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Abstract

We develop a class of integrals on a manifsldalledexponential iterated integralan extension of K. T. Chen’s
iterated integrals. It is shown that the matrix entries of any upper triangular representatipfibfx) can be
expressed via these new integrals. The ring of exponential iterated integrals contains the coordinate rings for a class
of universal representations, called te&ative solvable completioref =1 (M, x). We consider exponential iterated
integrals in the particular case of fibered knot complements, where the fundamental group always has a faithful
relative solvable completion.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

We are concerned with using integrals to determine the fundamental group of a smooth nianiifetd
PM denote the space of piecewise differentiable patf@, 1] — M. A 1-formw € EX(M; C) provides
a C-valued function orPM via integration:

fw:PM—>(D,
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)u—)/w.
A

And [ o induces a map on the fundamental graypM, x) if and only if w is closed:

/w:nl(M, x) — C.

By the de Rham theorem, closed line integrals can distinguish two elemeniéMf x) if and only if
they are different iy (M; C).

K.-T. Chen improved this approach wiilerated integralsof 1-forms (seg2]). For C-valued 1-forms
w1, w2, "'7(Dl’l|

/601(1)2- Loy = / f1(t1) f2(22) . .. fn(t,) dt1dtz . . . d1y,
7 0<n << <ty <1

where f; (1) dr is the pullback ofv; to EL([0, 1]; C) along: [0, 1] — M. An iterated integral is a finite
sum of these expressions, with a constant term, regarded as a functiorNtamo C. A closed iterated
integral is one that is constant on homotopy classes of patfs 1] — M relative to{0, 1}, and thus
induces aC-valued function o1 (M, x). The vector space of iterated integrals N is denoted by
B(M) and the vector space of closed iterated integrals on the space of loops based/ats denoted
by HO(B(M, x)). Both are commutative Hopf algebras.

This larger class of integrals can be used to detect more structurg M, x) than is detected by
ordinary line integrals. Chen proved that integration induces a Hopf algebra isomorphism,

HY(B(M, x)) = 0 (m1(M, x))), 1)

where( (% (r1(M, x))) denotes the coordinate ring of the unipotent completiom 63/, x). Thus when
the representatiom (M, x) — % (w1 (M, x)) is faithful (this occurs, for example, whea(M, x) is free),
closed iterated integrals separate the elemenis(@f, x).

But there are important cases whexgM, x) — % (n1(M, x)) is far from being faithful. Indeed, if
Hyi(M; 7) = 7 (as in the case of knot groupg)(n1(M, x)) is the additive grougs,, and the kernel of the
representation is the commutator subgroupfV/, x). Thus closed iterated integrals vanish on every
element of the commutator subgroup, and they provide no advantage over ordinary line integrals in this
case.

We shall overcome this limitation by considering a larger class of integrals, exfghential iterated
integrals The goal is to detect a larger quotient@f M, x) than is obtained by ordinary iterated integrals.

Exponential iterated integrals are certain infinite sums of ordinary iterated integrals, and their properties
are similar. An exponential iterated integral is written as

5 5 5 5
Z / €1 012622367 - - - w(,—1), €™,

whereo; and w;+1) are 1-forms. IfL C EX(M; ©) is a z-module of closed 1-forms, we denote
by EB(M)" the vector space of exponential iterated integrals whose expobeate inL, and by
HO(EB(M, x)*) the space of exponential iterated integrals on the loop spatbattare constant on ho-
motopy classes of paths relative to endpoints. Each integfé? (£ B(M, x)*) gives amap1 (M, x) —

C. We will show that these integrals are matrix entries of solvable representation&of x).
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We then develop the notion @élative solvable completigrwhich is a special case of Deligne’s
relative unipotent completion (s¢4]). Given a homomorphism: G — T of an abstract grouf into
a diagonalizable algebraic grodpwith Zariski dense image, ttsolvable completion of G relative 19
denoted by, (G), is the inverse limit of algebraic representatign&; — S that fit into a commutative
diagram:

where the bottom row is exacg,has Zariski dense image, ablds a unipotent group.
The essential link between exponential iterated integrals and relative solvable completion is given by
the following theorem, a more general version of which is proved in Section 6.

Theorem 1.1. Suppose: n1(M, x) — T C (C*)" is a diagonal algebraic representation with Zariski
dense imageand thats, . . ., J,, are closedl-forms such that

p() = (e, el e (c*y.

Let L denote th&Z-submodule of£(M; C) generated by, ..., §,. Then integration induces a Hopf
algebra isomorphism

HY(EB(M, x)F) = 0(F,(m(M, x))).

In Section 7 we consider the relationship between unipotent completion and relative solvable comple-
tion, and prove a result of which the following is a special case:

Theorem 1.2.If G is a group such thatG/[G, G] is finitely generated andf1([G, G]; C) is finite
dimensionalthen there exists a diagonalizable algebraic representaiian — T such thatz([G, G])
injects into7,(G).

All knot groupsG = n11(S3\K, x) of tame knot« satisfy the conditions of this theorem. The repre-
sentationp: G — T can be obtained from the Alexander modul&kofVhenK is a fibered knot[G, G]
is free and thus it injects into its unipotent completion. Hence:

Corollary 1.3. If K c $°is a fibered knqtthere exists a diagonalizable algebraic representation
p:m1(S3\K, x) — T such that the representation (S3\K, x) — ,(z1(S\K, x)) is injective

Combining Corollary 1.3 with Theorem 1.1 shows that exponential iterated integrals separate the
elements of the group of a fibered knot. In Section 8 we consider the example of the trefoil knot (a fibered
knot), providing an explicit description for the vector space of closed exponential iterated integrals on its
complement ins3.
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2. Notation and conventions

ThroughoutM is aC*-manifold with base poirt. PM is the space of piecewise differentiable paths
4:10,1] — M, and P, .M is the loop space at € M. EY(M; C) is the space of-valued 1-forms,
and B1(M; C) is the space of closed-valued 1-forms. Whet is an integral and. € PM is a path,
let (1, 2) denote the integral of over . Fory € M, let 1, denote the constant loop gt lf J is a
path or 1-form, we writgs] to mean the homotopy, homology, or cohomology class depending on
the context.

By “algebraic group” we will always mean linear algebraic group avéi/e say that an algebraic group
is diagonalizabléf it is isomorphic to a closed subgroup @t*)” for somen. If G is an algebraic group
thenG,, denotes the unipotent radical @f LetM,(C), B, (C), U, (C), andD,,(C) denote, respectively,
then x n matrix ring, upper triangular matrix group, unipotent matrix group, and diagonal matrix group
overC.

3. Exponential iterated integrals

In this section we define exponential iterated integrals and show how they appear as matrix entries for
the transport functions of certain trivialized vector bundles. Using this relationship we then prove several
formal properties that will be used in later proofs.

Throughout this section lét [0, 1] — M be a path. We begin with the definition of ordinary iterated
integrals. Note that the definition given in the introduction extends easily to iterated integrals of 1-forms
taking values in ang-algebra.

Definition 3.1. Supposevs, ..., o, are 1-forms oM taking values in an associatizealgebraA. Let
/ W1m2 ..., = / Fr(t) Fo(12) . .. F,(t,) dry dep ... dy,,
7 O<n<n<--<n<l

whereF; (t) dt = 2*w; € EL([0, 1]; C) ® A.

The expressioff w1 ... w, denotes a map froM to A. An A-valued iterated integral is a finite sum
of these expressions, possibly including a constant term. The following theorem of Chen'’s provides the
initial motivation for this definitior[3, p. 253}

Theorem 3.2. Given a trivial vector bundl€” x M — M with connectiotV=d -, » € EX(M: C)®
M,(C),letT: PM — GL(n, C) denote the transport function. For ariye P M, the sum

I—I—/w—i—/ww—i—/www—i—---
A A A

1This means that for a sectigh M — C", Vf =df — fo.
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converges absolutelpnd

T(i):l—kfco—k/cow—i—/www—l—--- O 2)

When the matrix of 1-forms is strictly upper triangular, the series above is finite, and the transport
function is given by a matrix of({-valued) iterated integrals. For example, if

0 w12 O 0o ... 0
0 0 w3 0 ... 0
0 0 O 0
w=|. . . S 3)
0 0 0 0 ... wunm
(0 0 0 O 0 |

computing the series yields

1 [ow12 [wws [oiwxswss ... [w012023...060-1]
0 w23 Joswaa ... [w23084...00-1n
0 0 1 w W34W45 . . . O(n—1)n
r| ‘ . f.34 ‘ [ w3a 45' o=vn | @
0 0 0 0 [ -t
L O 0 0 0 .. 1 _

We write B(M, x) for the vector space of function® M — C that are given by iterated integrals. The
subspace of functions that are constant on homotopy classes is dendi@dmyV, x)).?
Now we can define exponential iterated integrals:

Definition 3.3. Forn>0 anddy, dz, ..., op, w12, ..., Ou—1n € EX(M; C),

/e51w12e52w23e‘33 - eén_la)(n_l)n 65”

A
= Z 0101...01 0120202...02 W23...Wn—-1)n Ondp .. .0p . 5)
)., ‘/_/
mi,....my >0 my terms mo terms m, terms

An exponential iterated integral is a finite sum of these expressions, regarded as a functiBivitom
C. By thelengthof an exponential iterated integral we mean the number of linear 1-forms in its longest
term. The integral above has length- 1.3

2The reason for this notation is thetO(B(M, x)) is the first cohomology group of the complex of higher iterated integrals
(se€[2, Section 1.5].

SThereisa possible ambiguity because two different integral expressions can compute the sahié maf. So we will
say that the length of an exponential iterated integral is the minimum length of its literal expressions.
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To see where Definition 3.3 comes from, suppBseC” x M — M is a trivial bundle with connection
V =d — w wherew is a superdiagonal matrix:

01 w12 O O .- 07
0O o6 w3 O ... O
0 0 03 w34 --- O
=10 0 0 o --- 0] (6)
| 0 O 0 0 - 4,

Computing the matrix entries of the series (2) yields
'f el feﬁlwlge‘h fe51w12e52w23ef33 o fe‘jlwlz. ..w(,,_l),,e‘in

0 f ed2 f €92¢)95e93 .. f e(?za)zs. .. w(n_l),,e5"
T = 0 0 fe‘33 fe‘)3w34...a)(n_1)ne‘3” ) (7)
L o 0 0 . [e

Right away, then, we know from Theorem 3.2 that exponential iterated integrals are well-defined.
Proposition 3.4. For any1-forms{s;} ;, {o;j+1}; EY(M; ©), the sum(5) converges absolutely

Also, since transport is invariant under reparametrization of paths, we have
Proposition 3.5. For any1-formsoéy, ..., 0., w12, . . ., -1, the integral

/e‘slwlz. .. co(n_l),,e&"
J

is independent of the parametrization/of

And if A(0) =y, thenT (22~ 1) = T(1,); thus,

Proposition 3.6. For any1-formsoéy, ..., 0., w12, ..., ®u—1)n,

0 0 0 )
/ L elwio. .. On-n€" = f elwo. .. co(n_l)ne(".
AN 1/1(0)

A formula for the integral €tw1z. . . w,—1),€" over)~1is easily verified from the definition:

Proposition 3.7. For any 1-formsés, ..., 8y, 012, . . ., ©u—1yn € EX(M; C),

) 5)1 — _511 —0
/ 1elw12...co(n_1)ne _/e (—0@—1n) ... (—w12)€ L
- )

A

For the remaining propositions let

1 =/e§1a)12. . .a)(n_l)neé".
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The expression (7) for parallel transportircan be applied to prove a formula for the integral ofrer
a concatenation of paths:

Proposition 3.8. For any pathsy, f € PM with «(1) = (0),
n
(I, ap) = Z /ebla)lz. .. w(k_l)ke"k /[;ebkwk(k_,_l) .. .60(,1_1),165”.
k=1 """
Proof. The transport map satisfid&«p) = T («)T (f). The above formula comes from comparing the
upper-right-hand matrix entries @f(«f) andT («)T (). O

Givens, r € [0, 1], let 2% denote the subpath affrom /(s) to i(¢), defined by
;ué () =2(s + (t — s)u).
The concatenation of) and/! is equal tol after reparametrization, thus

Corollary 3.9. For anyzg € [0, 1],

n
, 0 Oi Oi 0
(I, ) = E /toela)lz...w(i_l)ie’ /1 €' wi(i41) - - Ou—1n€™".
i=1"%""0

/L.[O

A similar proposition (useful in doing induction on these integrals by length) follows immediately from
the definition:

Proposition 3.10. Let f(;_1)i (1) dt = A*w(—1)i.

1
(1, 2) =/ (/r e‘31w12...e5"—1> fai—ni(t) (/1 eéi...w(s_bseas) dr.
o \Ji A

t

Note that
/e5= Z/ F(t) ft2) ... ft,) dtrdra. .. dt,
A nen Y0sn<n< < <1
1
= Z_'f f(t) f(t2) ... f(ty)derdrp. .. ds,
neN n: Ji,t,....t,€[0,1]
1 n
= Z —(/ £ @) dt)
neN n! O<r<1
—elid

(where f(¢) dt = A4*6), hence our notation.

Proposition 3.11. For anyé € EY(M; C), . € PM,

fe5 —elid,
P
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Using this fact we can simplify integrals that have an exact exponent:
Proposition 3.12. Suppose: M — C is aC® function. Then
/ Elw1a. .. oG 1€ w11 - . O@_1n€"
= / w1z, .. (€ ¢ wi_1)) (€ Wi(i+1)) - - - Ou—1)n€™".
Proof. Again let f;_1); (t) dt = A*w—1)i, fii+1) (1) dt = 2 w;i+1). Applying Proposition 3.10 twice,

0 d 0
fe lwio... w(-1)i€ gco,'(i+1) c e Op—1n€"
A

= / / e51w12 - eéffl f(i—l)i (1) dr
0<r<<1 \JJG
X /1/ edf) fi(i+l)(t/) dt’ (/1 elitl .(1)(,11),,65")
it 2

[/

:/ /.eélwlz...eéil fi—pi(t)de
0<r<’<1 7

X e_g([)+g(t )ﬁ(l+1) (t/) dt/ (/1 e&i—}—l . w(nl)ne&ﬂ)
A

[/
= /e(slwlz- (€801 (€ Wi11)) - - - O(u—1)n €,
A
as desired. O

Lastly, we show how the computation (7) of the transport function in terms of exponential iterated
integrals can be generalized. Supp®se- d — w is a connection on the trivial bundie® x M — M,
wherew is an upper triangular matrix of 1-forms:

w11 ®12 W13 - Ol

0 w2 w3 - oy

w=1| 0 0 w3z -+ w3
0 0 0 -+ wm

Matrix multiplication shows that th&, j)th entry of

/(um ::/(uw...w
—
S

m terms

Z / Wheykp Whoks « -+ Ol 11+
i=k1 < <kmp1=j
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(We take the sum to be zeroiit- j.) Thus by Theorem 3.2,
T - I + Z / wklkakaS e wknlkm+l
m>0yi:k1<'“<km+1:j 1<i,j<n

Grouping repeated terms,

T = Z O Ok 2, @ o, w7
= ‘ ‘ kiky Pkak2 P, Phoks - - - Pk 1k kpkp
p>0,i=ki<--<kp=j,r1,....,rp =20 1<i,j<n
(),
— Z / eo)klklwklkzewkzkz Okok - - - U)kpflkpe kpkp
p>0.i=ky<-<kp=j 1<i,j<n

The sums in this last expression are finite, so we have exprésasd@ matrix of exponential iterated
integrals.
We state this result for future reference:

Proposition 3.13. SupposeV = d — w is a connection on the trivial bundle” x M — M, where

o = (wij)1<i j<n 1S @n upper triangular matrix ofl-forms. Then the transport functich: PM —

GL, (C) is equal to an upper triangular matrix of exponential iterated integrals whose exponents are from
the sef{w11, w22, ..., wunl.

4. Relative solvable representations

In order to describe the set of mapg M, x) — C that are given by exponential iterated integrals,
we need first to explore the properties of a particular class of algebraic representations associated to a
discrete group.
Supposé&isagroup ang: G — (C*)" is a diagonal representation. LBtC (C*)" denote the Zariski
closure ofp(G). By asolvable representation relative fowe mean an algebraic representation> S
that fits into a commutative diagram

1—U—=85——=T—>=1 ®)

where the bottom row is exadt, is a unipotent group, and the image®fn Sis Zariski dense.
The canonical example of a relative solvable representation occurs @hexs an upper triangu-
lar action onC". The quotient ofB,(C) by U, (C) is isomorphic toD, (C), hence any representation
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G — B, (C) fits into a diagram
G

|

1—U, (C>—>Bn (C)—>Dn (C)—>1

The Zariski closure o5 in B, (C) is a relative solvable representation. In fact every relative solvable
representation can be obtained in this manner, as the next proposition and corollary show.

Proposition 4.1. Supposedl —- U — § — T — 1lis an exact sequence of algebraic groups with U
unipotent and T diagonalizable. Then any linear representafiesn GL(V) has a common eigenvector

Proof. SupposeS — GL (V) is a representation. Sind¢ is unipotent we may find a nonzero vector
v € V fixed byU. Let W C V be the subspace spanned{by | x € S}. Note thatU fixesW, since for
anyx e S,yeU,

yXU = x(x_lyx)v = Xxv.

So the action o6 onW factors througlT; and sinceT is diagonalizable it has a common eigenvector in
wW. O

Corollary 4.2. Suppose
G

I\

1—U—>S§——>T—>1 )

is a relative solvable representation. Then there exists an embeflding,, (C) for some nunder which
SNU,(C)=U.

Proof. Let § < GL (V) be a faithful representation. Proceeding by induction with the proposition
we may find a basi$vy, ..., v,} € V that makes the action & upper triangular. Thus we obtain
the embeddingg < B, (C). The intersection of with U, (C) is the unipotent radical of, which is
preciselyu. O

We note in passing that the discussion above also explains the term “relative solvable.” Since every
connected solvable group is isomorphic to a closed subgroug), @f) (see[6, Section 19), every
connected solvable representation with Zariski dense image may be expressed as a relative solvable
representation. (The converse is not true, since a relative solvable representation need not be connected.

By analogy we use the terralative prosolvable representatido mean a commutative diagram of the
form of (8) with U prounipotent and diagonalizable.

Proposition 4.3. Supposd. — # — ¥ — T — 1lis an exact sequence with prounipotent and T
diagonalizable. Then the sequence spétsd any two splittings are conjugate by an elemen# of
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Proof. The assertion is well-known whe is unipotent (se€l, Proposition 5.1)] Choose compatible
splittings for the unipotent quotients @f and take the inverse limit. O

Suppose: G — T C (C*)" is a diagonalizable representation as before. There is a unigue relative
prosolvable representatiod — ,(G) — T satisfying the following universal mapping property:
if 7 is any prosolvable representation relativeptathen there is a homomorphism,(G) — & of
G-representations that makes the following diagram commute:

%(G)

|\

S

T.

“,(G) is the inverse limit of all solvable representations relative.tdhis is a special case oflative
Malcev completiona notion of Deligne’s; segl], Section 2 for a full development.

As an initial example of relative prosolvable completion, supgdsefinitely generated and abelian.
Then.7,(G) must be abelian, so the splitting of Proposition 4.3 is a direct prodggiG) = % x T
where is prounipotent# is abelian and therefore additive, and its dimension cannot exceed the free
rank of G. This proves the next proposition.

Proposition 4.4.If p:G — T is a homomorphism from a finitely generated abelian group into a
diagonalizable group with Zariski dense imadbeen ¥,(G) = G x T where m is the free rank
of G.

5. Algebraic properties of exponential iterated integrals

Supposéd. C EX(M; C)is az-module of 1-forms. LeE B(M)* denote the vector space of exponential
iterated integrals with exponents from A closed exponential iterated integral is one that is constant
on homotopy classes of paths[0, 1] — M relative to{0, 1}. Let H(E B(M)") denote the subspace
of closed iterated integrals iiB(M)~. In this section we show that B(M)- and HO(E B(M)*) are
Hopf algebras, and that the groups Spa(M)" and Sped °(E B(M)*) are each an extension of a
prodiagonalizable group by a prounipotent group.

We also letE B(M, x)* denote the space of functions on the loop spAgceM given by exponential
iterated integrals with exponents frdm (EB(M, x)* is the quotient of£ B(M)* by integrals such as
fedf that vanish on every loop at We will also refer to the elements @&B(M, x)" as exponential
iterated integrals.) Writé/°(E B(M, x)*) for the subspace of functions constant on homotopy classes
in P, .M. For convenience we will omit basepoints in the rest of this section, but everything we say for
EB(M)* and HO(E B(M)%) applies as well t&E B(M, x)* and HO(EB(M, x)F).

Lemma 5.1. For anyZ-moduleL € EX(M; C), EB(M)* is closed undefpointwisd multiplication

Proof. It is sufficient to show that for any;, 5; €L, wjjt1), ) € EY(Mm; ©),

/
@Djj+1

N N N NG
/ eél(ﬂlz . e (}J(n_l)ne()n / eblwa_z e w/(nril)s/eon/ (S EB(M)L
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A formula for this product can be written down, but it is rather cumbersome and unnecessary for our
purposes. We prove the result by inductiorvos . Let A: [0, 1] — M be a path.
Note first that

/ /o oe/ o e/5+6’ /;5+6

This proves the base case. kot n’ > 1 we apply Corollary 3.9 and Proposition 3.10 to split the product
into a sum of products of smaller-length integrals. Assume without loss of generality tat Let

f(n—l)n (t)dt = ;L*w(n—l)n-

0 0 AN / &'
/e l(DlZ e Cl)(n_]_)ne n /;e 1(1)12 . (U(n/_l)n/e n
A L

:/ /e‘slwlz...e‘snl Fin—1yn(t) dt /e‘sn
0<r<1 \J A 2t

e o | e e
CIP 1 (i1 -

‘t

n/

o N / /
:Z/ /e"lwlg...e"”l /e‘sla/lz...e‘si
i1 J0<r<1 \J g s

0

on 5, 5
X fn—1n (1) dt <//116 ) (/Al e'co;(l.H)...en)
t

t

By inductive assumption both of

5 dn— 3 . o S 5
/elwlz...e“/elwlz...ez and /e"/etwi(i+1)...en

may be expressed as exponential iterated integrals #@&/)~ . Applying Proposition 3.10 then trans-
forms each summand in the resulting expression into an exponential iterated intégral.

ThereforeE B(M)" is a C-algebra. (A homomorphist — EB(M)" is given byz +— z [€°.)
Clearly the product of two closed exponential iterated integrals is closedHAUSB (M)L) is likewise

aC-algebra.
The definition for comultiplication\: EB(M)* — EB(M)" ® E B(M)* comes from Proposition 3.8:

A/ e(sla)12. .. a)(n_l)neé"
n < <
= Z /e"lwlz. .. 60(,'_1),'86[ ® f e‘S" Wi(i+1) - - - a)(n_]_)neo”. (10)
i=1

Forl € EB(M)" ando, 8,7 € PM, we have
(AL (o, B)) = (1, af).
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The coassociative property affollows:
(AQ DAL (o, B, 7)) = (I, afy) = (1 ® AAL (, B, 7)).
And if | is constant on homotopy classediN, the function
(o, B) > (AL (o, B)) = (1, af)
is constant on homotopy classesHiM x P M; thusA restricts to a comultiplication
A HYEB(M)Y) - HYEB(M)Y) @ HYA(EB(M)L).
The constant map ofi B(M)* and HO(E B(M)*) is given byl — (I, 1,). (Note that(, 1,) = (I, 1,)
for anyy € M.) Proposition 3.7 gives an antipode map©oa (M)*~:

i / lwga. .. op_1€" = (—1)"1 / € "W 1y ... w126 L,
By Proposition 3.6,
(AQ DAL, 2y = (1,271 = (1, 1,).
And as withA, i restricts to an antipode map @f°(E B(M)"). We have thus proven:

Proposition 5.2. For any Z-module ofl-formsL C El(M; 0),
(EB(M)", A i) and (HY(EB(M)"), A, i)
are Hopf algebras
To demonstrate the structure of the group SP8¢M)" we need a few definitions. Laﬁ;t(M)L_ -
EB(M)" denote thec-algebra generated by integrals of the fofre’ with 6 € L. SinceA [ = [ ®

[ €, &(M) is the coordinate ring of a prodiagonalizable group. The inclusieiM)> — EB(M)-
gives a surjective homomorphism

i*: SpecE B(M)* — Specs(M)*L.

We show that the kernel of this homomorphism is a prounipotent group. The coordinate ring of the kernel
is EB(M)" /1o, wherely is the ideal generated by integrals of the fofrEP — 1,6 € L. Consider the
filtration of ideals

hhchchc---,
where
I;=(I—(I,1)|I € EB(M)" of length < j)

This filtration corresponds to a filtration of subgroups in SB&i M)~ /Io. For j >1, the action of on
I;/1;_1is given by

A (/ eélwlz. ..l + Ij_l)

=/e‘51w12...e51+1®1+ 1®/e‘51a)12...e‘51+1+(1j_1®1j+Ij®1j_1).
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ThusEB(M)* /Iy is indeed a prounipotent group. We have constructed an exact sequence of groups
1 — SpecEB(M)* /Iy — SpecE B(M)t — Specs(M)t — 1,

where Spe® B(M)* /I is prounipotent and Speg M)’ is prodiagonalizable.
Now if we assume thdt consists of closed 1-forms, the algebi@/)” is contained inH°(E B(M)%),
and we obtain a similar exact sequence for SBECE B(M)%). Let1,=IoNH°(E B(M)*). The sequence

1 — SpecH(EB(M)*) /1, — SpecH®(EB(M)*) — Specs(M)L — 1

is a quotient of the one above by a prounipotent subgroup.

We summarize this discussion.

Theorem 5.3. For anyZ-moduleL. € E1(M; C), the groupSpecs (M) is prodiagonalizableand there

is an epimorphism
SpecEB(M)" — Specs(M)-

whose kernel is prounipotent. If L consists of clogddrms there is an epimorphism
SpecH®(EB(M)*) — Specs(M)*

whose kernel is prounipotent

6. The solvable de Rham theorem

Suppose thdt is aZz-module of closed 1-forms. Continuing the nptation of Section 59(&1, L c
HO(EB(M, x)*) denote the subalgebra generated by the integ"ra‘?sé € L. Consider the homomor-
phism

p:m1(M, x) — Specs (M, x)F,

where[A] maps to the ideal of integrals that vanish/oiThis representation is prodiagonalizable and has
Zariski dense image. If there is a finite $&1, ..., 5,} L that spans the image bfin H1(M; C) then
p is an algebraic representation, and it may be expressgca&V, x) — T C (C*)",

p(z)=</e51,...,/e5n>.
2 2

We shall callp “the representation defined hy”

As noted in the introduction, Chen proved that the Hopf algebra of closed iterated integPals s
the coordinate ring of the unipotent completionmtM, x). Previous work has been done on extending
this isomorphism: Hain irf5] constructed a class of integrals that compute the coordinate ring of the
Malcev completion ofi1 (M, x) relative to any algebraic representatiom1 (M, x) — S. These integrals
are written in the form

/(wlwz...wrm),

where thaw; are 1-forms on a princip&-bundle oveM, and¢ is a matrix entry ofS.
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The solvable de Rham theorem shows that the coordinate ring of the Malcev completion may be
computed using the more geometric (and more manageable) class of exponential iterated integrals, in the
case wherg is a diagonalizable representation defined by s@meoduleL € E1(M; C).

Theorem 6.1(Thery solvable de Rham theorémSuppose L is &@-module of closed-forms whose
image inH1(M; C) is finitely generategand thatp: 71 (M, x) — T C (C*)" is the representation defined
by L. Then integration induces a Hopf algebra isomorphism

HYEBM, x)") Z 0(%,(ru(M, x))).

Proof. The representation
(M, x) — SpecH(EB(M, x)*)

has Zariski dense image, and by Theorem 5.3 it is prosolvable relative to the diagonal represgntation
Thus by the universal mapping property f@j(n1(M, x)) (see Section 4) there exists an injection

HY%EB(M, x)F) < 0(F,(n1(M, x))).

To show that this map is surjective it will suffice to show that exponential iterated integrals compute the
coordinate ring of any solvable representatiomafM, x) relative top. Our method is similar to that in
Hain’s proof of ther; de Rham theorem for ordinary iterated integral8ijnHenceforth lek =71 (M, x).
Suppose): r — S is a solvable representation relativeptdBy Corollary 4.2, we may assume ttis a
group of upper triangulatr x n matrices whose diagonal entries are fréi’), meaning that they may
be written as/ € with 6y € L,k=1,...,n.

LetCc” = v" > V"1 ... 5 v9={0} denote the standard filtration,

Vk:{(zl"“’zk?o’""O)|Zl""’zkEG}’

which is stabilized bys. N
Let M denote the universal cover bf. From the trivial flat bundle&c” x M we can obtain a bundle
overM with monodromyy: let

E =n\(C" x M)

wherer acts viag - (v, m) — W(g)(v), mg~1). The filtratonV” > v*~1 > ... > VO induces a
filtration of bundles

E=E"2E"12...0E=0,
where the monodromy of the line bundté / E*~1 is given by [ e’*. We obtain for eacka trivialization
Cx M — EF/EF1

via transport fromx with respect to the connectioth — 5. Composing these maps with splittings
E¥/EF-1 — Ek vyields mapsC x M — E* for k = 1,...,n. Adding these maps together we ob-
tain an isomorphism

C"x M — E.
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The induced connection form @' x M is an upper triangular matrix with diagonal entrigs. . ., d,.
By Proposition 3.13, the monodromy representation— S is equal to a matrix of exponential iterated
integrals with exponents frorfvy, ..., d,} € L. These matrix entries generate the ring) and this
completes the proof. O

It is natural now to ask which diagonalizable representations @¥, x) are defined by a module of
closed 1-forms.

Proposition 6.2. If p:n1(M,x) — T < (C*)" is a diagonalizable representatipthen there exists
a definingZ-moduleL € EY(M; C) for p if and only if the induced mapiy (M) — T is trivial on
Tor(H1(M)).

Proof. If 4 is a closed 1-form then the additive homomorphism
/ s:HY M) — C

kills Tor H1(M), and the same is true fof€’: H1(M) — C*. So any diagonalizable representation
defined by 1-forms kills ToH(M).

For the converse, suppoper — C* is a homomorphism that kills Tad*(M). Thenp induces a
mapp’: H1(M; C) — C*. Choose a basig;}; for H1(M; C), and choose elemens € C such that
efi = p/(z;). By the ordinary de Rham theorem we may find a closed 1-fbsuch that/ & takesz; to
fi-Thusp = [ €. This method extends easily to define arbitrary diagonalizable representations in terms
of 1-forms. O

Combining this result with the de Rham theorem gives a description for
HOEB(M, x)B"M:0)y, (11)

the ring of all closed exponential iterated integrals with closed exponents—f G is an algebraic
representation with Zariski dense image, tlig@) is computed by exponential iterated integrals with
closed exponents if and only if the reductive quoti@&iG, is a diagonalizable representation that kills
TorHY(M). The ring (11) is the direct limit of (G) over all such representations.

7. The unipotent radical of the relative solvable completion

Recall thatH — % (H) denotes the unipotent completion of the grétipor equivalently, the solvable
completion ofH relative to the trivial representatidd# — {1}. The functorv, is right exact in the sense
that

Aker p) — Sp(G) = Sp(imp) — 1

is exact for any grougis and diagonalizable representatipnG — T. This is easily seen from the
universal mapping property.

The main theorem of this section asserts conditions under whikbr p) — %,(G) is an injection.
The proof will require an understanding of hadBvacts by conjugation on the solvable completions of
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its subgroups. We begin with a discussion of the automorphism groups of prounipotent and relative
prosolvable groups.
We will make free use of the equivalence of categories,

{prounipotent algebraic groups} <— {pronilpotent Lie algebras}

provided by theexp andlog maps.

Suppose” is a prounipotent group, and = %o 2 %1 2 %2 2 --- is a filtration by closed normal
subgroups such thé®)2 ,#; = {1}. Let Auty4,;% denote the group of automorphisms#that stabilize
{(#;}* Consider the graded vector space obtained from the Lie algetfa with the induced filtration

{ri}:
Ofny M=N/M&n/Mén/n3d---
The kernel of the morphism
¢: AUty N — Autgr,n (12)
is prounipotent, and the same is true of the equivalent morphism
O AUty U — AULGr T (13)
If the chosen filtration is the central serigg, #@, .. .} of %, gr @M has the additional structure of

a graded Lie algebra generatedryn®. So an automorphism @fr @y is determined by its action
onn/n@:

(I)ZAUt{g]/(i)} U — Autgr{mm}l—l — GL(I_I/I_I(Z)). (14)
Now suppose that
1—u—95T17 > 1,

is an exact sequence whérés diagonalizable. Let Ayt(4,).# denote the group of automorphisms%f
that arep-invariant and stabilizé#; }. We show that the kernel of the morphism

Autp,{%} % — Aut gl‘{l-ll_}l‘l, (15)

like ker @ above (13), is prounipotent. Fix (by Proposition 4.3) a diagonalizable subdipup &
that maps isomorphically onfb. Let ker & act on.¥ = Tox% leaving T fixed, and let# act on by
conjugation. These actions induce a morphism,

ker dx U — Aut,,,{ay,,.}y,
W, u) — Yuub).

We claim that the image of this morphism is exactly the kernel of (15). Supposg thaut, ;4,, & isan
automorphism that fixegr(,.,M. Sincey(7Tp) € ¢ is another closed subgroup that maps isomorphically

ontoT, we may findu € % such thatey (To)u 1 = To. Sinceuy(-)u~1is p-invariant, it therefore fixe%y;

4To be precise, Aut,,1 is the functor that takes@-algebraA to the group of automorphisms @fx c SpecA that preserve
{U; xcSpecA}.
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and since it also fixegr,-,,11, we may find it in the image of ke®. This proves the claim. And indeed
ker ®x % is prounipotent since both ker and# are.
We summarize this discussion.

Lemma 7.1. Suppose that

1—>%—>5ﬁ—p>T—>l,

is an exact sequence of groups in which T is diagonalizablezaisgprounipotent. Suppose that=%q >
U1 2 U D ---is afiltration by closed normal subgroups such that”, #; = {1}. Then the kernel of
the morphism

Aut, ;) & — AULGr (47
is prounipotent

We are now ready to state the main theorem. Suppose that X — G — A — 1 is an exact
sequence of groups with abelian and finitely generated. Note that on the vector spac& ; C) (or
equivalently(K)/[%(K), % (K)]) there is an induced conjugation actiGh— Aut H1(K; C), which
is abelian. We are interested in the case when this action is algebraic, and thus may be written as

G — T x (G,)™ — Aut H1(K; C),

whereT is a diagonalizable group.

Theorem 7.2. Supposdl - K — G — A — 1lis an exact sequence of groups with A abelian and
finitely generatedand suppose that the conjugation actiGn— Aut Hy(K; C) factors as

G — T x (G,)™ — Aut Hi(K:; C),
wherep: G — T is a diagonalizable representation with Zariski dense image. Then

1— UK) = Fp(G) = Fp(imp) = 1 (16)
is an exact sequence
Proof. Let

A=Z[/(n) ®Z/(n2) ®--- & Z/(ny),

with n; € Z. We induct orr. Let G’ € G be the inverse image @/(n1) ® --- ® Z/(n,_1), and assume
that#(K) < ,(G').
Let G denote the pushout of the diagram

G—=G.

|

eAted
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ThenG fits into an exact sequence
1— %,(G) — G — Z/(n,) — O. @

For convenience, we conside(K) and.#,(G’) as subgroups af.

We desire a splitting of the sequence (17)ujf= 0 this is straightforward. Otherwise, choose an
element ofG that maps ta0, 0, ..., 0, 1) € A, and letg denote its image iG. Theng” is contained in
the prounipotent grou (K ), so it has a unique,th rootu in % (K ), which commutes witly. Replacing
gwith u~1g we haveg" =1, hence

G = (g)x T, (G).

Lemma 7.1will show that the conjugation action@bn .#,(G’) is algebraic. Filter the prounipotent
kernel of.¥,(G") — T via the central series & (K):

Uo = kelS,(G') — T1]
U1 =UK)

U2 =1U1,U1]

U3 = U1, U?]

U= U1, U3]

This filtration is evidently stabilized by. The action ofg on rg/ry is trivial, and the action of on
the graded Lie algebrgr -, -, M is isomorphic to the action af onr;/m; = Hi(K; C) (recall the
discussion prior to (14)), hence the commutative diagram

Auty a3 Sp(G')

47 Aut gr{l-ll}l_l

{g) =T x (G,)

The horizontal magg) — Autgr ., factors through?,((g)), and the downward map has prounipotent
kernel (Lemma 7.1), therefore the diagonal map also factors throyglz)) by the universal mapping
property. Thus we can “thicken further:

G = (xS, (G) = F,((g)) xS, (G).

This completes the proof, @,((g))x.%,(G") contains#(K) and is isomorphic t,(G), as can be seen
from the universal mapping propertyd

8. Exponential iterated integrals on complex curves and fibered knot spaces

In this section we consider two examples that illustraterthde Rham theorems and Theorem 7.2.
We are interested in manifolds for which the ring of closed exponential iterated integrals can be
calculated explicitly. We have earlier referred to the problem that the samePmald — C may be
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computed by two different integral expressions. This problem can sometimes be solved by putting a
complex structure oM and restricting attention to integrals composed from holomorphic 1-forms.

Consider first the case whémis a smooth affine complex curve. SinegM, x) is free, the unipotent
completionry (M, x) — %(n1(M, x)) is a faithful representation, hence ordinary iterated integrals are
adoequate to distinguish any two elements:pfM, x). The next proposition provides a description for
HO(B(M, x)).

Proposition 8.1. Suppos&M, x) is a smooth affine complex curve. Closed iterated integrals separate

the elements af1 (M, x). Let{w1, ..., w,} be a basis for the space of closed holomorphforms on
M. Then
2 ={1}U {/wjl...wjk k>0, (ji) € {1,...,n}k} (18)

is a basis forH%(B(M, x)).

Proof. The key observations are that each clas##iM; C) has a unique holomorphic representative,
and that the wedge product of any two closed holomorphic 1-forms is zero. The fagtighatbasis for
HO(B(M, x)) actually follows from a general theorem of Che[2s Theorem 4.1.1\which deals with
the complex of higher iterated integrals. We provide here an elementary proof for the sake of clarity.

Lemma 8.2. Any connection on M of the forth— 0, whered is a matrix of closed holomorphicforms
is flat. Any flat connectiod — w, with o a nilpotent upper triangular matrix df-forms is conjugate via
a matrixG: M — U, (C) to such a connectiod — 0.

Proof. The first assertion is immediate since the curvaturé ef6 is do + 0 A 0 = 0. For the second,
take anyk € {1, ...,n — 1} and suppose

0 w2 w13 wis - o
0O O w23 woa -+ wyy

d—|0 0 0 w3 - o3|, (19)
0O O 0 o ... 0

is a flat connection such that each eniry with j — i <k is closed and holomorphic. The equation
dw + o A o =0 implies that the 1-forms);; for which j — i =k must be closed. Choose for each such
entry an exact 1-forrdf;; such thatw;; — df;; is holomorphic. Let be then x n matrix with F;; equal

to f;; if j —i =k and zero otherwise. The matiix satisfying

d—o =T+ F)d-wd+F) (20)

has(u;j = w;j — dFj; for j — i <k. Continuing by induction ok we obtain the desired matrix [

Now since any closed iterated integtabn M arises from the monodromy of such a connection
d — o (recall the proof of Theorem 6.1), it may be expressed in terms of closed holomorphic 1-forms.

5 For a proof see Appendix A3 iiT], Proposition 3.6(a) in particular.
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And linearity

/yl...(zy,-+z“y§)...yn:zfyl...yi...yn—I—z//yl...yl/-...yn,

allows us then to expressas a sum of elements from.

It remains only to show tha# is a linearly independent set; this follows from a straightforward
manipulation. Letls, ..., 4, be free generators fari1 (M, x); it suffices to prove the proposition for
any chosen basigy; } ;, so let us assumf; } ; is such thaf[w;]}; < HY(M; C) is the dual basis for
{[Z;1}; € H1(M; C). Suppose

Z z;11 =0 (21)
le#B h

is a nontrivial finite sum with eacty nonzero. Evidently such an expression mustinclude a term of length
at least 2. Supposg, /o = zy, f wj; ... w;, is aterm of maximal length. The transformation

I'— 1 — (Al (-, 4i,))

(applying the comultiplication formula (10) formally) turns (21) into a nontrivial sum with terms of length
<k — 1. Continuing in this manner yields a contradiction. This completes the praof.

Now we consider the example of a fibered knot complement. Suppases® is a tame knot and that
$3\ K has an infinite-cyclic covering map

¢:(Rx F,(0,%) = (S3\K, x),

whose deck transformationg,, n € Z are given by¥1(¢, f) = (t + 1, y(f)) wherey: F — F is

a homeomorphisnt: is a noncompact 2-manifold which we may take to be an affine complex curve,
making the previous discussion useful. Note that pulling back an exponential iterated inte§falkon
with closed exponents,

5 5 *5 5
¢* / €wo1. .. On-n€™" = / e¢ 0¢*w01- .- ¢*w(n—l))1e¢ s

produces an exponential iterated integral with exact exponents, which may be rewritten via Proposition
3.12 as an ordinary iterated integral. lLebe theZ-module of closed 1-forms that defines the diagonal
part of the conjugation representation

1 (S3\K, x) = Aut H1(R x F; C).
The content of Theorem 7.2 is that the map
¢*: HYEB(S\K, x)") - HY(B(R x F, (0,%))) = HY(B(F, X)) (22)

is surjective. Combining this fact with Proposition 8.1 shows tHA{EB(S3\K, x)’) separates the
elements ofi1(S3\ K, x). It also allows one to describg®(E B(S3\ K, x)¥) by looking at the pre-image
of the basisz. We demonstrate this approach with the particular example of the trefoil knot.
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Itis convenient (for coordinates) to consider a complex manifold that is of the same homotopy type as
the complement of the trefoil. Assume
S ={x, )PP+ IyP =1 cc?
The knot,

&

can be specified as the intersectiorsdfwith the singular curve
C={x,nIx*+y*=0},

andC?\C deformations retracts on?\ C N $3. The infinite cyclic cover o£2\ C may written asC x F,
whereF = {(x, y) | x3+ y2 =1} C C%

$:C x F — C\C
(t,x,y) — (e(Z”i/?’)tx, e”ity).
The homeomorphism: F — F that generates the group of deck transformations is given by
Y(x, y) = (52, 5%,
The closed holomorphic 1-forms

dx x dx
w_1=—, w]g=—
y y

onF diagonalize the action af* on H(F; C), for
Vro_1=lew_1, Yror={lo.

Extend the 1-form&_; andwy to C x F by pulling back along the projection mapfoThe 1-forms
e Ty g, ey, %idt € EX(C x F; )

are each invariant under the action of the group of deck transformationsg|.ef ;, ands denote the

1-forms that they induce 0B?\C, respectively.
Consider the integral

I= / wf, €105, @FR0 g gliattao, (23)
wheresey, . .., &, € {£1}. Applying Proposition 3.12 we find

*
¢ I:/wglwgz...wgn.

Integrals of this form provide a basis inO(B(C x F, (0,x))), as we know. The exact sequence (16) from
Theorem 7.2 implies tha#°(E B(C?\C, x)'?) is isomorphic as &-algebra taH°(B(C x F, (0, ¥))) ®
0(,(im p)), hence the following.
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Proposition 8.3. The set of integrals
[ [ e [ogesargerion. agetnt-rn 4
withk € Z, m,n>0,ande1, ..., &, € {£1}, is a basis forHO(EB(C?\C, x)'9).

The comultiplication formula (10) is easily applied to these integrals, giving us an effective description
for the Hopf algebrai®(E B(C2\C, x)').
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