
Discrete Optimization 8 (2011) 61–71

Contents lists available at ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

FPT algorithms for path-transversal and cycle-transversal problems✩

Sylvain Guillemot
Institut Gaspard Monge, Université Paris-Est, 5 boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, France

a r t i c l e i n f o

Article history:
Received 15 November 2009
Received in revised form 22 May 2010
Accepted 26 May 2010
Available online 23 June 2010

Keywords:
Cut problems
Feedback set problems
Linear programming
Fixed-parameter algorithms

a b s t r a c t

We study the parameterized complexity of several vertex- and edge-deletion problems
on graphs, parameterized by the number p of deletions. The first kind of problems are
separation problems on undirected graphs, where we aim at separating distinguished
vertices in a graph. The second kind of problems are feedback set problems on group-labelled
graphs, where we aim at breaking nonnull cycles in a graph having its arcs labelled by
elements of a group. We obtain new FPT algorithms for these different problems, relying
on a generic O∗(4p) algorithm for breaking paths of a homogeneous path system.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Separation and feedback set problems have attracted a lot of interest, first in the area of approximation algorithms,
then in parameterized complexity. When parameterized by the number p of deletions allowed, many FPT algorithms were
obtained (see [1–3] for an introduction to parameterized complexity and FPT algorithms). Examples of separation problems
are the Multiway Cut problem and the Multicut problems, in their vertex- and edge-versions. The first article to address
the parameterized complexity of these problems was [4], which obtained an O∗(4p3) algorithm for Multiway Cut, and an
O∗(22kppp4p3) algorithm forMulticutwith k terminals. Faster algorithmswere obtained by [5,6],with [5] presenting the first
O∗(cp) algorithm for Multiway Cut with c = 4. Regarding feedback set problems, the most studied is certainly Feedback
Vertex Set in undirected graphs, which after a series of improvement was shown to be solvable in O∗(5p) time [7]. Another
example is the Odd Cycle Transversal problem: [8] introduced the method of iterative compression to obtain an O∗(3p)
algorithm for the problem. In the case of directed graphs, [9] obtained an FPT algorithm for the Directed Feedback Vertex
Set problem, settling a long-standing conjecture.

In this article, we obtain new parameterized algorithms for the aforementioned separation problems, as well as for new
feedback set problems involving group-labelled graphs. Our results are as follows. For the Multiway Cut, we obtain a new
algorithmwith anO∗(4p) running time similar to [5]. For theMulticut problems, we obtain simple algorithmswith running
time O∗((8k)p), improving upon the results of Marx. We then consider problems on group-labelled graphs. If Γ is a finite
group, a Γ -labelled graph is a digraph whose arcs are labelled by elements of Γ , and satisfying an additional symmetry
property. These objects appear under different names in the literature; see e.g. [10,11] for recent results. We consider the
Group Feedback Set problems, where the input is a Γ -labelled graph, and where the goal is to break all nonnull cycles
by p deletions. We consider the problems in their vertex- and edge-versions. We show that both versions are solvable in
O∗((4|Γ | + 1)p) time, and that the edge-version is also solvable in O∗((8p + 1)p) time, independently of Γ . These results

✩ An extended abstract of this article was published in Proceedings of the 3rd International Workshop on Parameterized and Exact Computation, IWPEC
2008, Lecture Notes in Computer Science, vol. 5018, Springer-Verlag, 2008, pp. 129–140.

E-mail address: sylvain.guillemot@univ-mlv.fr.

1572-5286/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2010.05.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82618627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.disopt.2010.05.003
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
mailto:sylvain.guillemot@univ-mlv.fr
http://dx.doi.org/10.1016/j.disopt.2010.05.003

62 S. Guillemot / Discrete Optimization 8 (2011) 61–71

generalize the FPT algorithms for theOdd Cycle Transversal problem, which is a particular case of the Group Feedback Set
problem with Γ = Z2.

These different algorithms use as subroutine a generic O∗(4p) algorithm for breaking a set of paths in a graph, provided
that the set has a special property called homogeneity. Formally, we call path system a tuple σ consisting of an undirected
graph G = (V , E), a set T ⊆ V of terminals, a set F ⊆ V of forbidden vertices, and a set P of paths between terminals.
The generic Path Transversal problem aims at breaking each path P ∈ P of a path system σ by removing nonforbidden
vertices. We define homogeneous path systems, and we address the approximability and the fixed-parameter tractability
of the Path Transversal problem on homogeneous instances. Namely, we show that the problem has a half-integrality
property generalizing [12], which yields a 2-approximation. We then devise a bounded-search algorithm which solves the
problem in O∗(4p) time, by relying on half-integral solutions in order to guide the construction of a search tree. To our
knowledge, this is the first example of an FPT algorithm which uses fractional LPs.

This article is organized as follows. Section 2 is devoted to our generic algorithm for homogeneous path systems. Section 3
contains results for the Multiway Cut and Multicut problems. Section 4 contains results for the Group Feedback Set
problems. Finally, in Section 5 we formulate some open questions and possible generalizations of the results.

2. Homogeneous path systems

2.1. Preliminaries

Let G = (V , E) be an undirected graph. A path in G is a sequence of vertices P = x1, . . . , xm s.t. xixi+1 ∈ E for each
1 ≤ i < m; we say that P is a path joining x1 to xm. A cycle in G is a path x1x2, . . . , xm with x1, xm equal; we say that C is
a cycle at x1. Consider a path P = x1, . . . , xm. The vertices x1, . . . , xm−1 are the initial vertices of P . The inverse of P is the
path P−1 = xm, . . . , x1. Given a weight functionw on V , the length of P isw(x1)+ · · · +w(xm), and the initial length of P is
w(x1)+· · ·+w(xm−1). We say that P is simple iff the vertices xi are distinct. Henceforth, paths and cycles are not necessarily
simple, unless explicitly stated.

A path system is a tuple σ = (G, T , F ,P) which consists of: (i) an undirected graph G = (V , E), (ii) a set T ⊆ V of
terminals, (iii) a set F ⊆ V of forbidden vertices, (iv) a setP of paths in G joining elements of T . A transversal of σ (or a solution
for σ) is a set of vertices disjoint from F and which meets each path of P . The generic problem Path Transversal takes an
instance I = (σ , p) consisting of a path system σ , an integer p, and seeks a transversal of σ of size at most p.1

In this section, we consider the restriction of the Path Transversal problem to homogeneous instances. This notion is
defined as follows:

Definition 1. The path system σ = (G, T , F ,P) is homogeneous iff the two following conditions hold:

1. for each path P ∈ P , there exists a simple path P ′ ∈ P included in P;
2. for each path P ∈ P , if P = P1xP2 then: for each path P ′ joining T to x, one of P1P ′−1, P ′P2 is in P .

This seemingly abstract notion arises froma close examination of the proof of the half-integrality ofMultiwayCut in [12].
While enjoyed by theMultiway Cut problem itself, this property also applies to other problems, as exemplified in Section 4.
In this section, we address the solvability of the Path Transversal problem for homogeneous instances. First, we show in
Section 2.2 that it admits a half-integral LP formulation, by adapting the proof from [12]. Second, we show in Sections 2.3
and 2.4 that the property gives rise to an O∗(4p) time algorithm for the problem.

2.2. LP formulation and half-integrality

In this subsection, we describe the LP formulation of the problem, and we demonstrate its half-integrality. The Path
Transversal problem can be formulated by the following LP, which will be denoted by Fσ .

minimize
−
v∈V

dv

such that ∀P ∈ P ,
−
v∈P

dv ≥ 1

∀v ∈ V , dv ≥ 0,∀v ∈ F , dv = 0.

It is easy to see that the integral solutions of Fσ coincide with the solutions of the Path Transversal problem. The dual
LP of Fσ is the following program, which will be denoted by F ′σ .

1 Note that in the description of the instance I , the set P will not be described in extension, since it may be of exponential size. Instead, we will assume
that P is described by a particular oracle; see Section 2.2.

S. Guillemot / Discrete Optimization 8 (2011) 61–71 63

maximize
−
p∈P

fp

such that ∀v ∈ V \ F ,
−

p∈P :v∈p

fv ≤ 1

∀p ∈ P , fp ≥ 0.

For our algorithmic purposes, we will only need to solve Fσ . As is well known, the optimal solution to this fractional LP
can be found in polynomial time, provided that we have a polynomial-time separation oracle. Recall that a separation oracle
is an algorithm which, given values (dv)v∈V , either concludes that it is an optimal solution or finds a violated constraint. In
our case, the only nontrivial constraint is the first one; so we will be interested in finding a shortest path P ∈ P under the
weighting d.

We now demonstrate a half-integrality property of Fσ . While our proof closely follows the proof of [12], we include it for
completeness. Given a solution d of Fσ , let Gd denote the vertex-weighted graph obtained from G by weighting each v ∈ V
by dv . Let d be an optimal solution of Fσ , and let f be the corresponding optimal solution of F ′σ . LetM be the set of v ∈ V s.t.
dv > 0 and v is reachable from T by a path of initial length 0 in Gd. Let V1 = {v ∈ M : dv = 1}, V1/2 = {v ∈ M : 0 < dv < 1},
and V0 = V \ (V1 ∪ V1/2).

Lemma 1. Let P ∈ P s.t. fP > 0. Then P ∩M consists of: either an element of V1, or two elements of V1/2.

Proof. Since fP > 0, dual complementary slackness implies that P has length one in Gd. Let u be the first vertex of P s.t.
du > 0, and let v be the last vertex of P s.t. dv > 0. Then u, v ∈ M . If u = v, since P has length one then du = 1, and thus
P ∩M consists of a single element of V1. Suppose now that u, v are distinct, then they belong to V1/2.

Aiming for contradiction, suppose that there exists a third vertex w ∈ P ∩ M . We can then write P = P1wP2, where P1
contains u and P2 contains v. Since w ∈ M , there exists a path P ′ joining T to w, such that P ′ has initial length 0 in Gd. By
Point 2 of Definition 1, one of P1P ′−1, P ′P2 is inP . But these paths have length less than 1 in Gd, contradicting the assumption
that d is a solution of Fσ . �

Let s be the solution of Fσ which assigns the value r to a vertex of Vr , for every r ∈ {0, 1
2 , 1}.

Lemma 2. s is an optimal solution of Fσ .

Proof. Let us first show that s is a solution of Fσ . Consider P ∈ P . Since P has length≥ 1 in Gd, P contains at least one vertex
ofM . Then either P contains a vertex of V1, or P contains two vertices V1/2. In both cases, we obtain that

∑
v∈P sv ≥ 1.

We now show that s is optimal by proving that f has the same cost as s. We define two subsets P1,P2 of P as follows:
(a) P1 is the set of paths P ∈ P s.t. fP > 0 and P ∩M consists of an element of V1, (b) P2 is the set of paths P ∈ P s.t. fP > 0
and P ∩ M consists of two elements of V1/2. By primal complementary slackness and by the optimality of d, each vertex of
M is saturated. It follows that:−

P∈P

fP =
−
P∈P1

fP +
−
P∈P2

fP = |V1| +
1
2
|V1/2|

where the last equality follows by summing the contributions of the vertices of M , and using Lemma 1. We conclude by
observing that this is exactly the cost of s. �

2.3. A technical result

This subsection is devoted to the proof of Proposition 1, which states the existence of optimal solutions with specific
properties. Let U be the set of elements of V0 reachable from T by a path of length 0 in Gs.

Proposition 1. There is an optimal solution for σ disjoint from U.

Let S be an optimal solution for σ . We define the set of bad vertices B = S ∩U . Our goal is to construct a solution S ′ from
S by discarding the bad vertices and replacing them by some vertices outside of U .

Let u ∈ V . Say that u is accessible iff it is reachable from T by a path P such that (i) P goes through an element of B, (ii) P
has initial length 0 in Gs. Say that u is uniformly accessible if for each path P joining T to u, if P has initial length 0 in Gs then
P goes through an element of B. We define V ′1 as the set of accessible elements of V1 − S, and we define V ′1/2 as the set of
uniformly accessible elements of V1/2 − S. We set V ′ = V ′1 ∪ V ′1/2 and S ′ = S − B+ V ′.

We will show that S ′ is an optimal solution for σ disjoint from U . We need the two following lemmas.

Lemma 3. Let P ∈ P s.t. P does not intersect S − B. Then P intersects V ′.

Proof. Let n(P) denote the number of elements of P ∩M . We reason by induction on n(P).
Case 1: n(P) = 1. The set P ∩M then consists of an element u ∈ V1 − S. But P = P1uP2 is covered by an element v ∈ B,

and since v ≠ u we can assume that v ∈ P1. Now, the path P1u joins T to u, goes through v ∈ B and has initial length 0 in
Gs. This implies that u is accessible, and we conclude that u ∈ V ′1.

64 S. Guillemot / Discrete Optimization 8 (2011) 61–71

Case 2: n(P) ≥ 2. Let u1, u2 be the first and last elements of P ∩M , respectively. We have P = P1u1P2u3P3. We consider
two subcases, according to whether P2 intersects B or not.

Case 2.1: P2 ∩ B ≠ ∅. Consider an element v ∈ P2 ∩ B, and let u′1 be the last element of P ∩ M preceding v, and u′2 be
the first element of P ∩M following v. We then have P = P ′1u

′

1P
′

2u
′

2P
′

3, with P ′2 = P ′′1 vP
′′

2 . Since v ∈ B, there exists a path P ′

joining T to v and having length 0 in Gs. By Point 2 of Definition 1, one of P ′1u
′

1P
′′

1 P
′−1, P ′P ′′2 u

′

2P
′

3 is a bad path. Let P ′′ be this
path, then P ′′ does not intersect S − B (since neither P nor P ′ do), and n(P ′′) < n(P). We apply the induction hypothesis to
obtain that P ′′ intersects V ′. Since P ′ is disjoint from V ′, it follows that P intersects V ′.

Case 2.2: P2 ∩ B = ∅. If u1 ∈ V ′ or u2 ∈ V ′, we are done. Suppose now that u1, u2 ∉ V ′. Then one of P1, P3 must intersect
B, and by symmetry we assume that P1∩B ≠ ∅. It follows that u1 is accessible; since u1 ∉ V ′, we cannot have u1 ∈ V1 (since
it would imply u1 ∈ V ′1) and we thus have u1 ∈ V1/2 \ V ′1/2. Then u2 is not uniformly accessible, and there exists a path P ′1
joining T to u1, having initial length 0 in Gs, and avoiding B. By Point 2 of Definition 1, one of P1P ′−11 , P ′1P2u2P3 is a bad path.
Since u1 ∉ V1, the former has length <1 in Gs and cannot be a bad path. It follows that the path P ′1P2u2P3 is bad, and thus
it has to be covered by B; since P ′1, P2 are not we obtain that P3 ∩ B ≠ ∅. By the same reasoning as for u1, we find a path P ′2
joining T to u2, avoiding B, such that P ′1P2P

′−1
2 is a bad path. But this latter path is not covered by B, impossible. �

Let ϵ > 0. Define s′ from s by assigning sv − ϵ to v ∈ V ′, sv + ϵ to v ∈ B, sv to any other vertex v.

Lemma 4. For ϵ small enough, s′ is a solution of Fσ .

Proof. Consider P ∈ P , we show that
∑

v∈P s
′
v ≥ 1. By Point 1 of Definition 1, it suffices to show it for P simple, whichwe as-

sume in the following. If
∑

v∈P sv > 1, then the desired inequality holds for ϵ small enough. Suppose now that
∑

v∈P sv = 1.
Since s is half-integral, P ∩M contains either one vertex of V1 or two vertices of V1/2.

If P ∩M consists of exactly one vertex v ∈ V1, then so does P ′, and thus P ′ = P ′1vP
′

2 with P ′1, P
′

2 disjoint fromM . We have
the following subcases. If v ∉ V ′1, then P is disjoint from V ′ and thus δ ≥ 0. If v ∈ V ′1, since v ∉ S it follows that P is covered
by an element u ∈ S appearing in P ′1 or P ′2. Now, u ∉ M implies that u is in V0 and thus in U . We obtain that δ ≥ ϵ − ϵ ≥ 0.

If P ∩M consists of exactly two vertices u, v ∈ V1/2, then so does P ′, hence P ′ has the form P ′1uP
′

2vP
′

3. We have the follow-
ing subcases. If u, v ∉ V ′1/2, then P is disjoint from V ′ and thus δ ≥ 0. If u ∈ V ′1/2, v ∉ V ′1/2: since u is uniformly accessible,
P ′1 contains a vertex from B, hence δ ≥ ϵ− ϵ ≥ 0. If u ∉ V ′1/2, v ∈ V ′1/2: similar to the previous case. If u, v ∈ V ′1/2: since u, v
are both uniformly accessible, both P ′1, P

′

3 contain a vertex from B, and these vertices are distinct since P ′ is simple, which
implies that δ ≥ 2ϵ − 2ϵ ≥ 0. �

We are now ready to show that S ′ is an optimal solution for σ disjoint from U . First, S ′ is a solution for σ by Lemma 3.
Second, S ′ is disjoint from U , since V ′ is disjoint from V0 and thus from U . Finally, we show that |S ′| ≤ |S| by proving that
|V ′| ≤ |B|. Suppose by contradiction that |V ′| > |B|, then by Lemma4we obtain s′ solution of Fσ s.t. |s′| = |s|+ϵ(|B|−|V ′|) <
|s|. This contradicts the optimality of s.

2.4. The main result

In this subsection, we describe the algorithm for Path Transversal. We will justify its correctness and running time in
Theorem 1.

Let σ = (G, T , F ,P) be a homogeneous path system. We denote the cost of an optimal fractional solution of Fσ by opt∗σ ,
and we denote the cost of an optimal solution for σ by optσ . By convention, these values are equal to∞ when there is no
solution. A frontier vertex is a vertex u s.t. (i) u ∉ F , (ii) u is reachable from T by a path whose initial vertices are in F .

The description of the algorithm follows:
The following lemma ensures the correctness of the branching strategy in Line 15.

Lemma 5. (σ , p) is a positive instance iff one of (σ ′, p), (σ ′′, p− 1) are positive instances.

Proof. Let S be a solution for σ of size≤ p. If u ∉ S, then S is a solution for σ ′. If u ∈ S, then S \ {u} is a solution for σ ′′.
Conversely, if S is a solution for σ ′ of size ≤ p, then it is a solution for σ . If S is a solution for σ ′′ of size ≤ p − 1, then

S ∪ {u} is a solution for σ . �

The crucial fact is that when opt∗σ = opt∗
σ ′
, no branching is needed (cf. Lines 11–12). This relies on Proposition 1.

Lemma 6. If opt∗σ = opt∗
σ ′
, then optσ = optσ ′ (and thus the instances (σ , p) and (σ ′, p) are equivalent).

Proof. Since any solution for σ ′ is also a solution for σ , we have optσ ′ ≥ optσ . We now show that optσ ′ ≤ optσ . Let s be
an half-integral optimal solution of Fσ ′ , and let V0, V1/2, V1 be defined accordingly. Observe that s is also a solution of Fσ .
Moreover, it is an optimal solution of Fσ since opt∗σ = opt∗

σ ′
.

Let U be the set of elements of V0 reachable from T by a path of length 0 in Gs. By Proposition 1, there exists S optimal
solution for σ disjoint from U . Since u is a frontier vertex, we then have u ∈ U , hence u ∉ S. It follows that S is a solution for
σ ′, and we conclude that optσ ′ ≤ |S| = optσ . �

S. Guillemot / Discrete Optimization 8 (2011) 61–71 65

SolvePT(σ , p)
1: suppose that σ = (G, T , F ,P)
2: x← opt∗σ
3: if x ≤ p

2 then
4: return true
5: else if x > p then
6: return false
7: end if
8: choose u a frontier vertex
9: let σ ′ = (G, T , F ∪ {u},P)

10: x′ ← opt∗
σ ′

11: if x′ = x then
12: return SolvePT(σ ′, p)
13: else if x′ > x then
14: let σ ′′ = (G\u, T , F ,P)
15: return (SolvePT(σ ′, p) or SolvePT(σ ′′, p− 1))
16: end if

With these two lemmas, we are ready to prove the correctness and running time of the algorithm.

Theorem 1. Suppose that σ is homogeneous and admits a polynomial-time separation oracle. Then SolvePT (σ , p) solves, in
O∗(4p) time, the Path Transversal problem on the instance (σ , p).

Proof. Correctness. The case when x ≤ p
2 or x > p is handled correctly by the algorithm: since opt∗σ ≤ optσ ≤ 2opt∗σ , we

have optσ ≤ p in the first case, and optσ > p in the second case. Suppose now that p
2 < x ≤ p. Observe that there exists a

frontier vertex: otherwise, each path in P would only contain nodes in F , and we would have x = ∞. In Lines 11–12, the
case x′ = x is handled correctly by Lemma 6. In Lines 13–16, the case x′ > x is correct by Lemma 5.

Running time. We view the execution of the algorithm as a search tree, where only recursive calls in Line 15 correspond
to branches in the search tree. A node of the search tree is labelled by an instance (σ , p). If we let P(n) denote the running
time of the operations of Lines 1–10, then the processing time of a node is bounded by nP(n). This follows from the fact that
at each recursive call in Line 12, |F | increases by one and is upper bounded by n.

Let T denote the search tree, and let u be a node of T . Suppose that u is labelled by (σ , p), let p(u) = p and k(u) =
2p + 1 − 2opt∗σ . Observe that if u is an internal node of T , then p

2 < opt∗σ ≤ p, and thus 0 < k(u) ≤ p. Let S(u) denote the
number of leaves in the subtree of T rooted at u. Given p, k, let S(p, k) denote the maximum value of S(u) for u node of T s.t.
p(u) = p, k(u) ≤ k, or 0 if no such node exists. We claim that:

S(p, k) = 1 if p = 0 or k = 0
S(p, k) ≤ S(p, k− 1)+ S(p− 1, k) otherwise. (1)

Let u be a node labelled by (σ , p). If u is a leaf, then S(u) = 1. Observe that this holds in particular if p = 0 or k = 0: this
is clear if p = 0, this results from the fact that opt∗σ > p if k = 0. Suppose now that u is an internal node with two children
u′, u′′, with u′ labelled by (σ ′, p) and u′′ labelled by (σ ′′, p − 1). We then have k, p > 0, and we need to bound S(u′) and
S(u′′).

We first bound S(u′). Since opt∗
σ ′
> opt∗σ and since opt∗

σ ′
is half-integral, we have k(u′) ≤ k(u) − 1 ≤ k − 1, hence

S(u′) ≤ S(p, k− 1). We now bound S(u′′). Observe that opt∗
σ ′′
≥ opt∗σ − 1: indeed, given s solution for Fσ ′′ of cost c , we can

extend it to V by setting su = 1, obtaining a solution for Fσ of cost c + 1. It follows that k(u′′) = 2(p− 1)+ 1− 2opt∗
σ ′′
≤

2(p− 1)+ 1− 2(opt∗σ − 1) = 2p+ 1− 2opt∗σ ≤ k, and we obtain that S(u′′) ≤ T (p− 1, k).
We thus conclude that S(u) = S(u′) + S(u′′) ≤ S(p, k − 1) + S(p − 1, k), which completes the proof that S satisfies

the relations (1). A straightforward induction then shows that S(p, k) ≤ 2p+k. Since k(u) ≤ p for an internal node u of T , it
follows that the number of leaves of T is bounded by S(p, p) ≤ 22p. Since each node of T is processed in polynomial time,
we obtain the claimed O∗(4p) running time. �

3. New algorithms for separation problems

3.1. TheMultiway Cut problems

Let G = (V , E) be a graph and let T ⊆ V be a set of terminals. Given two partitions S, S′ of T , we write S ⊑ S′ to mean
that S refines S′. Given x, y ∈ V , we write x≡S y iff x, y belong to the same class of S. We denote by CT (G) the partition S
of T whose classes are the sets C ∩ T for C connected component of G. If F is a forest, we denote by F |T the forest obtained
from F by repeatedly performing the following operations: (i) remove the leaves not belonging to T , (ii) contract the nodes
of degree 2 not belonging to T .

66 S. Guillemot / Discrete Optimization 8 (2011) 61–71

Weconsider theGeneralizedVertexMultiwayCut (GVMC) problem: given a graphG = (V , E), a set T ⊆ V of terminals,
a set F ⊆ V of forbidden vertices, a partition S of T , an integer p, can we find a set S ⊆ V \ F of size≤ p s.t. CT (G \ S) ⊑ S.
In other terms, we want to disconnect pairs of terminals lying in different classes of S. We also consider the edge-version
of the problem called Generalized Multiway Cut (GMC). While this was already shown in [5], we obtain another proof of
the following result:

Theorem 2. Generalized Vertex Multiway Cut and Generalized Multiway Cut are solvable in O∗(4p) time.

Proof. We formulate the GVMC problem as a path transversal problem for a homogeneous path system, and apply
Theorem1.We consider the path systemσ = (G, T , F ,P), whereP consists of the paths joining pairs of terminals belonging
to different classes of S.2 We verify that σ is homogeneous and has a separation oracle:
(a) Point 1 of Definition 1: if P ∈ P joins u, v ∈ T with u ≢S v, then we find a simple path P ′ ⊆ P joining u, v. Clearly, P ′ is

also in P .
(b) Point 2 of Definition 1: suppose that P ∈ P joins u, v ∈ T with u ≢S v. Suppose that P = P1xP2 and consider P ′ joining

w ∈ T to x. Since we cannot have bothw≡S u andw≡S v, it follows that one of P1P ′−1, P ′P2 is in P .
(c) σ has a polynomial-time separation oracle: indeed, if we are given (dv)v∈V , we compute the all-pairs shortest paths inGd.

A shortest bad path is then obtained by examining the computed distances for each pairs of vertices u, v ∈ T belonging
to different classes of S.
An algorithm forGMC is obtained by a simple reduction toGVMC. Given I = (G, T , F , S, p) instance ofGMC, we construct

I ′ = (G′, T , F ′, S, p) instance of GVMC as follows. For each edge e of G we introduce a new vertex xe. We subdivide each
edge e = uv in two edges uxe, vxe. We set F ′ = V ∪ {xe : e ∈ F}. It is easy to see that the function which maps a set S ⊆ E
to S ′ = {xe : e ∈ S} induces a bijection between the solutions of I ′ and the solutions of I . �

3.2. TheMulticut problem

We now consider the Multicut problem: given a graph G = (V , E), a set T ⊆ V of terminals, a set P ⊆ [T]2 of pairs of
terminals, a set F ⊆ E of forbidden edges, an integer p, can we disconnect each pair of vertices in P by removing at most p
edges of E \ F? We obtain an FPT algorithm for the problem when the number of terminals k := |T | is bounded.

Theorem 3. Multicut can be solved in O∗((8k)p) time.

Proof. Let I = (G, T , P, F , p) be an instance of Multicut. Say that a partition S of T is realizable iff (a) S ⊑ CT (G), and (b)
I ′ = (G, T , F , S, p) is a positive instance ofGMC. Say that a partition S of T is admissible iff it separates each pair in P . Observe
that solving I amounts to find a partition S of T which is admissible and realizable.

Wewill describe an algorithm that enumerates a setG of goodpartitions of T s.t. (i)G contains the realizable partitions; (ii)
G has size≤ (2k)p. This algorithmwill allow us to solveMulticut as follows: for each partition S ∈ G, we test in polynomial
time if S is admissible, we test in O∗(4p) time if the partition is realizable (by Theorem 2), and we accept the instance I
as soon as we have found S which passes the two tests. Therefore, the total running time of the algorithm is O∗((8k)p) as
claimed.

The set G is the set of partitions returned by the computation paths of the following nondeterministic algorithm:

FindGoodPartition(G, T , p)
1: let F be a spanning forest of G, let F ′ = F |T
2: choose a set E of at most p edges of F ′
3: let S = CT (F ′), let S′ = CT (F ′\E)
4: choose a partition S′′ s.t. S′ ⊑ S′′ ⊑ S
5: return S′′

We first show that G has property (i). Let S0 be a realizable partition, we show that it is returned by some computation
path of the algorithm. Observe first that S = CT (G), hence S0 ⊑ S by Point (a) of the definition of a realizable partition. Now,
suppose that S0 verifies Point (b) by removing a set S of at most p edges of G. To S there corresponds a set S ′ of at most p
edges of F ′ s.t. CT (F ′ \S ′) = CT (F \S). Note that CT (F \S) ⊑ CT (G\S) ⊑ S0 by Point (b). Thus, it follows that CT (F ′ \S ′) ⊑ S0.
Hence, by considering the execution of the algorithm which chooses E = S ′, we have S′ ⊑ S0 ⊑ S. We conclude that S0 is
returned by some computation path having chosen E = S ′.

We now show that G has property (ii). We first observe that: if S has m classes, S′ has m′ classes, and S′ ⊑ S, then the
number of partitions S′′ s.t. S′ ⊑ S′′ ⊑ S is≤ B(m′ −m) ≤ (m′ −m)! (where B is the Bell number). Now, it must hold that
m′ ≤ m + p, since removing an edge can increase the number of connected components of F ′ by at most one. Therefore,
there are at most p! possible choices in Line 4. Since F has at most 2k edges, there are at most

2k
p

≤

(2k)p

p! choices in Line
2. Overall, the total number of computation paths of the algorithm is at most (2k)p. �

2 P is the set of S-paths in the sense of Mader.

S. Guillemot / Discrete Optimization 8 (2011) 61–71 67

3.3. The Vertex Multicut problem

We finally consider the vertex-version of the Multicut problem, called Vertex Multicut: given a graph G = (V , E), a
set T ⊆ V of terminals, a set P ⊆ [T]2 of pairs of terminals, a set F ⊆ V of forbidden vertices, can we disconnect each pair of
vertices in P by removing at most p vertices in V \ F? We obtain an FPT algorithm when k := |T | is bounded, using similar
ideas to Theorem 3.

Theorem 4. Vertex Multicut can be solved in O∗((8k)p) time.
Proof. Let I = (G, T , P, F , p) be an instance of Vertex Multicut. We now say that a partition S of T is realizable iff (a)
S ⊑ CT (G) and (b) I ′ = (G, T , F , S, p) is a positive instance of GVMC. As before, we describe an algorithm that enumerates
a set G of good partitions of T s.t. (i) G contains the realizable partitions, (ii) G has size≤ (p+ 1)(2k)p. This gives rise to an
O∗((8k)p) algorithm for Vertex Multicut, by the same argument as above.

The set G is obtained as the results of the computation paths of the following nondeterministic algorithm:

FindGoodPartition2(G, T , p)
1: let F be a spanning forest of G, let F ′ = F |T
2: let N be the set of nodes of F ′
3: choose i ∈ {1, 2}
4: if i = 1 or p = 0 then
5: return FindGoodPartition(G, T , p)
6: else
7: choose u ∈ N
8: return FindGoodPartition2(G\u, T , p− 1)
9: end if

We first show that G has property (i). We prove by induction on p that: if S0 is realizable by removing p vertices, then it
is returned by some computation path of FindGoodPartition2 (G, T , p). Suppose that S0 is obtained by removing a set S of
at most p vertices of G. Let F , F ′ as chosen by FindGoodPartition2 (G, T , p).

If S ∩ N ≠ ∅, then consider an element u in the intersection. For the graph G \ u, S0 is realizable by removing p − 1
vertices, hence by induction hypothesis it is returned by some computation path of FindGoodPartition2 (G \ u, T , p− 1).
This path is completed in a computation path of FindGoodPartition2 (G, T , p)which chooses i = 2 in Line 3 and u in Line 7.

Suppose now that S ∩ N = ∅. By definition of F ′, to each edge e = uv of F ′ there corresponds a path Pe in F whose
endpoints are u, v and whose internal nodes are in V \ N . Let S ′ be the set of edges e of F ′ s.t. Pe intersects S. Since the Pe
are internally disjoint, it follows that |S ′| ≤ |S| ≤ p. Let S = CT (F ′) and S′ = CT (F ′ \ S ′). As in Theorem 3, we have S0 ⊑ S
by Point (a) of the definition of a realizable partition. Besides, by definition of S ′, from a path in F ′ \ S ′ joining u, v ∈ T , we
obtain a path in F \ S joining u, v, which implies that S′ ⊑ S0 by Point (b). It follows that S0 is returned by an execution
of FindGoodPartition (G, T , p)which chooses E = S ′. This execution is completed in an execution of FindGoodPartition2
(G, T , p)which chooses i = 1 in Line 3.

We now show that G has property (ii). Let T2(p) denote the maximum number of computation paths of the algorithm
FindGoodPartition2 (G, T , p). Since F ′ has at most 2k vertices, there are at most 2k possible choices in Line 7, hence T2
satisfies the following relation:

T2(0) = 1
T2(p) ≤ T1(p)+ (2k)T2(p− 1).

Recall that T1(p) ≤ (2k)p from Theorem 3. Therefore, a straightforward induction gives the desired bound T2(p) ≤
(p+ 1)(2k)p. �

4. Problems on group-labelled graphs

4.1. Preliminaries

Let Γ be a finite group, with unit element 1Γ . In the following, we will assume that Γ is described by its multiplication
table, of size O(|Γ |2). In the running time analysis, the factors O(|Γ |c)will be assumed constant and thus will be omitted.

A Γ -labelled graph is a digraph with a labelling of its arc by elements of Γ . Formally, this is a tuple G = (V , A,Λ), where
V is a set of vertices, A ⊆ V 2 is a set of arcs, and Λ : A → Γ is a labelling of the arcs, satisfying the following property: if
(u, v) ∈ A, then (v, u) ∈ A andΛ(v, u) = Λ(u, v)−1.

The underlying graph of G is the undirected graph G = (V , E) where E = {uv : (u, v) ∈ A}. By a path (or cycle) in G, we
will mean a path (or cycle) in G. Let P = x1, . . . , xm be a path inG, we setΛ(P) = Λ(x1, x2), . . . ,Λ(xm−1, xm) (orΛ(P) = 1Γ
ifm = 1). A cycle in G is null ifΛ(C) = 1Γ , nonnull otherwise.

We observe that nonnull cycles are well defined even if Γ is nonabelian:

Lemma 7. If C = x1, . . . , xmx1 is a nonnull cycle at x1, then C ′ = x2, . . . , x1x2 is a nonnull cycle at x2.

68 S. Guillemot / Discrete Optimization 8 (2011) 61–71

Proof. We have C = x1P , where P is a path joining x2 to x1. Let g = Λ(x1, x2). ThenΛ(C) = g.Λ(P) andΛ(C ′) = Λ(P).g .
If we hadΛ(C ′) = 1Γ , then g = Λ(P)−1, and we would obtain thatΛ(C) = 1Γ , impossible. �

We say that G is consistent iff it contains no nonnull cycle. We describe below a polynomial-time algorithm to verify
consistency. Let λ : V → Γ . We say that λ is a consistent labelling of G iff for each path P in G joining u to v,Λ(P) =
λ(u)−1λ(v). Observe that if G has a consistent labelling, then it is consistent, for if C is a cycle at x in G we have Λ(C) =
λ(x)−1λ(x) = 1Γ .

Lemma 8. There is a polynomial-time algorithm which, given a Γ -labelled graph G = (V , A,Λ):(a) either finds a null cycle in
G (and concludes that G is inconsistent); (b) or finds a consistent labelling of G (and concludes that G is consistent).

Proof. The algorithm computes F = (V , S) spanning forest of G. Then, in each connected component K of F , it chooses an
arbitrary ‘‘root’’ rK ∈ K . It then computes λ : V → Γ as follows: if a vertex v belongs to a connected component K of F , and
if Pv is the unique path joining rK to v in F , then λ(v) := Λ(P). Such a labelling λwill be called an F-consistent labelling of G.

Say that an arc (u, v) ∈ A is bad iff uv ∉ S and Λ(u, v) ≠ λ(u)−1λ(v). There are two cases, depending on the existence
of a bad arc.

Case 1: there is a bad arc a = (u, v)with u, v in a same connected component K of F . Then consider the cycle C = uP−1v Pu.
We then haveΛ(C) = Λ(a)Λ(Pv)−1Λ(Pu) = Λ(a)λ(v)−1λ(u). SinceΛ(a) ≠ λ(u)−1λ(v), it follows that C is a nonnull cycle.

Case 2: there is no bad arc. We show that: for every arc (u, v) ∈ A,Λ(u, v) = λ(u)−1λ(v). This holds by assumption
if uv ∉ S. Suppose now that uv ∈ S with u, v in a same connected component K of F . If u ∈ Pv , then λ(v) = Λ(Pv) =
Λ(Pu)Λ(u, v), which implies that Λ(u, v) = Λ(Pu)−1Λ(Pv) = λ(u)−1λ(v). The case when v ∈ Pu is symmetric. A
straightforward induction on m then shows: if P = x1, . . . , xm is a path in G, then Λ(P) = λ(x1)−1λ(xm). We conclude
that λ is a consistent labelling of G. �

It follows that consistency has a good characterization (in the sense of [13]): G has no nonnull cycle iff G has a consistent
labelling.

4.2. The Group Feedback Vertex Set problem

Consider a Γ -labelled graph G = (V , A,Λ). If S ⊆ V , removing S from V produces the Γ -labelled graph G \ S =
(V ′, A′,Λ′), where V ′ = V − S, A′ = {(u, v) ∈ A : u, v ∉ S} andΛ′ = Λ|A′. A feedback vertex set of G is a set S ⊆ V s.t. G \ S
is consistent (or equivalently, a set of vertices which meets every nonnull cycle). We consider the Group Feedback Vertex
Set (GFVS) problem: given a Γ -labelled graph G, a set F ⊆ V of forbidden vertices, and an integer p, can we find a feedback
vertex set of G disjoint from F and of size at most p? This section is devoted to the proof of the following theorem.

Theorem 5. GFVS is solvable in O∗((4|Γ | + 1)p) time.

The algorithm relies on iterative compression; see e.g. [3,14] for an introduction to the method. We introduce the GFVS
Compression problem, which takes
1. a Γ -labelled graph G = (V , A,Λ),
2. a feedback vertex set S of G,
3. a function φ : S → Γ ,
4. a set F ⊆ V of forbidden vertices,

and an integer p, and seeks a set S ′ of< p vertices disjoint from F and whichmeets each path P joining two vertices u, v ∈ S
withΛ(P) ≠ φ(u)−1φ(v).

The GFVS Compression problem will allow us to solve the compression step for GFVS, thanks to the following result.

Proposition 2. Let G = (V , A,Λ), and let F ⊆ V . Let S be a feedback vertex set of G. The following are equivalent:
• there exists a feedback vertex S ′ of G s.t. S ′ is disjoint from F ∪ S and |S ′| < |S|;
• there exists φ : S → Γ s.t. Iφ = (G, S, φ, F ∪ S, |S|) is a positive instance of GFVS Compression.

Proof. (⇒): suppose that there exists S ′ as stated. Since G \ S ′ is consistent, by Lemma 8 it admits a consistent labelling λ.
Letφ be the restriction of λ to S. For each path P inG\S ′ joining u, v ∈ S, we haveΛ(P) = λ(u)−1λ(v) = φ(u)−1φ(v), where
the first equality follows from the fact that λ is a consistent labelling.We conclude that S ′ is a solution forGFVS Compression
on the instance Iφ .
(⇐): suppose that there exists φ : S → Γ as stated. Let S ′ be a solution for GFVS Compression on the instance Iφ . Then

S ′ is disjoint from F ∪ S and |S ′| < |S|. We claim that G \ S ′ is consistent. Suppose by contradiction that C is a nonnull cycle
of G \ S ′. Since S is a feedback vertex set of G, it follows that C contains an element x ∈ S. Consider the cycle C ′ at x obtained
as a circular permutation of C , then C ′ is nonnull by Lemma 7. Since S ′ is a solution for GFVS Compression, it follows that
Λ(C ′) = φ(x)−1φ(x) = 1Γ , contradiction. We conclude that S ′ is a feedback vertex set of G. �

By Proposition 2, an FPT algorithm for GFVS Compressionwill yield an algorithm for the GFVS problem.

Proposition 3. GFVS Compression is solvable in O∗(4p) time.

S. Guillemot / Discrete Optimization 8 (2011) 61–71 69

Proof. We formulate it as a path transversal problem for a homogeneous path system. Let I = (G, S, φ, F , p) be an instance
of GFVS Compression. We define the path system σ = (G, S, F ,P), where G is the underlying graph of G, and where P
consists of the paths P joining two vertices u, v ∈ S withΛ(P) ≠ φ(u)−1φ(v). We verify that σ is homogeneous and has a
separation oracle:

(a) Point 1 of Definition 1: let P be a bad path which is inclusionwise minimal. Aiming for contradiction, suppose that P is
not simple. Then P = P1CP2, where C is a cycle at x ∈ V . If C is null, then P1xP2 is a bad path included in P , impossible.
If C is nonnull, it contains an element y ∈ S. Then the cycle C ′ at y obtained from C is also nonnull by Lemma 7, and is
therefore a bad path included in P , impossible. We conclude that P is simple.

(b) Point 2 of Definition 1: let P be a bad path joining u, v ∈ S. Suppose that P = P1xP2, and let P ′ be a path join-
ing some w ∈ S to x. Aiming for contradiction, suppose that both P1P ′−1 and P ′P2 are good paths. We then have
Λ(P1P ′−1) = φ(u)−1φ(w) andΛ(P ′P2) = φ(w)−1φ(v). But this implies thatΛ(P) = Λ(P1P ′−1)Λ(P ′P2) = φ(u)−1φ(v),
a contradiction.

(c) σ has a polynomial-time separation oracle: suppose thatwe are given (dv)v∈V . For each u, v ∈ V , g ∈ Γ , letw(u, v, g) be
the length of a shortest path P in Gd which joins u to v and satisfiesΛ(P) = g . These values can be computed in O(n3

|Γ |)
time. A shortest bad path comes from a triple (u, v, g), with u, v ∈ S and g ≠ φ(u)−1φ(v), which minimizesw(u, v, g).

We conclude by Theorem 1 that GFVS Compression can be solved in O∗(4p) time. �

We are now in position to prove Theorem 5.

Proof of Theorem 5. We solve Group Feedback Vertex Set using iterative compression. In the compression step, we are
given a subset V ′ of V , a feedback set S of G[V ′] disjoint from F and of size p, and we seek S ′ feedback set of G[V ′] disjoint
from F and of size < p. We examine every possibility for S ∩ S ′: for each bipartition of S = S1 ∪ S2, we seek S ′ = S1 ∪ S ′2
with S2 ∩ S ′2 = ∅ and |S

′

2| < |S2|. Let i = |S2|, then finding S ′2 amounts to find a feedback vertex set of G \ S1 disjoint from
F ∪ S2 of size< i. This is done in O∗(|Γ |i × 4i) time: by Proposition 2, we need to examine the |Γ |i functions φ : S2 → Γ ,
and for each such function we solve GFVS Compression in O∗(4i) time by Proposition 3. By summing on each possible value
of i, we obtain that the total time required by the compression step is

∑p
i=0

 p
i

O∗((4|Γ |)i) = O∗((4|Γ | + 1)p). Since there

are at most n compression steps, the running time of the algorithm is as claimed. �

4.3. The Group Feedback Edge Set problem

We now consider the edge-version of the problem. Consider a Γ -labelled graph G = (V , A,Λ) with underlying graph
G = (V , E). If S ⊆ E, removing S from G produces the Γ -labelled graph G \ S = (V , A′,Λ′)where A′ = A− {(u, v), (v, u) :
uv ∈ S}, andΛ′ = Λ|A′. A feedback edge set of G is a set S ⊆ E s.t. G \ S is consistent. The Group Feedback Edge Set (GFES)
problem asks: given a Γ -labelled graph G with underlying graph G = (V , E), a set F ⊆ E of forbidden edges, and an integer
p, can we find a feedback edge set of G disjoint from F and of size at most p?

For the GFES problem, we obtain an algorithm with the same running time as for GFVS, as well as another algorithm
whose exponential factor does not depend on |Γ |.

Theorem 6. GFES is solvable in O∗((4|Γ | + 1)p) time, and in O∗((8p+ 1)p) time.

We rely on iterative compression in a similar fashion to the proof of Theorem 5. We define the GFES Compression
problem, which takes

1. a Γ -labelled graph G = (V , A,Λ)with underlying graph G = (V , E),
2. a feedback vertex set S of G,
3. a function φ : S → Γ ,
4. a set F ⊆ E of forbidden edges,

and an integer p, and seeks a set S ′ of< p edges disjoint from F and which meets each path P joining two vertices u, v ∈ S
withΛ(P) ≠ φ(u)−1φ(v).

The following proposition demonstrates how the GFES Compression problem serves in the compression step. Its proof
is similar to Proposition 2 and is therefore omitted.

Proposition 4. Let G = (V , A,Λ)with underlying graph G = (V , E), and let F ⊆ E. Let S ⊆ E be a feedback edge set of G, and
let K ⊆ V be a vertex cover of S. The following are equivalent:
• there exists a feedback edge set S ′ of G s.t. S ′ is disjoint from F ∪ S and |S ′| < |S|;
• there exists φ : K → Γ s.t. (G, K , φ, F ∪ S, |S|) is a positive instance of GFES Compression.

This will yield an algorithm for the compression step of GFES, provided that we have an algorithm for the GFES Compres-
sion problem. We now present such an algorithm.

Proposition 5. GFES Compression is solvable in O∗(4p) time.

Proof. We describe a simple reduction to GFVS Compression, and conclude using Proposition 3.

70 S. Guillemot / Discrete Optimization 8 (2011) 61–71

Let I = (G, S, φ, F , p) be an instance of GFES Compression, where G = (V , A,Λ) is a Γ -labelled graph with un-
derlying graph G = (V , E). We create an instance I ′ = (G′, S, φ, F ′, p) of GFVS Compression as follows. For each edge
e = uv ∈ E, we introduce a new vertex xe; then, if the arcs (u, v), (v, u) have labels g, g−1, we replace them by arcs
(u, xe), (xe, v), (v, xe), (xe, u) having respective labels g, 1Γ , 1Γ , g−1. This defines G′ = (V ′, A′,Λ′) which is easily seen to
be a Γ -labelled graph. The set of forbidden vertices is F ′ = V ∪ {xe : e ∈ F}.

The correctness of the reduction follows by observing that the function which maps S ⊆ E to S ′ = {xe : e ∈ S} yields a
bijection between the solutions of I ′ and of I . �

Let us now prove Theorem 6. The O∗((4|Γ | + 1)p) running time is obtained using iterative compression similarly to
Theorem 5, with the difference that we now proceed by inserting edges. This is correct since if S is a feedback edge set of
G and if T ⊆ E, then S \ T is a feedback edge set of G \ T . The running time analysis is similar to Theorem 5, except that
the number of compression steps is now≤ |E|. Note that when applying Proposition 4 to S solution of size p, we can find K
vertex cover of S of size p, therefore the number of functions φ to examine is |Γ |p, as in Theorem 5.

We now argue that the number of functions φ to consider can be reduced from |Γ |p to (2p)p, which will yield an
O∗((8p + 1)p) algorithm. We introduce the following definitions. For each connected component C of G s.t. C ∩ K ≠ ∅,
choose an element rC ∈ C ∩ K . Let K1 be the set of chosen elements of K . Say that a function φ : K → Γ is canonical iff
φ(x) = 1Γ for each x ∈ K1. Say that a function φ : K → Γ is realizable iff it is canonical and there exists a spanning forest
F of G and an F-consistent labelling λ of G s.t. φ = λ|K . Observe that Proposition 4 remains correct if we require φ to be
realizable.

The following lemma gives an upper bound on the number of realizable functions.

Lemma 9. The number of realizable functions is at most (2p)p.
Proof. We assume that K is the set of endpoints of edges in S. We say that an S-forest is a pairF = (S ′, F , ψ,ψ ′), consisting
of: (a) a set S ′ ⊆ S, (b) a forest F = (U, E) with |S ′| edges, (c) a function ψ : K → U , (d) a bijective function ψ ′ : S ′ → E,
satisfying the two following properties: (i) for every x ∈ U, ψ−1(x) is included in a connected component of G \ S, (ii) for
e = uv ∈ S ′, it holds that ψ ′(e) = ψ(u)ψ(v).

To an S-forestF , we associate a function φF : K → Γ as follows. Suppose that u ∈ K belongs to a connected component
C of G. Let P = x1, . . . , xm be the path joining ψ(rC) to ψ(u) in F . Then there exists vertices u1v1, . . . , umvm in K s.t.
(a) u1 = rC , vm = u,
(b) for every 1 ≤ i ≤ m, there is a path Pi from ui to vi in G \ S (by (i)),
(c) for every 1 ≤ i < m, it holds that viui+1 ∈ S ′.
Let Pu be the concatenation of the paths P1, (v1, u2), . . . , (vm−1, um), Pm. We then define φF (u) = Λ(Pu).

We claim that every realizable function is obtained by this construction. Indeed, suppose that φ : K → Λ is realizable,
let F be the corresponding spanning forest of G and λ be the F-consistent labelling s.t. φ = λ|K . Let F ′ be obtained from F
by contracting the edges of E \ S. Then each edge e ∈ F ′ corresponds to an edge σe ∈ S, and each vertex u of F ′ corresponds
to a set of vertices Vu of G. Besides, for each edge e = uv ∈ F ′, if σe = xy then x ∈ Vu, y ∈ Vv . It follows that if we define
F = (S ′, F ′, ψ,ψ ′)with
1. for each x ∈ K , ψ(u) being the unique u ∈ V (F ′) s.t. x ∈ Vu,
2. for each f ∈ S, ψ ′(f) being the unique e ∈ E(F ′) s.t. f = σe (if it exists),
3. S ′ being the definition domain of ψ ′,
then φ = φF ′ . This equality holds because when computing φF as above, the value Λ(Pi) does not depend on a particular
choice of Pi (since G \ S is consistent).

We conclude that the number of realizable functions is upper bounded by the number of S-forests, which is at most
(2p)p. �

From the proof of the lemma, we obtain an algorithm which enumerates the realizable functions in O∗((2p)p) time.

5. Concluding remarks

The parameterized complexity of some problems considered in this article remains unsettled. We have seen that the
Vertex Multicut and Multicut problems were FPT w.r.t. k, p, and that the Group Feedback Vertex Set problem was FPT
w.r.t. |Γ |, p. It is an open question whether these problems are FPT for the single parameter p. Note that in the case of
Multicut it was first mentioned by [4]. Also, the existence of polynomial kernels for these problems is open, as well as for
Multiway Cut. Could the half-integrality property be useful in this respect, as it is for the kernelization of Vertex Cover?

We also think that some variants of the problems on group-labelled graphs considered in Section 4 may be fixed-
parameter tractable. An interesting generalization of the Group Feedback Edge Set problem is the Unique Label Cover
problem, whose approximability was studied in connection with the Unique Games Conjecture [15,16]. Other problems of
interest are satisfiability problems for systems of linear equations/inequations, parameterized by the maximum number
of unsatisfied equations allowed. These problems may be FPT when restricted to instances with at most two variables per
equation.

More generally, could our LP-based approach for Path Transversal apply to other problems? Itmay prove useful in other
cases, possibly in combination with iterative compression.

S. Guillemot / Discrete Optimization 8 (2011) 61–71 71

References

[1] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer-Verlag, 1999.
[2] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer-Verlag, 2006.
[3] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.
[4] D. Màrx, Parameterized graph separation problems, Theoret. Comput. Sci. 351 (2006) 394–406.
[5] J. Chen, Y. Liu, S. Lu, An improved parameterized algorithm for the minimum node multiway cut problem, Algorithmica 55 (1) (2009) 1–13.
[6] M. Xiao, Algorithms for multiterminal cuts, in: Proc. CSR 2008, in: Lecture Notes in Computer Science, vol. 5010, 2008, pp. 314–325.
[7] J. Chen, F.V. Fomin, Y. Liu, S. Lu, Y. Villanger, Improved algorithms for feedback vertex set problems, J. Comput. System Sci. 74 (7) (2008) 1188–1198.
[8] B. Reed, K. Smith, A. Vetta, Finding odd cycle transversals, Oper. Res. Lett. 32 (4) (2004) 299–301.
[9] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, I. Razgon, A fixed-parameter algorithm for the directed feedback vertex set problem, J. ACM 55 (5) (2008).

[10] M. Chudnovsky, J. Geelen, B. Gerards, L.A. Goddyn, M. Lohman, P.D. Seymour, Packing non-zero A-paths in group-labelled graphs, Combinatorica 5
(26) (2006) 521–532.

[11] K.I. Kawarabayashi, P. Wollan, Non-zero disjoint cycles in highly connected group labeled graphs, J. Combin. Theory Ser. B 96 (2006) 296–301.
[12] N. Garg, V. Vazirani, M. Yannakakis, Multiway cuts in directed and node weighted graphs, in: Proc. ICALP’94, in: Lecture Notes in Computer Science,

vol. 820, 1994, pp. 487–498.
[13] J. Edmonds, Path, trees and flowers, Canad. J. Math. 17 (1965) 449–467.
[14] J. Guo, H. Moser, R. Niedermeier, Iterative compression for exactly solving NP-hard minimization problems, in: Algorithmics of Large and Complex

Networks, in: Lecture Notes in Computer Science, vol. 5515, 2009, pp. 65–80.
[15] S. Khot, On the power of unique 2-prover 1-round games, in: Proc. STOC’02, 2002, pp. 767–775.
[16] A. Gupta, K. Talwar, Approximating unique games, in: Proc. SODA’06, 2006, pp. 99–106.

	FPT algorithms for path-transversal and cycle-transversal problems
	Introduction
	Homogeneous path systems
	Preliminaries
	LP formulation and half-integrality
	A technical result
	The main result

	New algorithms for separation problems
	The Multiway Cut problems
	The Multicut problem
	The Vertex Multicut problem

	Problems on group-labelled graphs
	Preliminaries
	The Group Feedback Vertex Set problem
	The Group Feedback Edge Set problem

	Concluding remarks
	References

