , only comes from the first term of Eq. (42)
at the tree level. In the mass eigenbasis, the ratio of the hVV cou-
pling ghVV in the THDM to that of SM is then expressed by using 
the rotation matrix R given in Eq. (15) as

κV ≡ gTHDM
hVV

gSM
hVV

= R11. (43)

We note that R11 corresponds to sin(β − α) in the CP-conserving 
case as it is seen in Eq. (A.1). Thus, the non-zero deviation in the 
hVV couplings from the SM prediction comes from the mixing ef-
fect of neutral Higgs bosons, i.e., R11 �= 1.

Second, when there is no mixing among the neutral Higgs 
bosons, the mass of h and those of the extra Higgs bosons H2
and H3 are schematically expressed as λi v2 and M2 + λ j v2, re-
spectively, as it is seen in Eqs. (13a), (13b) and (13c). Therefore, 
in the no mixing case, the upper bound on the masses of extra 
Higgs bosons cannot be obtained, because they can be taken to be 
as large as possible by using the M2 dependence. In other words, 
we can take the decoupling limit [46] of the extra Higgs bosons by 
taking M2 � v2.

On the other hand, if there is non-zero mixing among the neu-
tral Higgs bosons, i.e., κV �= 1, M2 dependence appears in m2

h
which must be kept to be about (125 GeV)2. Therefore, we can-
not take a too large value of M2 in that case, because we need a 
large cancellation of the M2 contribution to m2

h by the λi v2 term 
which must be excluded by the unitarity bound. Therefore, we can 
obtain an upper limit on the masses of extra Higgs bosons as long 
as the hVV coupling is deviated from the SM prediction.

In the following, we numerically show the bound on the mass 
of the second lightest Higgs boson denoted as M2nd by fixing mh =
125 GeV and κV . We assume that the SM-like Higgs boson h is the 
lightest of all the Higgs bosons, so that M2nd is defined by
M2nd ≡ Min(mH± , mA, mH ), for the CP-conserving case,

M2nd ≡ Min(mH± , mH2
, mH3), for the CP-violating case. (44)

We first consider the softly-broken Z2 symmetric and CP-
conserving case, i.e., λ6,7 = 0 and θ5 = 0. In this case, we have six 
free parameters mH± , mA , mH , M2, tanβ and sin(β − α) (= κV ). 
In Fig. 1, we show the upper limit on M2nd as a function of κV
(left panel) and tan β (right panel) in the case of mH± = mA = mH
(= M2nd). In the left (right) panel, each of the curves show the 
cases of tan β (κV ) to be 1, 3, 5 and 10 (0.99, 0.97 and 0.95). 
The value of M2 is scanned in the both figures. The solid (dashed) 
curves show the case with ξ = 1/2 (1) in Eq. (40) for the compar-
ison of the strength of the unitarity constraint with the two cases. 
Hereafter, we take ξ = 1/2. From these figures, we can see that 
the stronger limit on M2nd is obtained when 1 − κV is taken to 
be larger values. Our results for this case are consistent with those 
given in Ref. [30].

Next, we consider the case without the softly-broken Z2 sym-
metry but with CP-conservation, i.e., θ5,6,7 = 0. In Fig. 2, we show 
the upper limit on M2nd as a function of λR

6 (= λR
7 ) in the case 

of tan β = 1 and mH± = mA = mH (= M2nd). The value of M2 is 
taken to be M2 = M2

2nd (left panel) and M2 = (M2nd/2)2 (right 
panel). In both the panels, the black, blue and red curves show 
the cases with κV = 0.99, 0.97 and 0.95, respectively. Clearly, the 
stronger bound is obtained in the case of M2 = (M2nd/2)2 (right 
panel) than the case of M2 = M2

2nd, where the appearance of kink 
at around λR

6 = 0.5, 0.8 and 1 is due to an interchange of eigen-
values which break the condition of Eq. (40). When λR

6 is taken to 
be larger than about 2.2, there is no solution to satisfy the unitar-
ity bound. We confirm that the maximally allowed value of M2nd
is obtained in the case of M2 � M2

2nd.
Finally, we consider the most general case with CP-violation. In 

this case, we have eleven input parameters with v = 246 GeV and 
mh = 125 GeV as shown in (25). In order to satisfy mh = 125 GeV, 
we scan the m̃h parameter for each fixed value of the other param-
eters. In Fig. 3, we show the allowed parameter regions from the 
unitarity bound on the θCP(= θ6 = θ7) and M2nd plane in the case 
of tan β = 1, m2

H± = m̃2
A = m̃2

H = M2 and θ5 = 0. The upper-left, 
upper-right, lower-left and lower-right panels respectively show 
the cases with |λ6| = |λ7| = 0.2, 0.5, 1 and 2. In all the panels, 
the circle (black), square (blue) and triangle (red) points satisfy the 
unitarity bound and κV = 0.98 ± 0.01, 0.96 ± 0.01 and 0.94 ± 0.01, 
respectively. The values of mH± and sin(β − α̃) are scanned. We 
find that, in addition to the upper limit on M2nd, there is the lower 
limit especially in the case with θCP �= 0. The lower bound becomes 
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Fig. 2. The upper limit on the mass of the second lightest Higgs boson M2nd from the unitarity bound as a function of λR
6 (= λR

7 ) in the case without the CP-violating phases. 
The black, blue and red curves show the case of κV = 0.99, 0.97 and 0.95, respectively. We take mH± = mA = mH (= M2nd) and tanβ = 1. The left (right) panel shows the 
case of M = mH± (M = mH± /2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Scatter plots for the allowed parameter space from the unitarity bound on the θCP(= θ6 = θ7) and M2nd plane in the case of |λ6|(= |λ7|) = 0.2 (upper-left), 0.5 
(upper-right), 1 (lower-left) and 2 (lower-right). For all the plots, we take m2

H± = m̃2
A = m̃2

H = M2, θ5 = 0 and tanβ = 1, and scan the m2
H± and sin(β − α̃) parameters. The 

black (circle), blue (square) and red (triangle) dots show the allowed points for the cases of κV = 0.98 ± 0.01, 0.96 ± 0.01 and 0.94 ± 0.01, respectively. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of this article.)
higher when we take a larger value of |λ6| (= |λ7|). The appear-
ance of the lower limit can be understood in the following way. If 
we take a non-zero value of θCP, it gives a non-zero value of the 
off-diagonal mass matrix elements M2

13 and M2
23 (see Eq. (13)), 

which gives non-zero mixings and/or mass splittings among the 
neutral Higgs bosons. On the other hand, we now fix the value of 
κV , so that it restricts the possible amount of the mixing, and it 
also requires a non-zero mass splitting among the neutral Higgs 
bosons. Because the SM-like Higgs boson h which we suppose the 
lightest of all has the mass of 125 GeV, the non-zero mass splitting 
turns out to be the lower limit on M2nd.

We here comment on the constraint from electric dipole mo-
ments (EDMs) on the parameter space in the THDM. As it has been 
well known that if a model has an additional source of the CP-
violation, its magnitude is constrained by EDMs. In Refs. [47,48], 
the constraint on parameter space from EDMs has been investi-
gated in the softly-broken Z2 symmetric THDMs. In the THDMs, 
EDMs constrain the allowed region of θCP depending on the pa-
rameter set. Recent study on the collider phenomenology of the 
CP-violating THDM is found in Ref. [49], in which the constraint 
on the complex parameter such as λ5 from EDMs and the unitar-
ity bound turns out to be important.

5. Conclusions

We have investigated unitarity bounds in the most general two 
Higgs doublet model without a discrete Z2 symmetry or CP con-
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servation. We have computed the S-wave amplitudes for two-body 
elastic scatterings of the NG bosons and physical Higgs bosons at 
high energies for all possible initial and final states. By choosing 
the appropriate bases, the scattering amplitude matrix is given to 
be the block-diagonalized form, and thus the eigenvalues can be 
easily evaluated numerically. We have constrained the parameter 
space of the model by using the unitarity bound. By fixing the 
mass of the discovered Higgs boson h to be 125 GeV and assum-
ing a non-zero deviation in the hVV couplings from the SM values, 
there is an upper limit on the mass M2nd of the second lightest 
Higgs boson. Therefore, by using the precisely measured hVV cou-
plings at future collider experiments, we can constrain the allowed 
region of M2nd if a deviation of the hVV coupling from the SM 
limit is found even without its direct discovery. Our results can 
be useful to constrain parameter spaces whenever one evaluates 
physics quantities in the most general THDM.
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Appendix A. Mass spectrum in specific cases

We present the mass formulae of the scalar bosons for specific 
cases of the THDM, i.e., the case with CP-conservation but with-
out the Z2 symmetry, and that with the unbroken Z2 symmetry 
usually referred as the inert doublet model.

A.1. The most general case without CP-violating phases

When we take the limit of λI
5,6,7 → 0, the CP symmetry is re-

stored in the Higgs potential, and the potential is then described 
by the ten parameters. The mass of H± is unchanged and is given 
in Eq. (11).

For the mass matrix of neutral Higgs bosons, the 3 × 3 matrix 
given in Eq. (12) becomes a block-diagonalized form, i.e., the 2 × 2
plus 1 × 1 form. The first 2 × 2 part with the basis of (h′

1, h′
2) 

corresponds to the mass matrix for the CP-even Higgs states, and 
the remained 1 × 1 with the basis of h′

3 (≡ A) does the squared 
mass of the CP-odd Higgs boson. For the CP-even states, we obtain 
the mass eigenstates by introducing the mixing angle β − α by(

h′
1

h′
2

)
=

(
sβ−α cβ−α

cβ−α −sβ−α

)(
h

H

)
, (A.1)

where h is defined as the SM-like Higgs boson.
The squared masses of A is given by

m2
A = M2

33. (A.2)

Masses for H and h and the mixing angle β − α are respectively 
given by solving Eqs. (21), (22) and (23) with the replacement 
(α̃, m̃2

H , m̃2
h) → (α, m2

H , m2
h):

m2
H = M2

11c2
β−α + M2

22s2
β−α + 2M2

12sβ−αcβ−α, (A.3)

m2
h = M2

11s2
β−α + M2

22c2
β−α − 2M2

12sβ−αcβ−α−, (A.4)

tan 2(β − α) = 2M2
12

M2
22 − M2

11

. (A.5)

Consequently, eight input parameters can be chosen as follows

{m2
H , m2

A, m2 ± , M2, tanβ, sin(β − α), λR
6 , λR

7 }, (A.6)
H
and experimental values of v and mh . In this parameter choice, the 
five parameters λ1–4 and λR

5 are derived by Eqs. (16)–(23) with the 
replacement (α̃, m̃2

H , m̃2
h) → (α, m2

H , m2
h).

The mass formulae in the well-known softly-broken Z2 sym-
metric case with the CP-invariance are easily obtained by taking 
λR

6 = λR
7 = 0, which agree with the formulae given, e.g., in Ref. [32].

A.2. The inert doublet case

When we impose an exact Z2 symmetry in the potential, where 
the two doublets are transformed as �1 → +�1 and �2 → −�2, 
the potential is given for the case with m2

3 = λ6 = λ7 = 0 in Eq. (1). 
In this case, the phase of λ5 can be dropped without loss of gen-
erality, so that CP-violation does not occur. The VEV of �2 must 
be assumed to be zero to avoid the spontaneous breakdown of the 
Z2 symmetry, otherwise the m2

3�
†
1�2 + h.c. terms are generated 

through the λ terms, and the inert nature, i.e., without couplings 
to SM particles, is then lost via the mixing with the active Higgs 
field, namely, the SM-like Higgs boson.

The squared masses of the scalar bosons are calculated by

m2
h = λ1 v2, m2

H = m2
2 + v2

2
λ345,

m2
A = m2

2 + v2

2
(λ3 + λ4 − λR

5 ), m2
H± = m2

2 + v2

2
λ3. (A.7)
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