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a b s t r a c t

Trypanosomatids present unusual organelles, such as the kinetoplast that contains the mitochondrial
DNA arranged in catenated circles. The nucleus of these protozoa presents distinct domains during inter-
phase as well as a closed mitosis. DNA topoisomerases modulate the topological state of DNA by regulating
supercoiling of the double-stranded DNA during replication, transcription, recombination and repair.
Because topoisomerases play essential roles in cellular processes, they constitute a potential target for
antitumour and antimicrobial drugs. In this study, the effects of various topoisomerase inhibitors and
DNA-binding drugs were tested on the cellular proliferation and ultrastructure of the Trypanosoma cruzi
epimastigote form Blastocrithidia culicis was used as a comparative model, which has a more relaxed
kinetoplast DNA (kDNA) organization. The results showed that the eukaryotic topoisomerase I inhibitors
camptothecin and rebeccamycin were the most effective compounds in the arrest of T. cruzi prolifer-
ation. Of the eukaryotic topoisomerase II inhibitors, mitoxantrone, but not merbarone, was effective
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against cell proliferation. The prokaryotic topoisomerase II inhibitors norfloxacin and enoxacin targeted
the kinetoplast specifically, thus promoting ultrastructural kDNA rearrangement in B. culicis. Of the DNA-
binding drugs, berenil caused remarkable kDNA disorganization. With the exception of camptothecin,
there have been no previous evaluations of the compounds tested here on trypanosomatid ultrastructure.
In conclusion, inhibitors of the same class may have different effects on trypanosomatid proliferation and
ultrastructure. The results obtained in this work may help to reveal the mechanism of action of different

in try
nd th
topoisomerase inhibitors
© 2010 Elsevier B.V. a

. Introduction

DNA topoisomerases are enzymes that regulate the DNA topo-
ogical state by introducing or removing supercoiling, knots or
atenations in DNA molecules. The dynamic nature of DNA is
equired for its essential biological functions such as replication,
ranscription, recombination, repair and DNA segregation [1–3].
ype I enzymes modify DNA topology by a single-stranded DNA
assage mechanism and are usually referred to as topoisomerase
(topo I). Type II enzymes (topoisomerase II, or topo II), which

ncludes eukaryotic topo II and the bacterial DNA gyrases, hydrolyse

TP and alter topology by a double-stranded DNA passage mecha-
ism.

The family Trypanosomatidae includes protozoa of medical
mportance such as Leishmania spp., Trypanosoma brucei and

∗ Corresponding author. Tel.: +55 21 2562 6580; fax: +55 21 2260 2364.
E-mail address: motta@biof.ufrj.br (M.C.M. Motta).

924-8579 © 2010 Elsevier B.V. and the International Society of Chemotherapy. 
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Trypanosoma cruzi, the latter being the aetiological agent of Cha-
gas disease. These protozoan cells contain a single nucleus that
presents distinct domains during interphase and maintains its
envelope integrity during closed mitosis, and the chromosomes are
not observed [4–7]. The single mitochondrion presents an enlarged
portion containing its DNA, the kinetoplast, which is composed of
interlocked minicircles and maxicircles that form a network with
a unique arrangement in nature. During replication of kinetoplast
DNA (kDNA), the covalently closed minicircles are released from
the network by topo II enzymes. Following replication, the free cir-
cles migrate to the antipodal sites, which correspond to enzyme
complexes that are located 180◦ apart. Finally, minicircles are re-
attached to the kDNA disk and are distributed through the network,
before kinetoplast scission [8–10].

Open access under the Elsevier OA license.
Topoisomerases I and II have been characterized in several try-
panosomatids [11–19]. Topo I activity is ATP-independent and the
enzyme is composed of two subunits encoded by two different
genes, with the C-terminal catalytic domain being highly conserved
[17]. Topo II has ATP-dependent and -independent decatenating

ss under the Elsevier OA license.
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ctivities and presents separate nuclear and mitochondrial-
ncoding genes [20,21]. With regard to cellular localization, such
nzymes are found in the nucleus and in the kinetoplast of try-
anosomatid protozoa [22].

Agents that affect DNA topoisomerases have proven to be use-
ul for cancer treatment, but there have been less extensive studies
n trypanosomatids. Most topo I-targeted drugs act by stabiliz-
ng the covalent topoisomerase–DNA complex, thus preventing
e-ligation. As a consequence, topo I inhibitors exhibit cell cycle
rrest with activation of DNA damage signals that induce DNA
epair mechanisms or apoptosis [23–26]. Topo II inhibitors such
s nalidixic acid, etoposide and mitoxantrone enhance irreversible
opo II-mediated DNA cleavages, thus transforming this essential
nzyme into a potent cellular toxin. Conversely, topo II inhibitors,
hich affect enzyme activity, do not have the ability to stim-
late DNA cleavage like novobiocin, aclarubicin, merbarone and
taurosporine [27–29]. DNA-binding drugs such as berenil, pen-
amidine and related diamidine analogues are catalytic inhibitors
hat may prevent the binding of topoisomerase to DNA, stabilize
on-covalent DNA–topoisomerase complexes or prevent the bind-

ng of ATP to the enzyme [30–32]. In trypanosomatids, a few reports
ave proposed that such groove-binder drugs interact preferen-
ially with AT-rich mitochondrial DNA rather than with nuclear
NA. This is in agreement with the proposal that topo II is unable

o interact with DNA sites where the minor groove is occupied by
igand drugs [33–35].

In this study, the effects of the eukaryotic topo I inhibitors
amptothecin and rebeccamycin, the eukaryotic topo II inhibitors
itoxantrone and merbarone, the prokaryotic topo II (gyrase)

nhibitors norfloxacin and enoxacin, and the groove-binder com-
ounds berenil and distamycin were tested in the proliferative
pimastigote form of T. cruzi with regard to protozoan proliferation
nd ultrastructure. In assays using prokaryotic topo II inhibitors
nd DNA-binding drugs, which mainly target the kinetoplast, the
onoxenic trypanosomatid Blastocrithidia culicis was used as a

omparative model as it presents a looser kDNA arrangement that
s usually more sensitive to drugs that target the kinetoplast.

. Materials and methods

.1. Protozoa culture

Epimastigote forms of T. cruzi and B. culicis were grown for 24 h
t 28 ◦C in liver infusion tryptose [36] or Warren medium [37],
espectively, supplemented with 10% fetal calf serum.
.2. Chemicals

Rebeccamycin, camptothecin and mitoxantrone, as well as
erbarone, were diluted in dimethyl sulphoxide (DMSO) and
ere stored at concentrations of 0.1, 5 and 10 mM, respectively.

ig. 1. Growth inhibition of Trypanosoma cruzi epimastigote form following treatment wit
ata are the average of three independent experiments. DMSO, dimethyl sulphoxide.
timicrobial Agents 37 (2011) 449–456

Berenil (diminazene aceturate) and distamycin were dissolved in
water at 5 mM and 1 mM, respectively. Norfloxacin and enoxacin
were diluted in 100 mM NaOH solution. All drugs were purchased
from Sigma-Aldrich (São Paulo, Brazil) and were stored at 4 ◦C.

2.3. Drug treatment

Cells were grown as previously described and drugs were added
to the culture medium after 24 h of growth. Drug concentrations for
treatment were determined according to data presented in previ-
ous reports [28,34,38–40] and were used as follows: camptothecin,
1, 5, 10 and 50 �M; rebeccamycin, 1, 5 and 10 �M; merbarone, 50,
100, 200 and 300 �M; mitoxantrone, 5, 10, 20 and 50 �M; nor-
floxacin and enoxacin, 156, 470, 940 and 1560 �M; berenil, 2, 10,
20 and 50 �M; and distamycin, 5, 10, 20, 40 and 100 �M. During
96 h of cell growth, trypanosomatids were collected every 24 h for
cell counting in a Neubauer chamber or for transmission electron
microscopy (TEM). To compare control and treated groups, paired
t-tests were applied to results using the 95% confidence interval
(GraphPad Prism version 5.00 for windows; GraphPad Software
Inc., San Diego, CA).

To determine cell viability, control and treated cells were incu-
bated with 0.1% trypan blue diluted in distilled water for 5 min.
After this period, live protozoa remained uncoloured, while dead
cells were permeable to the blue solution and thus stained blue.

2.4. Transmission electron microscopy

Protozoa were fixed in 2.5% glutaraldehyde diluted in 0.1 M
cacodylate buffer (pH 7.2) at room temperature and were washed
in the same buffer. Cells were post-fixed in 0.1 M cacodylate buffer
containing 1% OsO4 and 0.8% potassium ferricyanide for 1 h. Then,
protozoa were washed in the same buffer and were dehydrated
in a graded series of acetone and embedded in Epon (Electron
Microscopy Sciences, Hatfield, PA). Ultrathin sections were stained
with uranyl acetate and lead citrate and were observed using a
Zeiss 900 transmission electron microscope (Zeiss, Oberkochen,
Germany).

3. Results

Cell growth of T. cruzi epimastigote forms was highly affected
after treatment with camptothecin, resulting in the lowest 50%
inhibitory concentration (IC50) value (2.08 �M) of all tested
inhibitors. This compound promoted a dose-dependent inhibitory
effect that induced cell proliferation arrest after treatment with 5,

10 and 50 �M for 48 h (Fig. 1a). Rebeccamycin also induced signifi-
cant growth inhibition, but its IC50 value (6.04 �M) was higher than
that for camptothecin. Rebeccamycin did not inhibit cell prolifer-
ation at its lowest concentration (1 �M) and growth impairment
was only observed after treatment of protozoa with 10 �M for

h the eukaryote topoisomerase I inhibitors (a) camptothecin and (b) rebeccamycin.
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Fig. 2. (a) Non-treated epimastigote form of Trypanosoma cruzi showing the nucleus
(n) with the peripherally condensed heterochromatin (ht), nucleolus (nu), kine-
toplast (k) and flagellum (f). (b and c) T. cruzi treated for 48 h with 10 �M of
camptothecin (b) or rebeccamycin (c). Note the unpacked heterochromatin reveal-
A.A. Zuma et al. / International Journal

4 h (Fig. 1b). Ultrastructural features of the cells were analysed by
EM. The condensed chromatin, which is usually found close to the
uclear envelope and around the nucleolus (Fig. 2a) was unpacked,
evealing round and electron-dense structures (Fig. 2b and c,
rrows). Such alterations were observed following cell growth in
he presence of 10 �M of camptothecin and rebeccamycin for 48 h.
igher drug concentrations, such as 50 �M, induced mitochondrial

welling (Fig. 2b and c, asterisk), but the kinetoplast ultrastructure
as not affected.

Merbarone did not promote significant growth inhibition in
. cruzi epimastigotes. Cellular proliferation was not affected fol-
owing treatment with 100 �M for 72 h, and treatment with a
igher drug concentration (300 �M) decreased protozoa growth
y only 50% (Fig. 3a). Conversely, mitoxantrone induced a strong

nhibitory effect on cellular proliferation (IC50 = 5.37 �M) that was
imilar to that obtained following treatment with camptothecin
nd rebeccamycin. Cell proliferation was inhibited after treatment
ith 5 �M for 24 h and growth arrest was observed when higher
oses (10–50 �M) were applied for 48 h (Fig. 3b). Merbarone-
nd mitoxantrone-treated cells exhibited cristae swelling in the
itochondrion following drug treatment (Fig. 4a). Curiously,
itoxantrone promoted the loss of reservosome content (Fig. 4b)

ollowing treatment with higher doses (20–50 �M) for 72 h.
Norfloxacin had a dose-dependent inhibitory effect on cell pro-

iferation of T. cruzi epimastigotes. However, inhibition of cell
roliferation was only observed after drug treatment with 156 �M
or 48 h (Fig. 5a). Norfloxacin was also tested in B. culicis, a species
hat has been used as a comparative model for presenting a looser
DNA network that is usually more sensitive to drugs targeting the
inetoplast [39,41]. The results showed that cell proliferation of B.
ulicis was more affected by norfloxacin than that of T. cruzi. Blas-
ocrithidia culicis exhibited cell growth arrest after treatment with
56 �M norfloxacin for 48 h (Fig. 5b). These data gave an IC50 value
hat is five-fold lower in B. culicis (IC50 < 156 �M). Enoxacin was

ore effective in blocking cell proliferation of both species (Fig. 5c
nd d). In T. cruzi, the number of parasites was 50% lower compared
ith control cells after treatment with 156 �M of drug for 48 h

Fig. 5c). This result was only observed in protozoa treated with
orfloxacin at 974 �M (the IC50) for 48 h (Fig. 5a). Blastocrithidia
ulicis proliferation was also more sensitive to enoxacin, as cell
rowth impairment was observed in trypanosomatids treated with
56 �M of drug for 48 h (Fig. 5d). Norfloxacin induced significant
ytoplasmic vacuolation in T. cruzi (Fig. 6a), and enoxacin-treated
ells exhibited an enlarged space between the inner and outer
embranes that enclose the nucleus following treatment with

56 �M for 48 h (Fig. 6b). Trypanosoma cruzi did not show ultra-
tructural modifications either in kDNA or nuclear DNA following
reatment with norfloxacin or enoxacin (Fig. 6a and b). However,
n B. culicis the kDNA showed compaction after treatment with
orfloxacin and enoxacin. These inhibitors promoted the forma-
ion of thicker DNA fibre strands as well as an electron-dense
and at the centre of the kinetoplast network. Such ultrastruc-
ural effects were more intense following norfloxacin treatment
Fig. 6d and e).

Berenil is a DNA minor groove-binding compound and is con-
idered a topoisomerase-targeting agent [42] that mainly affects
itochondrial topo II [33]. This compound was effective against

. cruzi proliferation, as growth inhibition was observed follow-
ng treatment with 20 �M for 24 h (Fig. 7a). Curiously, B. culicis cell
roliferation was less affected by berenil treatment than T. cruzi epi-
astigotes (Fig. 7b). As such, the IC50 value was more than two-fold
igher in B. culicis (46.73 �M) than in T. cruzi (20.25 �M). In con-
rast, distamycin, an aromatic diamidine, was a less potent inhibitor
f T. cruzi, with an IC50 value (98.58 �M) that was five-fold higher
han the value obtained for berenil (Fig. 7c). The effect of distamycin
n B. culicis proliferation was similar to that described for T. cruzi,

ing electron-dense structures, which could correspond to Cajal bodies (arrows), and
the mitochondrion (m) swelling (*).



452 A.A. Zuma et al. / International Journal of Antimicrobial Agents 37 (2011) 449–456

F ent w
D e.

w
o
e
a
d
d
1

F
t
e
p
n

ig. 3. Growth inhibition of Trypanosoma cruzi epimastigote form following treatm
ata are the average of three independent experiments. DMSO, dimethyl sulphoxid

ith an IC50 value of 101.11 �M (Fig. 7d). The most striking effect
f berenil treatment was observed on the kinetoplast. In treated
pimastigotes of T. cruzi, mitochondria exhibited loss of the matrix

nd swelling after treatment with 2 �M for 48 h. Some cells also
isplayed an electron-dense point close to the kinetoplast antipo-
al sites (Fig. 8a). When the drug concentration was increased to
0, 20 and 50 �M, the most remarkable effect observed after 48 h

ig. 4. (a) Trypanosoma cruzi treated with 300 �M merbarone for 72 h. No ultrastruc-
ural changes were observed in the nucleus (n) or kinetoplast (k), but some protozoa
xhibited cristae swelling (*). (b) T. cruzi treated with 20 �M mitoxantrone for 72 h
resented loss of reservosome (r) content (arrows). Inset shows a reservosome of a
on-treated cell.
ith the eukaryote topoisomerase II inhibitors (a) merbarone and (b) mitoxantrone.

was modification of the kDNA arrangement; many cells displayed
a kinetoplast disk with electron-lucid areas (Fig. 8b) and with
membrane profiles in the middle of the kDNA region (Fig. 8c), cor-
responding to invaginations of the inner mitochondrial membrane
(Fig. 8d). Such kinetoplast alterations have never been described
before. Regarding the ultrastructure of B. culicis, cells treated with
berenil or distamycin also presented kDNA rearrangement. How-
ever, these alterations were similar to those described following
treatment with norfloxacin and enoxacin, since thicker DNA fibre
strands were observed corresponding to a higher kDNA compaction
compared with control cells (Fig. 6e).

It is worth mentioning that the viability test with trypan blue
showed that 100% of cells were viable when T. cruzi or B. culicis were
treated with the highest concentration of all evaluated compounds
for 72 h (data not shown).

Table 1 summarises the effects of topoisomerase inhibitors and
DNA-binding drugs evaluated in this study.

4. Discussion

DNA topoisomerases were recognized as promising targets in
cancer therapy in the late 1980s [43], considering its pivotal role
in essential biological process. As in most eukaryotic cells, topoi-
somerases are essential enzymes in trypanosomatids, as they are
involved in nuclear and mitochondrial DNA metabolism. RNA inter-
ference (RNAi)-mediated silencing of each subunit of T. brucei topo
IB results in a drastic reduction both of DNA and RNA synthesis, as
well as inhibition of parasite growth [44]. The essential role of topo
II for kinetoplast maintenance and replication was demonstrated
in T. brucei topo II RNAi cells that present a progressive shrinkage
and loss of kDNA [45]. Trypanosomatid DNA topoisomerases are
distinct from human counterparts with regard to their biological
properties and preferential sensitivity to several compounds, justi-
fying the use of these enzymes as cellular targets in chemotherapy
against trypanosomiasis [22,46–48].

Type IB topoisomerases are the sole molecular target of camp-
tothecin, the best-characterized topo I inhibitor and an important
antitumour agent [49,50]. Camptothecin is an uncompetitive
inhibitor that binds to the covalent intermediate DNA–enzyme,
thereby stabilizing the cleavable complex and reducing re-ligation.
During DNA duplication, an advancing replication fork collides with
the inhibitor-trapped topo I cleavable complex, generating DNA
double-stranded breaks that interact with repair enzymes, which
activates checkpoint kinases. Thus, cells either arrest in the G2-M
cell cycle for DNA repair or proceed to apoptosis [26,51,52]. In pre-
vious work with African trypanosomes, camptothecin promoted

covalent protein–DNA complex formation both with nuclear and
kinetoplast DNA and inhibited DNA biosynthesis. Furthermore, the
drug was cytotoxic to T. brucei, T. cruzi and Leishmania donovani,
with IC50 values ranging from 1 �M to 3 �M [38]. In the present
work, camptothecin was the most potent inhibitor of T. cruzi cell
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Table 1
Effects of different topoisomerase inhibitors and DNA-binding drugs in Trypanosoma cruzi and Blastocrithidia culicis.

Drug Target Species in which the
compound was tested

IC50 for T. cruzi
(�M)

Effects

Camptothecin Eukaryotic topo I inhibitor T. cruzi 2.08 Unpacking of heterochromatin and mitochondrial swelling
Rebeccamycin Eukaryotic topo I inhibitor T. cruzi 6.04 Unpacking of heterochromatin and mitochondrial swelling
Merbarone Eukaryotic topo II inhibitor T. cruzi 338.17 Mitochondrial swelling
Mitoxantrone Eukaryotic topo II inhibitor T. cruzi 5.37 Loss of reservosome content
Norfloxacin Prokaryotic topo II inhibitor T. cruzi and B. culicis 974 Thicker kDNA fibre strands in B. culicis
Enoxacin Prokaryotic topo II inhibitor T. cruzi and B. culicis 163.64 Thicker kDNA fibre strands in B. culicis
Berenil DNA-binding drug T. cruzi and B. culicis 20.25 Thicker kDNA fibre strands in T. cruzi and B. culicis
Distamycin DNA-binding drug T. cruzi and B. culicis 98.58 Thicker kDNA fibre strands in B. culicis

IC50, 50% inhibitory concentration; topo, topoisomerase; kDNA, kinetoplast DNA.

Fig. 5. (a and c) Trypanosoma cruzi and (b and d) Blastocrithidia culicis cell growth following treatment with the prokaryote topoisomerase II inhibitors norfloxacin (a and b)
and enoxacin (c and d). Data are the average of three independent experiments.

Fig. 6. (a) Trypanosoma cruzi treated with 470 �M norfloxacin for 48 h showed intense cytoplasmic vacuolisation (arrows). f, flagellum, n, nucleus, k, kinetoplast. (b) Treatment
of T. cruzi with 156 �M enoxacin for 48 h promoted an enlarged space between the inner and outer membranes that enclose the nucleus (arrows). In both cases, T. cruzi
did not show ultrastructural modifications either in kinetoplast DNA (kDNA) or nuclear DNA. (c) Ultrastructural aspects of non-treated Blastocrithidia culicis showing the
kinetoplast (k), nucleus (n) and symbiont (s). The inset shows the looser kDNA network in this species. (d) B. culicis kinetoplast following treatment with 940 �M norfloxacin
for 72 h. Note the formation of thicker DNA fibres (arrows) and also an electron-dense layer at the centre of the kinetoplast network (arrowhead). (e) Kinetoplast of B. culicis
treated with 940 �M enoxacin for 48 h also presented thicker DNA fibres (arrows). However, lower kDNA compaction is observed compared with norfloxacin treatment.
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ig. 7. (a and c) Trypanosoma cruzi and (b and d) Blastocrithidia culicis growth inhib
c and d). Data are the average of three independent experiments.

roliferation. Rebeccamycin, which was tested for the first time in
. cruzi, was also effective in inhibiting protozoan growth, but had
higher IC50 compared with camptothecin.

A previous study reported successful treatment of the blood-
tream form of T. brucei and Leishmania spp. with rebeccamycin,
howing that low drug concentrations were able to reduce cell pro-
iferation by up to 95% [30,53]. In this work, treatment with topo
inhibitors promoted severe unpacking of the heterochromatin in

nterphase cells, which is usually observed surrounding the nucle-
lus and juxtaposed to the inner nuclear membrane [7,54]. Such
ltrastructural alterations were also observed in T. cruzi epimastig-
tes exposed to � radiation [55]. Taken together, the effects of topo I
nhibitors on growth impairment and nuclear structure alterations
uggest that the T. cruzi cell cycle was arrested in order to repair
he DNA. In this work, the kDNA ultrastructure was not affected
y these inhibitors. Nonetheless, effects of camptothecin on mito-
hondrial DNA, such as minicircle linearization, have been reported
n trypanosomatids [56].

Merbarone and mitoxantrone, eukaryotic topo II inhibitors, also
romoted growth inhibition of T. cruzi. Mitoxantrone was one
f the most effective compounds against protozoa proliferation,
romoting cell growth impairment with a low IC50 value. Mitox-
ntrone and other eukaryote topo II inhibitors, such as etoposide
nd doxorubicin, have high trypanocidal activities on bloodstream
orms of T. brucei [57]. Curiously, mitoxantrone did not affect the
ltrastructure of the DNA-containing nucleus and kinetoplast. Pre-
ious results also showed that the eukaryotic topo II inhibitor
ovobiocin did not promote ultrastructural alteration either in the
ucleus or in the kinetoplast of T. cruzi and Leishmania amazonensis
39]. Only reservosome content was reduced following treatment
ith mitoxantrone, which could be related to activation of the
ifferentiation process of the epimastigote to the trypomastigote
orm, because cells are under stress when grown in the pres-
nce of this inhibitor. Since topoisomerase inhibitors have been

escribed in other biological systems, it is important to highlight
hat in trypanosomatids these compounds may bind to other tar-
ets besides the expected one. Thus, some ultrastructural effects
bserved following drug treatment may not be related to enzyme
nhibition.
following treatment with the DNA-binding drugs berenil (a and b) and distamycin

Topo II activity is essential for nuclear and kinetoplast DNA repli-
cation and segregation. During mitosis, this enzyme accumulates at
active centromeres, thus maintaining the kinetochore/centromere
structure and promoting decatenation of sister chromatids, which
involves double-stranded DNA cleavage [3]. Previous studies
demonstrated that prokaryotic topo II inhibitors such as quinolones
are able to block cell proliferation and promote ultrastructural
alteration in trypanosomatid kinetoplasts [39,58]. In this study,
norfloxacin and enoxacin, second-generation fluoroquinolones,
were used, which specifically target bacterial topo II (gyrases)
and topo IV by inducing cleavable complex formation, DNA frag-
mentation and cell death [59]. Enoxacin was more effective in
blocking cell proliferation compared with norfloxacin, with an IC50
value that was six-fold lower in T. cruzi. In Leishmania panamen-
sis promastigotes, nuclear topo II was 235-fold more sensitive
to enoxacin than norfloxacin. Blastocrithidia culicis cell prolifer-
ation was more sensitive to prokaryotic topo II inhibitors than
T. cruzi, similar to previous data on novobiocin and nalidixic
acid treatment [39]. In B. culicis, both compounds induced com-
paction of the kDNA fibres, thus reinforcing the idea that the looser
arrangement of the kDNA network makes this protozoan more
susceptible to prokaryotic topo II inhibitors [39]. It is worth not-
ing that the in vitro antitrypanosomal activity of fluoroquinolones
varies widely according to species and stage development, present-
ing limited efficacy against T. cruzi and L. donovani amastigotes
[60] and high cytotoxicity against bloodstream forms of T. brucei
[61,62].

In this study, DNA-binding drugs did not have a significant
effect on cell proliferation. However, berenil promoted striking
alterations in the kinetoplast ultrastructure. In T. cruzi, prolonged
treatment with high drug concentrations markedly affected the
kDNA, which was invaded by invaginations of the inner mitochon-
drial membrane. Electron-lucid areas were observed around the
kDNA disk and they may correspond to detached or linearized

minicircles. This is in line with the proposal that berenil induces
double-stranded cleavage of minicircles, presumably mediated by
topo II inhibition [33]. Conversely, such electron-lucid areas may
represent accumulation of RNA or proteins but not free circles,
because berenil may be capable of inhibiting the release of mini-
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Fig. 8. (a) Trypanosoma cruzi treated with 10 �M berenil for 72 h presented mitochondrial swelling (arrows). An electron-dense point was observed close to the kinetoplast (k)
antipodal sites (arrowhead). n, nucleus. (b) T. cruzi after treatment with 20 �M berenil for 48 h showed electron-lucid areas (arrows) near the kinetoplast disk. (c) Treatment
of T. cruzi with 10 �M berenil for 72 h induced mitochondrion membrane profiles in the middle of the kinetoplast DNA (kDNA) (arrow), as well as loss of the mitochondrion
matrix (m). (d) T. cruzi treated with 20 �M berenil for 48 h. With this higher magnification it is possible to note the membrane profiles (arrows), which in fact correspond to
invaginations of the inner mitochondrial membrane (arrowhead). (e) Blastocrithidia culicis kinetoplast following treatment with 10 �M berenil for 72 h showed thicker DNA
fi th con
c

c
s
k
o
i
o
d
k
s
T
r
[

c
t
r
I
d
a
i
p
m
a

bre strands (arrows and arrowhead) and a higher kDNA compaction compared wi
ondensation of kDNA fibres (arrows and arrowhead).

ircles for replication and topo II is unable to interact with DNA
ites occupied by minor groove ligands [34,63]. In the present work,
inetoplast ultrastructural alteration in the T. cruzi epimastig-
te form treated with distamycin was not observed. However,
ntense kDNA network disruption was reported in the trypomastig-
te form of this protozoan after treatment with several aromatic
iamidines [64]. Blastocrithidia culicis exhibited more condensed
DNA fibres following berenil treatment, and the effects were
imilar to those described with bacterial topo II inhibitors [39].
he distinct effects of berenil observed for each species may be
elated to the different kDNA arrangements that they contain
6,42].

The challenge in chemotherapeutic treatment is to target spe-
ific molecules in order to minimize host toxicity. In this context,
opoisomerases are excellent candidates owing to their essential
oles, especially in DNA replication, transcription and segregation.
n this study, the major classes of topoisomerase inhibitors caused
ifferent physiological effects that can be attributed to factors such

s permeability to cell membranes, resistance due to alterations
n drug-binding sites of distinct enzymes, and pharmacokinetic
roperties. Further insight with the mechanism of action of topoiso-
erse inhibitors may pave way for development of selective drugs

gainst pathogenic trypanosomatids.
trol cells. (f) Treatment of B. culicis with 100 �M distamycin for 72 h also promoted
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