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Abstract

We develop a class of integrals on amanifoldM calledexponential iterated integrals, an extension of K.T. Chen’s
iterated integrals. It is shown that the matrix entries of any upper triangular representation of�1(M, x) can be
expressed via these new integrals. The ring of exponential iterated integrals contains the coordinate rings for a class
of universal representations, called therelative solvable completionsof �1(M, x). We consider exponential iterated
integrals in the particular case of fibered knot complements, where the fundamental group always has a faithful
relative solvable completion.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Weare concernedwith using integrals to determine the fundamental group of a smoothmanifoldM. Let
PM denote the space of piecewise differentiable paths�: [0,1] → M. A 1-form� ∈ E1(M;C) provides
aC-valued function onPM via integration:∫

�:PM → C,
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� �→
∫

�
�.

And
∫

� induces a map on the fundamental group�1(M, x) if and only if� is closed:∫
�: �1(M, x) → C.

By the de Rham theorem, closed line integrals can distinguish two elements of�1(M, x) if and only if
they are different inH1(M;C).
K.-T. Chen improved this approach withiterated integralsof 1-forms (see[2]). ForC-valued 1-forms

�1,�2, . . . ,�n,∫
�
�1�2 . . .�n :=

∫
0� t1� t2� ···� tn �1

f1(t1)f2(t2) . . . fn(tn)dt1 dt2 . . .dtn,

wherefi(t)dt is the pullback of�i toE1([0,1];C) along�: [0,1] → M. An iterated integral is a finite
sum of these expressions, with a constant term, regarded as a function fromPM intoC. A closed iterated
integral is one that is constant on homotopy classes of paths�: [0,1] → M relative to{0,1}, and thus
induces aC-valued function on�1(M, x). The vector space of iterated integrals onPM is denoted by
B(M) and the vector space of closed iterated integrals on the space of loops based atx ∈ M is denoted
byH 0(B(M, x)). Both are commutative Hopf algebras.
This larger class of integrals can be used to detect more structure in�1(M, x) than is detected by

ordinary line integrals. Chen proved that integration induces a Hopf algebra isomorphism,

H 0(B(M, x)) ∼= O(U(�1(M, x))), (1)

whereO(U(�1(M, x))) denotes the coordinate ring of the unipotent completion of�1(M, x). Thus when
the representation�1(M, x) → U(�1(M, x)) is faithful (this occurs, for example, when�1(M, x) is free),
closed iterated integrals separate the elements of�1(M, x).
But there are important cases where�1(M, x) → U(�1(M, x)) is far from being faithful. Indeed, if

H1(M;Z) ∼= Z (as in the case of knot groups),U(�1(M, x)) is the additive groupGa and the kernel of the
representation is the commutator subgroup of�1(M, x). Thus closed iterated integrals vanish on every
element of the commutator subgroup, and they provide no advantage over ordinary line integrals in this
case.
We shall overcome this limitation by considering a larger class of integrals, calledexponential iterated

integrals. The goal is to detect a larger quotient of�1(M, x) than is obtained by ordinary iterated integrals.
Exponential iterated integrals are certain infinite sumsof ordinary iterated integrals, and their properties

are similar. An exponential iterated integral is written as∑∫
e�1�12e

�2�23e
�3 · · ·�(n−1)ne�n,

where�i and�i(i+1) are 1-forms. IfL ⊂ E1(M;C) is a Z-module of closed 1-forms, we denote
by EB(M)L the vector space of exponential iterated integrals whose exponents�i are inL, and by
H 0(EB(M, x)L) the space of exponential iterated integrals on the loop space atx that are constant on ho-
motopy classes of paths relative to endpoints. Each integral inH 0(EB(M, x)L) gives amap�1(M, x) →
C. We will show that these integrals are matrix entries of solvable representations of�1(M, x).
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We then develop the notion ofrelative solvable completion, which is a special case of Deligne’s
relative unipotent completion (see[4]). Given a homomorphism�:G → T of an abstract groupG into
a diagonalizable algebraic groupTwith Zariski dense image, thesolvable completion of G relative to�,
denoted byS�(G), is the inverse limit of algebraic representations�:G → S that fit into a commutative
diagram:

where the bottom row is exact,� has Zariski dense image, andU is a unipotent group.
The essential link between exponential iterated integrals and relative solvable completion is given by

the following theorem, a more general version of which is proved in Section 6.

Theorem 1.1. Suppose�: �1(M, x) → T ⊆ (C∗)n is a diagonal algebraic representation with Zariski
dense image, and that�1, . . . , �n are closed1-forms such that

�(�)= (e
∫
� �1, . . . ,e

∫
� �n) ∈ (C∗)n.

Let L denote theZ-submodule ofE1(M;C) generated by�1, . . . , �n. Then integration induces a Hopf
algebra isomorphism

H 0(EB(M, x)L) ∼= O(S�(�1(M, x))).

In Section 7 we consider the relationship between unipotent completion and relative solvable comple-
tion, and prove a result of which the following is a special case:

Theorem 1.2. If G is a group such thatG/[G,G] is finitely generated andH1([G,G];C) is finite
dimensional, then there exists a diagonalizable algebraic representation�:G → T such thatU([G,G])
injects intoS�(G).

All knot groupsG = �1(S3\K, x) of tame knotsK satisfy the conditions of this theorem. The repre-
sentation�:G → T can be obtained from the Alexander module ofK. WhenK is a fibered knot,[G,G]
is free and thus it injects into its unipotent completion. Hence:

Corollary 1.3. If K ⊂ S3 is a fibered knot, there exists a diagonalizable algebraic representation
�: �1(S3\K, x) → T such that the representation�1(S3\K, x) → S�(�1(S3\K, x)) is injective.

Combining Corollary 1.3 with Theorem 1.1 shows that exponential iterated integrals separate the
elements of the group of a fibered knot. In Section 8 we consider the example of the trefoil knot (a fibered
knot), providing an explicit description for the vector space of closed exponential iterated integrals on its
complement inS3.
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2. Notation and conventions

Throughout,M is aC∞-manifold with base pointx. PM is the space of piecewise differentiable paths
�: [0,1] → M, andPx,xM is the loop space atx ∈ M. E1(M;C) is the space ofC-valued 1-forms,
andB1(M;C) is the space of closedC-valued 1-forms. WhenI is an integral and� ∈ PM is a path,
let 〈I, �〉 denote the integral ofI over �. For y ∈ M, let 1y denote the constant loop aty. If � is a
path or 1-form, we write[�] to mean the homotopy, homology, or cohomology class of�, depending on
the context.
By “algebraic group”wewill alwaysmean linear algebraic groupoverC.Wesay that an algebraic group

is diagonalizableif it is isomorphic to a closed subgroup of(C∗)n for somen. If G is an algebraic group
thenGu denotes the unipotent radical ofG. LetMn(C), Bn(C), Un(C), andDn(C) denote, respectively,
then× n matrix ring, upper triangular matrix group, unipotent matrix group, and diagonal matrix group
overC.

3. Exponential iterated integrals

In this section we define exponential iterated integrals and show how they appear as matrix entries for
the transport functions of certain trivialized vector bundles. Using this relationship we then prove several
formal properties that will be used in later proofs.
Throughout this section let�: [0,1] → M be a path. We begin with the definition of ordinary iterated

integrals. Note that the definition given in the introduction extends easily to iterated integrals of 1-forms
taking values in anyC-algebra.

Definition 3.1. Suppose�1, . . . ,�n are 1-forms onM taking values in an associativeC-algebraA. Let∫
�

�1�2 . . .�n =
∫
0� t1� t2� ···� tn �1

F1(t1)F2(t2) . . . Fn(tn)dt1 dt2 . . .dtn,

whereFi(t)dt = �∗�i ∈ E1([0,1];C)⊗ A.

The expression
∫

�1 . . .�n denotes a map fromPM toA. An A-valued iterated integral is a finite sum
of these expressions, possibly including a constant term. The following theorem of Chen’s provides the
initial motivation for this definition[3, p. 253]:

Theorem3.2.Given a trivial vector bundleCn×M → M with connection∇=d−�,1 � ∈ E1(M;C)⊗
Mn(C), let T :PM → GL(n, C) denote the transport function. For any� ∈ PM, the sum

I +
∫

�
�+

∫
�
��+

∫
�
���+ · · ·

1This means that for a sectionf :M → Cn, ∇f = df − f�.
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converges absolutely, and

T (�)= I +
∫

�
�+

∫
�
��+

∫
�
���+ · · · � (2)

When the matrix of 1-forms� is strictly upper triangular, the series above is finite, and the transport
function is given by a matrix of (C-valued) iterated integrals. For example, if

�=



0 �12 0 0 . . . 0
0 0 �23 0 . . . 0
0 0 0 �34 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . �(n−1)n
0 0 0 0 . . . 0

 , (3)

computing the series yields

T =



1
∫

�12
∫

�12�23
∫

�12�23�34 . . .
∫

�12�23 . . .�(n−1)n
0 1

∫
�23

∫
�23�34 . . .

∫
�23�34 . . .�(n−1)n

0 0 1
∫

�34 . . .
∫

�34�45 . . .�(n−1)n
...

...
...

...
. . .

...

0 0 0 0 . . .
∫

�(n−1)n
0 0 0 0 . . . 1

 . (4)

We writeB(M, x) for the vector space of functionsPx,xM → C that are given by iterated integrals. The
subspace of functions that are constant on homotopy classes is denoted byH 0(B(M, x)).2

Now we can define exponential iterated integrals:

Definition 3.3. Forn�0 and�1, �2, . . . , �n,�12, . . . ,�(n−1)n ∈ E1(M;C),∫
�
e�1�12e

�2�23e
�3 . . .e�n−1�(n−1)ne�n

:=
∑

m1,...,mn �0

∫
�
�1�1 . . . �1︸ ︷︷ ︸

m1 terms

�12�2�2 . . . �2︸ ︷︷ ︸
m2 terms

�23 . . .�(n−1)n �n�n . . . �n︸ ︷︷ ︸
mn terms

. (5)

An exponential iterated integral is a finite sum of these expressions, regarded as a function fromPM to
C. By thelengthof an exponential iterated integral we mean the number of linear 1-forms in its longest
term. The integral above has lengthn− 1.3

2The reason for this notation is thatH0(B(M, x)) is the first cohomology group of the complex of higher iterated integrals
(see[2, Section 1.5]).

3 There is a possible ambiguity because two different integral expressions can compute the samemapPM → C. So we will
say that the length of an exponential iterated integral is the minimum length of its literal expressions.
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To seewhere Definition 3.3 comes from, supposeE=Cn×M → M is a trivial bundle with connection
∇ = d − � where� is a superdiagonal matrix:

�=



�1 �12 0 0 · · · 0
0 �2 �23 0 · · · 0
0 0 �3 �34 · · · 0
0 0 0 �4 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · �n

 . (6)

Computing the matrix entries of the series (2) yields

T =


∫
e�1

∫
e�1�12e�2

∫
e�1�12e�2�23e�3 . . .

∫
e�1�12 . . .�(n−1)ne�n

0
∫
e�2

∫
e�2�23e�3 . . .

∫
e�2�23 . . .�(n−1)ne�n

0 0
∫
e�3 . . .

∫
e�3�34 . . .�(n−1)ne�n

...
...

...
. . .

...

0 0 0 · · · ∫
e�n

 . (7)

Right away, then, we know from Theorem 3.2 that exponential iterated integrals are well-defined.

Proposition 3.4. For any1-forms{�j }j , {�j (j+1)}j ⊆ E1(M;C), the sum(5) converges absolutely.

Also, since transport is invariant under reparametrization of paths, we have

Proposition 3.5. For any1-forms�1, . . . , �n,�12, . . . ,�(n−1)n, the integral∫
�
e�1�12 . . .�(n−1)ne�n

is independent of the parametrization of�.

And if �(0)= y, thenT (��−1)= T (1y); thus,

Proposition 3.6. For any1-forms�1, . . . , �n,�12, . . . ,�(n−1)n,∫
��−1

e�1�12 . . .�(n−1)ne�n =
∫
1�(0)

e�1�12 . . .�(n−1)ne�n .

A formula for the integral
∫
e�1�12 . . .�(n−1)ne�n over�−1 is easily verified from the definition:

Proposition 3.7. For any1-forms�1, . . . , �n,�12, . . . ,�(n−1)n ∈ E1(M;C),∫
�−1

e�1�12 . . .�(n−1)ne�n =
∫

�
e−�n(−�(n−1)n) . . . (−�12)e

−�1.

For the remaining propositions let

I =
∫

e�1�12 . . .�(n−1)ne�n .
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The expression (7) for parallel transport inE can be applied to prove a formula for the integral ofI over
a concatenation of paths:

Proposition 3.8. For any paths�, � ∈ PM with �(1)= �(0),

〈I, ��〉 =
n∑

k=1

∫
�
e�1�12 . . .�(k−1)ke�k

∫
�
e�k�k(k+1) . . .�(n−1)ne�n .

Proof. The transport map satisfiesT (��) = T (�)T (�). The above formula comes from comparing the
upper-right-hand matrix entries ofT (��) andT (�)T (�). �

Givens, t ∈ [0,1], let �t
s denote the subpath of� from �(s) to �(t), defined by

�t
s(u)= �(s + (t − s)u).

The concatenation of�t
0 and�1t is equal to� after reparametrization, thus

Corollary 3.9. For anyt0 ∈ [0,1],

〈I, �〉 =
n∑

i=1

∫
�
t0
0

e�1�12 . . .�(i−1)ie�i

∫
�1t0

e�i�i(i+1) . . .�(n−1)ne�n .

A similar proposition (useful in doing induction on these integrals by length) follows immediately from
the definition:

Proposition 3.10. Letf(i−1)i(t)dt = �∗�(i−1)i .

〈I, �〉 =
∫ 1

0

(∫
�t
0

e�1�12 . . .e
�i−1

)
f(i−1)i(t)

(∫
�1t

e�i . . .�(s−1)se�s

)
dt.

Note that∫
�
e� =

∑
n∈N

∫
0� t1� t2� ···� tn �1

f (t1)f (t2) . . . f (tn)dt1 dt2 . . .dtn

=
∑
n∈N

1

n!
∫
t1,t2,...,tn∈[0,1]

f (t1)f (t2) . . . f (tn)dt1 dt2 . . .dtn

=
∑
n∈N

1

n!
(∫

0� t �1
f (t)dt

)n

= e
∫
� �

(wheref (t)dt = �∗�), hence our notation.

Proposition 3.11. For any� ∈ E1(M;C), � ∈ PM,∫
�
e� = e

∫
� �.
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Using this fact we can simplify integrals that have an exact exponent:

Proposition 3.12. Supposeg:M → C is aC∞ function. Then∫
e�1�12 . . .�(i−1)iedg�i(i+1) . . .�(n−1)ne�n

=
∫

e�1�12 . . . (e
−g�(i−1)i)(eg�i(i+1)) . . .�(n−1)ne�n .

Proof. Again letf(i−1)i(t)dt = �∗�(i−1)i , fi(i+1)(t)dt = �∗�i(i+1). Applying Proposition 3.10 twice,∫
�
e�1�12 . . .�(i−1)iedg�i(i+1) . . .�(n−1)ne�n

=
∫
0� t � t ′�1

(∫
�t
0

e�1�12 . . .e
�i−1

)
f(i−1)i(t)dt

×
(∫

�t ′
t

edf
)

fi(i+1)(t ′)dt ′
(∫

�1
t ′
e�i+1 . . .�(n−1)ne�n

)

=
∫
0� t � t ′�1

(∫
�t
0

e�1�12 . . .e
�i−1

)
f(i−1)i(t)dt

× e−g(t)+g(t ′)fi(i+1)(t ′)dt ′
(∫

�1
t ′
e�i+1 . . .�(n−1)ne�n

)
=
∫

�
e�1�12 . . . (e

−g�(i−1)i)(eg�i(i+1)) . . .�(n−1)ne�n,

as desired. �

Lastly, we show how the computation (7) of the transport function in terms of exponential iterated
integrals can be generalized. Suppose∇ = d − � is a connection on the trivial bundleCn ×M → M,
where� is an upper triangular matrix of 1-forms:

�=


�11 �12 �13 · · · �1n
0 �22 �23 · · · �2n
0 0 �33 · · · �3n
...

...
...

. . .
...

0 0 0 · · · �nn

 .

Matrix multiplication shows that the(i, j)th entry of∫
�m :=

∫
�� . . .�︸ ︷︷ ︸
m terms

is ∑
i=k1� ···�km+1=j

∫
�k1k2�k2k3 . . .�kmkm+1.
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(We take the sum to be zero ifi > j .) Thus by Theorem 3.2,

T = I +
 ∑

m>0,i=k1� ···�km+1=j

∫
�k1k2�k2k3 . . .�kmkm+1


1� i,j �n

.

Grouping repeated terms,

T =
 ∑

p>0,i=k1<···<kp=j,r1,...,rp �0

∫
�r1

k1k1
�k1k2�

r2
k2k2

�k2k3 . . .�kp−1kp�
rp
kpkp


1� i,j �n

=
 ∑

p>0,i=k1<···<kp=j

∫
e�k1k1�k1k2e

�k2k2�k2k3 . . .�kp−1kpe
�kpkp


1� i,j �n

.

The sums in this last expression are finite, so we have expressedT as a matrix of exponential iterated
integrals.
We state this result for future reference:

Proposition 3.13. Suppose∇ = d − � is a connection on the trivial bundleCn × M → M, where
� = (�ij )1� i,j �n is an upper triangular matrix of1-forms. Then the transport functionT :PM →
GLn(C) is equal to an upper triangular matrix of exponential iterated integrals whose exponents are from
the set{�11,�22, . . . ,�nn}.

4. Relative solvable representations

In order to describe the set of maps�1(M, x) → C that are given by exponential iterated integrals,
we need first to explore the properties of a particular class of algebraic representations associated to a
discrete group.
SupposeG is a group and�:G → (C∗)n is a diagonal representation. LetT ⊆ (C∗)n denote the Zariski

closure of�(G). By asolvable representation relative to� we mean an algebraic representationG → S

that fits into a commutative diagram

(8)

where the bottom row is exact,U is a unipotent group, and the image ofG in S is Zariski dense.
The canonical example of a relative solvable representation occurs whenG has an upper triangu-

lar action onCn. The quotient ofBn(C) by Un(C) is isomorphic toDn(C), hence any representation
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G → Bn(C) fits into a diagram

The Zariski closure ofG in Bn(C) is a relative solvable representation. In fact every relative solvable
representation can be obtained in this manner, as the next proposition and corollary show.

Proposition 4.1. Suppose1 → U → S → T → 1 is an exact sequence of algebraic groups with U
unipotent and T diagonalizable. Then any linear representationS → GL(V ) has a common eigenvector.

Proof. SupposeS → GL (V ) is a representation. SinceU is unipotent we may find a nonzero vector
v ∈ V fixed byU. LetW ⊆ V be the subspace spanned by{xv | x ∈ S}. Note thatU fixesW, since for
anyx ∈ S, y ∈ U ,

yxv = x(x−1yx)v = xv.

So the action ofSonW factors throughT; and sinceT is diagonalizable it has a common eigenvector in
W. �

Corollary 4.2. Suppose

(9)

is a relative solvable representation. Then there exists an embeddingS ↪→ Bn(C) for some n,under which
S ∩ Un(C)= U .

Proof. Let S ↪→ GL (V ) be a faithful representation. Proceeding by induction with the proposition
we may find a basis{v1, . . . , vn} ⊆ V that makes the action ofS upper triangular. Thus we obtain
the embeddingS ↪→ Bn(C). The intersection ofSwith Un(C) is the unipotent radical ofS, which is
preciselyU. �

We note in passing that the discussion above also explains the term “relative solvable.” Since every
connected solvable group is isomorphic to a closed subgroup ofBn(C) (see[6, Section 19]), every
connected solvable representation with Zariski dense image may be expressed as a relative solvable
representation. (The converse is not true, since a relative solvable representation need not be connected.)
By analogy we use the termrelative prosolvable representationto mean a commutative diagram of the

form of (8) withU prounipotent andT diagonalizable.

Proposition 4.3. Suppose1 → U → S → T → 1 is an exact sequence withU prounipotent and T
diagonalizable. Then the sequence splits, and any two splittings are conjugate by an element ofU.
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Proof. The assertion is well-known whenU is unipotent (see[1, Proposition 5.1]). Choose compatible
splittings for the unipotent quotients ofU and take the inverse limit.�

Suppose�:G → T ⊆ (C∗)n is a diagonalizable representation as before. There is a unique relative
prosolvable representationG → S�(G) → T satisfying the following universal mapping property:
if S is any prosolvable representation relative to�, then there is a homomorphismS�(G) → S of
G-representations that makes the following diagram commute:

S�(G) is the inverse limit of all solvable representations relative to�. This is a special case ofrelative
Malcev completion, a notion of Deligne’s; see[4], Section 2 for a full development.
As an initial example of relative prosolvable completion, supposeG is finitely generated and abelian.

ThenS�(G) must be abelian, so the splitting of Proposition 4.3 is a direct product:S�(G) ∼= U × T

whereU is prounipotent.U is abelian and therefore additive, and its dimension cannot exceed the free
rank ofG. This proves the next proposition.

Proposition 4.4. If �:G → T is a homomorphism from a finitely generated abelian group into a
diagonalizable group with Zariski dense image, thenS�(G) ∼= Gm

a × T where m is the free rank
of G.

5. Algebraic properties of exponential iterated integrals

SupposeL ⊂ E1(M;C) is aZ-module of 1-forms. LetEB(M)L denote the vector space of exponential
iterated integrals with exponents fromL. A closed exponential iterated integral is one that is constant
on homotopy classes of paths�: [0,1] → M relative to{0,1}. LetH 0(EB(M)L) denote the subspace
of closed iterated integrals inEB(M)L. In this section we show thatEB(M)L andH 0(EB(M)L) are
Hopf algebras, and that the groups SpecEB(M)L and SpecH 0(EB(M)L) are each an extension of a
prodiagonalizable group by a prounipotent group.
We also letEB(M, x)L denote the space of functions on the loop spacePx,xM given by exponential

iterated integrals with exponents fromL. (EB(M, x)L is the quotient ofEB(M)L by integrals such as∫
edf that vanish on every loop atx. We will also refer to the elements ofEB(M, x)L as exponential

iterated integrals.) WriteH 0(EB(M, x)L) for the subspace of functions constant on homotopy classes
in Px,xM. For convenience we will omit basepoints in the rest of this section, but everything we say for
EB(M)L andH 0(EB(M)L) applies as well toEB(M, x)L andH 0(EB(M, x)L).

Lemma 5.1. For anyZ-moduleL ⊆ E1(M;C), EB(M)L is closed under(pointwise) multiplication.

Proof. It is sufficient to show that for any�i , �′i ∈ L, �j (j+1),�′
j (j+1) ∈ E1(M;C),∫

e�1�12 . . .�(n−1)ne�n

∫
e�′1�′

12 . . .�
′
(n′−1)s′e

�′
n′ ∈ EB(M)L.
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A formula for this product can be written down, but it is rather cumbersome and unnecessary for our
purposes. We prove the result by induction onn+ n′. Let �: [0,1] → M be a path.
Note first that∫

�
e�
∫

�
e�′ = e

∫
� �e

∫
� �′ = e

∫
� �+�′ =

∫
�
e�+�′ .

This proves the base case. Forn+ n′�1 we apply Corollary 3.9 and Proposition 3.10 to split the product
into a sum of products of smaller-length integrals. Assume without loss of generality thatn�1. Let
f(n−1)n(t)dt = �∗�(n−1)n.∫

�
e�1�12 . . .�(n−1)ne�n

∫
�
e�′1�′

12 . . .�
′
(n′−1)n′e

�′
n′

=
∫
0� t �1

(∫
�t
0

e�1�12 . . .e
�n−1

)
f(n−1)n(t)dt

(∫
�1t

e�n

)

×
 n′∑

i=1

∫
�t
0

e�′1�′
12 . . .e

�′i
∫

�1t

e�′i�′
i(i+1) . . .e

�′
n′


=

n′∑
i=1

∫
0� t �1

(∫
�t
0

e�1�12 . . .e
�n−1

)(∫
�t
0

e�′1�′
12 . . .e

�′i

)

× f(n−1)n(t)dt
(∫

�1t

e�n

)(∫
�1t

e�′i�′
i(i+1) . . .e

�′
n′

)
By inductive assumption both of∫

e�1�12 . . .e
�n−1

∫
e�′1�′

12 . . .e
�′i and

∫
e�n

∫
e�′i�′

i(i+1) . . .e
�′
n′

may be expressed as exponential iterated integrals fromEB(M)L. Applying Proposition 3.10 then trans-
forms each summand in the resulting expression into an exponential iterated integral.�

ThereforeEB(M)L is a C-algebra. (A homomorphismC → EB(M)L is given byz �→ z
∫
e0.)

Clearly the product of two closed exponential iterated integrals is closed, thusH 0(EB(M)L) is likewise
aC-algebra.
The definition for comultiplication�:EB(M)L → EB(M)L⊗EB(M)L comes fromProposition 3.8:

�

∫
e�1�12 . . .�(n−1)ne�n

:=
n∑

i=1

∫
e�1�12 . . .�(i−1)ie�i ⊗

∫
e�i�i(i+1) . . .�(n−1)ne�n . (10)

For I ∈ EB(M)L and�, �, 	 ∈ PM, we have

〈�I, (�, �)〉 = 〈I, ��〉.
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The coassociative property of� follows:

〈(�⊗ 1)�I, (�, �, 	)〉 = 〈I, ��	〉 = 〈(1⊗ �)�I, (�, �, 	)〉.
And if I is constant on homotopy classes inPM, the function

(�, �) �→ 〈�I, (�, �)〉 = 〈I, ��〉
is constant on homotopy classes inPM × PM; thus� restricts to a comultiplication

�:H 0(EB(M)L) → H 0(EB(M)L)⊗H 0(EB(M)L).

The constant map onEB(M)L andH 0(EB(M)L) is given byI �→ 〈I,1x〉. (Note that〈I,1y〉 = 〈I,1x〉
for anyy ∈ M.) Proposition 3.7 gives an antipode map onEB(M)L:

i:
∫

e�1�12 . . .�(n−1)ne�n = (−1)n−1
∫

e−�n�(n−1)n . . .�12e
−�1.

By Proposition 3.6,

〈(1⊗ i)�I, �〉 = 〈I, ��−1〉 = 〈I,1x〉.
And as with�, i restricts to an antipode map onH 0(EB(M)L). We have thus proven:

Proposition 5.2. For anyZ-module of1-formsL ⊆ E1(M;C),

(EB(M)L,�, i) and (H 0(EB(M)L),�, i)

are Hopf algebras.

To demonstrate the structure of the group SpecEB(M)L we need a few definitions. LetE(M)L ⊆
EB(M)L denote theC-algebra generated by integrals of the form

∫
e� with � ∈ L. Since�

∫
e�= ∫ e�⊗∫

e�, E(M)L is the coordinate ring of a prodiagonalizable group. The inclusioni:E(M)L → EB(M)L

gives a surjective homomorphism

i∗: SpecEB(M)L → SpecE(M)L.

We show that the kernel of this homomorphism is a prounipotent group. The coordinate ring of the kernel
is EB(M)L/I0, whereI0 is the ideal generated by integrals of the form

∫
e� − 1, � ∈ L. Consider the

filtration of ideals

I0 ⊆ I1 ⊆ I2 ⊆ · · · ,
where

Ij = 〈I − 〈I,1x〉 | I ∈ EB(M)L of length�j〉
This filtration corresponds to a filtration of subgroups in SpecEB(M)L/I0. Forj �1, the action of� on
Ij /Ij−1 is given by

�

(∫
e�1�12 . . .e

�j+1 + Ij−1
)

=
∫

e�1�12 . . .e
�j+1 ⊗ 1+ 1⊗

∫
e�1�12 . . .e

�j+1 + (Ij−1⊗ Ij + Ij ⊗ Ij−1).
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ThusEB(M)L/I0 is indeed a prounipotent group. We have constructed an exact sequence of groups

1→ SpecEB(M)L/I0 → SpecEB(M)L → SpecE(M)L → 1,

where SpecEB(M)L/I0 is prounipotent and SpecE(M)L is prodiagonalizable.
Now if we assume thatL consists of closed 1-forms, the algebraE(M)L is contained inH 0(EB(M)L),

andweobtain a similar exact sequence for SpecH 0(EB(M)L). LetI ′0=I0∩H 0(EB(M)L). The sequence

1→ SpecH 0(EB(M)L)/I ′0 → SpecH 0(EB(M)L) → SpecE(M)L → 1

is a quotient of the one above by a prounipotent subgroup.
We summarize this discussion.

Theorem 5.3. For anyZ-moduleL ⊆ E1(M;C), the groupSpecE(M)L is prodiagonalizable, and there
is an epimorphism

SpecEB(M)L → SpecE(M)L

whose kernel is prounipotent. If L consists of closed1-forms, there is an epimorphism

SpecH 0(EB(M)L) → SpecE(M)L

whose kernel is prounipotent.

6. The solvable de Rham theorem

Suppose thatL is aZ-module of closed 1-forms. Continuing the notation of Section 5, letE(M, x)L ⊆
H 0(EB(M, x)L) denote the subalgebra generated by the integrals

∫
e�, � ∈ L. Consider the homomor-

phism

�: �1(M, x) → SpecE(M, x)L,

where[�]maps to the ideal of integrals that vanish on�. This representation is prodiagonalizable and has
Zariski dense image. If there is a finite set{�1, . . . , �n} ⊆ L that spans the image ofL in H 1(M;C) then
� is an algebraic representation, and it may be expressed as�: �1(M, x) → T ⊆ (C∗)n,

�(�)=
(∫

�
e�1, . . . ,

∫
�
e�n

)
.

We shall call� “the representation defined byL.”
As noted in the introduction, Chen proved that the Hopf algebra of closed iterated integrals onPx,xM is

the coordinate ring of the unipotent completion of�1(M, x). Previous work has been done on extending
this isomorphism: Hain in[5] constructed a class of integrals that compute the coordinate ring of the
Malcev completion of�1(M, x) relative to any algebraic representation�: �1(M, x) → S. These integrals
are written in the form∫

(�1�2 . . .�r |�),

where the�i are 1-forms on a principalS-bundle overM, and� is a matrix entry ofS.
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The solvable de Rham theorem shows that the coordinate ring of the Malcev completion may be
computed using the more geometric (and more manageable) class of exponential iterated integrals, in the
case where� is a diagonalizable representation defined by someZ-moduleL ⊆ E1(M;C).

Theorem 6.1(The�1 solvable de Rham theorem). Suppose L is aZ-module of closed1-forms whose
image inH 1(M;C) is finitely generated,and that�: �1(M, x) → T ⊆ (C∗)n is the representation defined
by L. Then integration induces a Hopf algebra isomorphism

H 0(EB(M, x)L) ∼= O(S�(�1(M, x))).

Proof. The representation

�1(M, x) → SpecH 0(EB(M, x)L)

has Zariski dense image, and by Theorem 5.3 it is prosolvable relative to the diagonal representation�.
Thus by the universal mapping property forS�(�1(M, x)) (see Section 4) there exists an injection

H 0(EB(M, x)L) ↪→ O(S�(�1(M, x))).

To show that this map is surjective it will suffice to show that exponential iterated integrals compute the
coordinate ring of any solvable representation of�1(M, x) relative to�. Our method is similar to that in
Hain’s proof of the�1 deRham theorem for ordinary iterated integrals in[3]. Henceforth let�=�1(M, x).
Suppose
: � → S is a solvable representation relative to�. By Corollary 4.2, we may assume thatSis a
group of upper triangularn× n matrices whose diagonal entries are fromO(T ), meaning that they may
be written as

∫
e�k with �k ∈ L, k = 1, . . . , n.

LetCn = V n ⊃ V n−1 ⊃ · · · ⊃ V 0= {0} denote the standard filtration,
V k = {(z1, . . . , zk,0, . . . ,0) | z1, . . . , zk ∈ C},

which is stabilized byS.
Let M̃ denote the universal cover ofM. From the trivial flat bundleCn × M̃ we can obtain a bundle

overM with monodromy
: let

E = �\(Cn × M̃)

where� acts viag · (v,m) �→ (
(g)(v),mg−1). The filtrationV n ⊇ V n−1 ⊇ · · · ⊇ V 0 induces a
filtration of bundles

E = En ⊇ En−1 ⊇ · · · ⊇ E0= 0,

where the monodromy of the line bundleEk/Ek−1 is given by
∫
e�k . We obtain for eachka trivialization

C ×M → Ek/Ek−1

via transport fromx with respect to the connectiond − �k. Composing these maps with splittings
Ek/Ek−1 → Ek, yields mapsC × M → Ek for k = 1, . . . , n. Adding these maps together we ob-
tain an isomorphism

Cn ×M → E.



366 C. Miller / Topology44 (2005) 351–373

The induced connection form onCn ×M is an upper triangular matrix with diagonal entries�1, . . . , �n.
By Proposition 3.13, the monodromy representation�: � → S is equal to a matrix of exponential iterated
integrals with exponents from{�1, . . . , �n} ⊆ L. These matrix entries generate the ringO(S) and this
completes the proof.�

It is natural now to ask which diagonalizable representations of�1(M, x) are defined by a module of
closed 1-forms.

Proposition 6.2. If �: �1(M, x) → T ⊆ (C∗)n is a diagonalizable representation, then there exists
a definingZ-moduleL ⊆ E1(M;C) for � if and only if the induced mapH1(M) → T is trivial on
Tor(H1(M)).

Proof. If � is a closed 1-form then the additive homomorphism∫
�:H 1(M) → C

kills TorH 1(M), and the same is true for
∫
e�:H 1(M) → C∗. So any diagonalizable representation

defined by 1-forms kills TorH 1(M).
For the converse, suppose�: � → C∗ is a homomorphism that kills TorH 1(M). Then� induces a

map�′:H1(M;C) → C∗. Choose a basis{zi}i for H1(M;C), and choose elementsfi ∈ C such that
efi = �′(zi). By the ordinary de Rham theorem we may find a closed 1-form� such that

∫
� takeszi to

fi . Thus� ∼=
∫
e�. This method extends easily to define arbitrary diagonalizable representations in terms

of 1-forms. �

Combining this result with the de Rham theorem gives a description for

H 0(EB(M, x)B
1(M;C)), (11)

the ring of all closed exponential iterated integrals with closed exponents. If� → G is an algebraic
representation with Zariski dense image, thenO(G) is computed by exponential iterated integrals with
closed exponents if and only if the reductive quotientG/Gu is a diagonalizable representation that kills
TorH 1(M). The ring (11) is the direct limit ofO(G) over all such representations.

7. The unipotent radical of the relative solvable completion

Recall thatH → U(H) denotes the unipotent completion of the groupH, or equivalently, the solvable
completion ofH relative to the trivial representationH → {1}. The functorS� is right exact in the sense
that

U(ker �) → S�(G) → S�(im �) → 1

is exact for any groupG and diagonalizable representation�:G → T . This is easily seen from the
universal mapping property.
The main theorem of this section asserts conditions under whichU(ker �) → S�(G) is an injection.

The proof will require an understanding of howG acts by conjugation on the solvable completions of
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its subgroups. We begin with a discussion of the automorphism groups of prounipotent and relative
prosolvable groups.
We will make free use of the equivalence of categories,

{prounipotent algebraic groups/C} ←→ {pronilpotent Lie algebras/C}
provided by theexpandlogmaps.
SupposeU is a prounipotent group, andU = U0 ⊇ U1 ⊇ U2 ⊇ · · · is a filtration by closed normal

subgroups such that
⋂∞

i=0Ui = {1}. Let Aut{Ui}U denote the group of automorphisms ofU that stabilize
{Ui}.4 Consider the graded vector space obtained from the Lie algebra ofUwith the induced filtration
{ i}:

gr{ i}  =  / 1⊕  1/ 2⊕  2/ 3⊕ · · ·
The kernel of the morphism

�: Aut{ i} → Aut gr{ i} (12)

is prounipotent, and the same is true of the equivalent morphism

�: Aut{Ui}U → Aut gr{ i}  . (13)

If the chosen filtration is the central series{U(1),U(2), . . .} of U, gr{ (i)} has the additional structure of
a graded Lie algebra generated by / (2). So an automorphism ofgr{ (i)} is determined by its action
on / (2):

�: Aut{U(i)}U → Aut gr{ (i)} ↪→ GL ( / (2)). (14)

Now suppose that

1−→ U −→ S
�−→ T −→ 1,

is an exact sequence whereT is diagonalizable. Let Aut�,{Ui}S denote the group of automorphisms ofS

that are�-invariant and stabilize{Ui}. We show that the kernel of the morphism

Aut�,{Ui}S → Aut gr{ i} , (15)

like ker � above (13), is prounipotent. Fix (by Proposition 4.3) a diagonalizable subgroupT0 ⊆ S

that maps isomorphically ontoT. Let ker� act onS = T0�U leavingT0 fixed, and letU act onS by
conjugation. These actions induce a morphism,

ker ��U → Aut�,{Ui}S,

(
, u) �→ 
(u(·)u−1).
We claim that the image of this morphism is exactly the kernel of (15). Suppose that
 ∈ Aut�,{Ui}S is an
automorphism that fixesgr{ i} . Since
(T0) ⊆ S is another closed subgroup that maps isomorphically
ontoT, we may findu ∈ U such thatu
(T0)u

−1=T0. Sinceu
(·)u−1 is�-invariant, it therefore fixesT0;

4To be precise, Aut{Ui }U is the functor that takes aC-algebraA to the group of automorphisms ofU×CSpecA that preserve
{Ui×CSpecA}.
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and since it also fixesgr{ i} , we may find it in the image of ker�. This proves the claim. And indeed
ker ��U is prounipotent since both ker� andU are.
We summarize this discussion.

Lemma 7.1. Suppose that

1−→ U −→ S
�−→ T −→ 1,

is an exact sequence of groups in whichT is diagonalizable andU is prounipotent. Suppose thatU=U0 ⊇
U1 ⊇ U2 ⊇ · · · is a filtration by closed normal subgroups such that

⋂∞
i=0Ui = {1}. Then the kernel of

the morphism

Aut�,{Ui}S → Aut gr{ i} 
is prounipotent.

We are now ready to state the main theorem. Suppose that 1→ K → G → A → 1 is an exact
sequence of groups withA abelian and finitely generated. Note that on the vector spaceH1(K;C) (or
equivalently,U(K)/[U(K),U(K)]) there is an induced conjugation actionG → AutH1(K;C), which
is abelian. We are interested in the case when this action is algebraic, and thus may be written as

G → T × (Ga)
m → AutH1(K;C),

whereT is a diagonalizable group.

Theorem 7.2. Suppose1 → K → G → A → 1 is an exact sequence of groups with A abelian and
finitely generated, and suppose that the conjugation actionG → AutH1(K;C) factors as

G → T × (Ga)
m → AutH1(K;C),

where�:G → T is a diagonalizable representation with Zariski dense image. Then

1→ U(K) → S�(G) → S�(im �) → 1 (16)

is an exact sequence.

Proof. Let

A= Z/(n1)⊕ Z/(n2)⊕ · · · ⊕ Z/(nr),

with ni ∈ Z. We induct onr. LetG′ ⊆ G be the inverse image ofZ/(n1)⊕ · · · ⊕ Z/(nr−1), and assume
thatU(K) ↪→ S�(G

′).
LetG denote the pushout of the diagram
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ThenG fits into an exact sequence

1→ S�(G
′) → G → Z/(nr) → 0. (17)

For convenience, we considerU(K) andS�(G
′) as subgroups ofG.

We desire a splitting of the sequence (17). Ifnr = 0 this is straightforward. Otherwise, choose an
element ofG that maps to(0,0, . . . ,0,1) ∈ A, and letg denote its image inG. Thengnr is contained in
the prounipotent groupU(K), so it has a uniquenr th rootu inU(K), which commutes withg. Replacing
gwith u−1g we havegnr = 1, hence

G= 〈g〉�S�(G
′).

Lemma 7.1will show that the conjugation action ofg onS�(G
′) is algebraic. Filter the prounipotent

kernel ofS�(G
′) → T via the central series ofU(K):

U0= ker[S�(G
′) → T ]

U1=U(K)

U2= [U1,U1]
U3= [U1,U2]
U4= [U1,U3]

. . .

This filtration is evidently stabilized byg. The action ofg on  0/ 1 is trivial, and the action ofg on
the graded Lie algebragr{ 1, 2,...} is isomorphic to the action ofg on  1/ 2 ∼= H1(K;C) (recall the
discussion prior to (14)), hence the commutative diagram

The horizontal map〈g〉 → Aut gr{ i} factors throughS�(〈g〉), and the downwardmap has prounipotent
kernel (Lemma 7.1), therefore the diagonal map also factors throughS�(〈g〉) by the universal mapping
property. Thus we can “thicken”G further:

G= 〈g〉�S�(G
′) ↪→ S�(〈g〉)�S�(G

′).

This completes the proof, asS�(〈g〉)�S�(G
′) containsU(K) and is isomorphic toS�(G), as can be seen

from the universal mapping property.�

8. Exponential iterated integrals on complex curves and fibered knot spaces

In this section we consider two examples that illustrate the�1 de Rham theorems and Theorem 7.2.
We are interested in manifolds for which the ring of closed exponential iterated integrals can be

calculated explicitly. We have earlier referred to the problem that the same mapPx,xM → C may be
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computed by two different integral expressions. This problem can sometimes be solved by putting a
complex structure onM and restricting attention to integrals composed from holomorphic 1-forms.
Consider first the case whenM is a smooth affine complex curve. Since�1(M, x) is free, the unipotent

completion�1(M, x) → U(�1(M, x)) is a faithful representation,5 hence ordinary iterated integrals are
adequate to distinguish any two elements of�1(M, x). The next proposition provides a description for
H 0(B(M, x)).

Proposition 8.1. Suppose(M, x) is a smooth affine complex curve. Closed iterated integrals separate
the elements of�1(M, x). Let {�1, . . . ,�n} be a basis for the space of closed holomorphic1-forms on
M. Then

B= {1} ∪
{∫

�j1 . . .�jk | k >0, (ji) ∈ {1, . . . , n}k
}

(18)

is a basis forH 0(B(M, x)).

Proof. The key observations are that each class inH 1(M;C) has a unique holomorphic representative,
and that the wedge product of any two closed holomorphic 1-forms is zero. The fact thatB is a basis for
H 0(B(M, x)) actually follows from a general theorem of Chen’s[2, Theorem 4.1.1]which deals with
the complex of higher iterated integrals. We provide here an elementary proof for the sake of clarity.

Lemma 8.2. Any connection on M of the formd− �,where� is a matrix of closed holomorphic1-forms,
is flat. Any flat connectiond −�,with � a nilpotent upper triangular matrix of1-forms, is conjugate via
a matrixG:M → Un(C) to such a connectiond − �.

Proof. The first assertion is immediate since the curvature ofd − � is d� + � ∧ � = 0. For the second,
take anyk ∈ {1, . . . , n− 1} and suppose

d −


0 �12 �13 �14 · · · �1n
0 0 �23 �24 · · · �2n
0 0 0 �34 · · · �3n
...

...
...

...
. . .

...

0 0 0 0 · · · 0

 . (19)

is a flat connection such that each entry�ij with j − i < k is closed and holomorphic. The equation
d�+ � ∧ �= 0 implies that the 1-forms�ij for which j − i = k must be closed. Choose for each such
entry an exact 1-formdf ij such that�ij − dfij is holomorphic. LetF be then× nmatrix withFij equal
to fij if j − i = k and zero otherwise. The matrix�′ satisfying

d − �′ = (I + F)−1(d − �)(I + F) (20)

has�′
ij = �ij − dFij for j − i�k. Continuing by induction onkwe obtain the desired matrix�. �

Now since any closed iterated integralI on M arises from the monodromy of such a connection
d − � (recall the proof of Theorem 6.1), it may be expressed in terms of closed holomorphic 1-forms.

5 For a proof see Appendix A3 in[7], Proposition 3.6(a) in particular.
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And linearity∫
	1 . . . (z	i + z′	′i) . . . 	n = z

∫
	1 . . . 	i . . . 	n + z′

∫
	1 . . . 	′i . . . 	n,

allows us then to expressI as a sum of elements fromB.
It remains only to show thatB is a linearly independent set; this follows from a straightforward

manipulation. Let�1, . . . , �n be free generators for�1(M, x); it suffices to prove the proposition for
any chosen basis{�j }j , so let us assume{�j }j is such that{[�j ]}j ⊆ H 1(M;C) is the dual basis for
{[�j ]}j ⊆ H1(M;C). Suppose∑

I∈B′⊆B

zI I = 0 (21)

is a nontrivial finite sumwith eachzI nonzero. Evidently such an expressionmust include a term of length
at least 2. SupposezI0I0= zI0

∫
�i1 . . .�ik is a term of maximal length. The transformation

I �→ I − 〈�I, (·, �ik )〉
(applying the comultiplication formula (10) formally) turns (21) into a nontrivial sumwith terms of length
�k − 1. Continuing in this manner yields a contradiction. This completes the proof.�

Now we consider the example of a fibered knot complement. SupposeK ⊆ S3 is a tame knot and that
S3\K has an infinite-cyclic covering map

�: (R × F, (0, x)) → (S3\K, x),

whose deck transformationsn, n ∈ Z are given by1(t, f ) = (t + 1,
(f )) where
:F → F is
a homeomorphism.F is a noncompact 2-manifold which we may take to be an affine complex curve,
making the previous discussion useful. Note that pulling back an exponential iterated integral onS3\K
with closed exponents,

�∗
∫

e�0�01 . . .�(n−1)ne�n =
∫

e�∗�0�∗�01 . . .�
∗�(n−1)ne�∗�n,

produces an exponential iterated integral with exact exponents, which may be rewritten via Proposition
3.12 as an ordinary iterated integral. LetL be theZ-module of closed 1-forms that defines the diagonal
part of the conjugation representation

�1(S
3\K, x) → AutH1(R × F ;C).

The content of Theorem 7.2 is that the map

�∗:H 0(EB(S3\K, x)L) → H 0(B(R × F, (0, x)))=H 0(B(F, x)) (22)

is surjective. Combining this fact with Proposition 8.1 shows thatH 0(EB(S3\K, x)L) separates the
elements of�1(S3\K, x). It also allows one to describeH 0(EB(S3\K, x)L) by looking at the pre-image
of the basisB. We demonstrate this approach with the particular example of the trefoil knot.
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It is convenient (for coordinates) to consider a complex manifold that is of the same homotopy type as
the complement of the trefoil. Assume

S3 = {(x, y) | |x|2+ |y|2 = 1} ⊆ C2.

The knot,

can be specified as the intersection ofS3 with the singular curve

C = {(x, y) | x3+ y2= 0},
andC2\C deformations retracts ontoS3\C∩S3. The infinite cyclic cover ofC2\C may written asC×F ,
whereF = {(x, y) | x3+ y2= 1} ⊆ C2:

�:C × F → C2\C
(t, x, y) �→ (e(2�i/3)t x,e�it y).

The homeomorphism
:F → F that generates the group of deck transformations is given by


(x, y)= (�−26 x, �−36 y).

The closed holomorphic 1-forms

�−1= dx

y
, �1= x dx

y

onF diagonalize the action of
∗ onH 1(F ;C), for


∗�−1= �6�−1, 
∗�1= �−16 �1.

Extend the 1-forms�−1 and�1 toC × F by pulling back along the projection map toF. The 1-forms

e−(�i/3)t�−1, e−(�i/3)t�1,
�i

3
dt ∈ E1(C × F ;C)

are each invariant under the action of the group of deck transformations. Let�◦
1, �

◦−1, and� denote the
1-forms that they induce onC2\C, respectively.
Consider the integral

I =
∫

�◦
�1e

�1��◦
�2e

(�1+�2)� . . .�◦
�ne

(�1+···+�n)�, (23)

where�1, . . . , �n ∈ {±1}. Applying Proposition 3.12 we find
�∗I =

∫
��1��2 . . .��n .

Integrals of this form provide a basis forH 0(B(C×F, (0, x))), as we know. The exact sequence (16) from
Theorem 7.2 implies thatH 0(EB(C2\C, x)〈�〉) is isomorphic as aC-algebra toH 0(B(C×F, (0, x)))⊗
O(S�(im �)), hence the following.



C. Miller / Topology44 (2005) 351–373 373

Proposition 8.3. The set of integrals∫
�m

∫
ek�

∫
�◦

�1e
�1��◦

�2e
(�1+�2)� . . .�◦

ne
(�1+···+�n)� (24)

with k ∈ Z,m, n�0,and�1, . . . , �n ∈ {±1}, is a basis forH 0(EB(C2\C, x)〈�〉).

The comultiplication formula (10) is easily applied to these integrals, giving us an effective description
for the Hopf algebraH 0(EB(C2\C, x)〈�〉).
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