A Theorem on Tait Colorings with an Application to the Generalized Petersen Graphs

Mark E. Watkins
University of Waterloo, Waterloo, Ontario, Canada, and University of North Carolina, Chapel Hill, North Carolina 27514
Communicated by W. T. Tutte
Received December 15, 1967

Abstract

A family of graphs which includes the Petersen graph is postulated, and it is conjectured that the Petersen graph is the only member of this family not to have a Tait coloring. A general theorem about Tait colorings is proved and the conjecture is shown to be equivalent to a combinatorial assertion involving cyclically ordered arrays of n objects each belonging to one of 3 distinguishable classes. Finally, the combinatorial formulation is used to show that the conjecture is true wherever the parameters of the family satisfy any of a number of equalities or congruences.

1. A Conjecture

A Tait coloring of a trivalent graph G is an edge-coloring of G in 3 colors so that the 3 edges incident to any vertex are differently colored. An isthmus of a graph is an edge whose deletion disconnects the component in which it lies. It has been conjectured by Tutte [4] that "any trivalent graph with no isthmus and no Tait coloring can be reduced to a Petersen graph by deleting some edges and contracting other to single vertices."

The converse of this conjecture, however, is false. A counterexample appears in Figure 1, where the symbols α, β, and γ denote colors of a Tait coloring, although the two subgraphs generated by the vertices u_{i} together with the vertices v_{i} with even subscripts in one case and with odd subscripts in the other case are each contractible to the Petersen graph.

For integers k and n satisfying

$$
\begin{equation*}
1 \leqslant k \leqslant n-1, \quad 2 k \neq n \tag{1-1}
\end{equation*}
$$

one defines the generalized Petersen graph $G(n, k)$ with vertex set

$$
V(G(n, k))=\left\{u_{0}, u_{1}, \ldots, u_{n-1}, v_{0}, v_{1}, \ldots, \imath_{n-1}\right\},
$$

and the set of edges $E(G(n, k))$ consisting of all those of the form

$$
\left[u_{i}, u_{i+1}\right], \quad\left[u_{i}, v_{i}\right], \quad\left[v_{i}, v_{i+k}\right],
$$

where i is an integer. All subscripts in this note are to be read modulo n. The particular value of n will be clear from the context, but n will always denote an integer $\geqslant 3$.

Thus $G(5,2)$ is the Petersen graph, and $G(10,4)$ is represented in Figure 1. The family of generalized Petersen graphs will be denoted by \mathscr{P}.

Fig. 1

Conjecture. The Petersen graph is the only member of \mathscr{P} which does not have a Tait coloring.

2. Some Preliminary Terminology, Notation, and Remarks

It is clear that the vertex map

$$
\begin{gathered}
u_{i} \rightarrow u_{i+1}, \\
v_{i} \rightarrow v_{i+1},
\end{gathered}
$$

induces an automorphism of $G(n, k)$. Another automorphism is induced by the vertex map

$$
\begin{aligned}
& u_{i} \rightarrow u_{n-i}, \\
& v_{i} \rightarrow v_{n-i} .
\end{aligned}
$$

Thus the dihedral group D_{n} is a subgroup of the group of symmetries of $G(n, k)$. The existence of this latter automorphism implies

Lemma 2.1. $\quad G(n, k)$ and $G(n, n-k)$ are isomorphic.
If $2 k=n$, then $G(n, k)$ is not trivalent anyway. Thus the condition (1-1) can be replaced by

$$
\begin{equation*}
1 \leqslant k<n / 2 \tag{2-1}
\end{equation*}
$$

The polygon generated by the vertices $u_{0}, u_{1}, \ldots, u_{n-1}$ will be called the outer rim of $G(n, k)$. Each connected component of the subgraph of $G(n, k)$ generated by the vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ will be an inner rim of $G(n, k)$. If (n, k) denotes the greatest common divisor of the integers n and k, then it is seen that $G(n, k)$ will have precisely (n, k) inner rims, each of which is a polygon of length $n /(n, k)$. The edges $\left[u_{i}, v_{i}\right.$] will be called the spokes of $G(n, k)$.

Lemma 2.2. If $1 \leqslant k, m \leqslant n-1$ and if $k m \equiv 1(\bmod n)$, then $G(n, k)$ and $G(n, m)$ are isomorphic.

Proof: The hypothesis implies that $(n, k)=(n, m)=1$ and so $G(n, k)$ and $G(n, m)$ have each a single inner rim. Let

$$
V(G(n, m))=\left\{u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{n-1}^{\prime}, v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}\right\}
$$

where $E(G(n, m))$ consists of all edges of the form

$$
\left[u_{i}^{\prime}, u_{i+1}^{\prime}\right], \quad\left[u_{i}^{\prime}, v_{i}^{\prime}\right], \quad\left[v_{i}^{\prime}, v_{i+m}^{\prime}\right]
$$

The vertex map

$$
\begin{aligned}
u_{i} & \rightarrow v_{m i}^{\prime} \\
v_{i} & \rightarrow u_{m i}^{\prime}
\end{aligned}
$$

is seen to induce a graph isomorphism of $G(n, k)$ onto $G(n, m)$.
Lower case Greek letters, particularly the symbols α, β, and γ, will be reserved for colors.

A Hamilton circuit in a graph is a circuit covering all the vertices of the graph. A Tait cycle in a graph is the union of two or more disjoint even
circuits which cover all the vertices of the graph. It is well known and easily verified that a trivalent graph with a Hamilton circuit or a Tait cycle has Tait coloring.
If $G(n, k)$ has a Tait coloring and if the letters a, b, and c denote the number of spokes of $G(n, k)$ which have been colored α, β, and γ, respectively, then clearly

$$
\begin{equation*}
a+b+c=n . \tag{2-2}
\end{equation*}
$$

By a cyclic n-sequence $\left\langle\xi_{0}, \xi_{1}, \ldots ., \xi_{n-1}\right\rangle$, we mean the set of all ordered n-tuples

$$
\begin{equation*}
\left\{\left(\xi_{m}, \xi_{m+1}, \ldots, \xi_{m+n-1}\right): m \text { is an integer }\right\} \tag{2-3}
\end{equation*}
$$

(Recall the convention governing subscripts.)
The set $X(n ; a, b, c)$ will consist of all cyclic n-sequences (2-3) where $\xi_{i} \in\{\alpha, \beta, \gamma\}$ for all integers i and α, β, and γ appear in any element of (2-3) with multiplicities a, b, and c, respectively. Thus (2-2) holds in this context, too.

If $(n, k)=1$ and $(1-1)$ holds, we define the function f_{k} from $X(n ; a, b, c)$ into itself by the rule

$$
f_{k}\left\langle\xi_{0}, \xi_{1}, \xi_{2}, \ldots, \xi_{n-1}\right\rangle=\left\langle\xi_{0}, \xi_{k}, \xi_{2 k}, \ldots, \xi_{(n-1) k}\right\rangle
$$

for each $\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle \in X(n ; a, b, c)$. It is easily seen that the subscripts $0, k, 2 k, \ldots,(n-1) k$ are a permutation of $0,1,2, \ldots, n-1$. Equivalently, f_{k} is well defined if and only if $(n, k)=1$.

It is also easily verified that, if $(n, k)=(n, m)=1$, then

$$
f_{k} f_{m}=f_{k m}
$$

Under the isomorphism $k \leftrightarrow f_{k}$ the semigroup $F_{n}=\left\{f_{1}, \ldots, f_{n-1}\right\}$ with the binary operation of composition is isomorphic to the multiplicative semigroup of residues modulo $n . F_{n}$ is a group if and only if n is prime.

A segment of the cyclic n-sequence $\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle$ is an ordered j-tuple ($\rho_{0}, \ldots, \rho_{j-1}$) consisting of the first j terms in order from some ordered n-tuple belonging to $\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle$. If $\rho_{1}=\cdots=\rho_{j-2}=\sigma$, the segment may be abbreviated by ($\rho_{0}, \sigma^{(j-2)}, \rho_{j-1}$), and $\left\langle\sigma_{0}{ }^{\left(p_{0}\right)} \sigma_{1}{ }^{\left(p_{1}\right)} \cdots \sigma_{r}{ }^{\left(p_{r}\right)}\right\rangle$ denotes the cyclic n-sequence $\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle$ where

$$
\begin{array}{r}
\xi_{0}=\cdots=\xi_{p_{0}-1}=\sigma_{0} \\
\xi_{p_{0}}=\cdots=\xi_{p_{1}-1}=\sigma_{1} \\
\cdots \cdots \cdots \cdots \\
\xi_{n-p_{r}}=\cdots=\xi_{n-1}=\sigma_{r} .
\end{array}
$$

We distinguish two types of segments which may occur in an element

$$
\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle \in X(n ; a, b, c) .
$$

Here (ζ, η, θ) is any permutation whatever of the symbols (α, β, γ) :
Type I: $\left(\zeta, \eta^{(j)}, \zeta\right)$, where j is an odd positive integer.
Type II: $\left(\zeta, \eta^{(j)}, \theta\right)$, where j is an even positive integer.
We let $Y(n ; a, b, c)$ denote the set of those cyclic n-sequences in $X(n, a, b, c)$ which have no segment of Type I or Type II.

3. A General Theorem on Tait Colorings and An Equivalent Combinatorial Problem

Let G be an arbitrary trivalent graph and let C be a circuit in G. Let the vertices of C be denoted in some cyclic order by

$$
\begin{equation*}
x_{0}, x_{1}, \ldots, x_{n-1} \tag{3.1}
\end{equation*}
$$

A positive sense in C is defined if the vertices are encountered in the order (3-1), extended cyclically. Incident to each vertex a_{i} there is an edge s_{i} not in C called the spoke of C at x_{i}.

Let the n spokes of C be assigned colors α, β, and γ arbitrarily. Pick a vertex x_{i} and proceed around C in the positive sense from x_{i} while noting the color $\xi_{j} \in\{\alpha, \beta, \gamma\}$ of the spoke s_{j} as each vertex x_{j} is encountered. This yields an ordered n-tuple

$$
\left(\xi_{i}, \ldots, \xi_{n-1}, \xi_{0}, \ldots, \xi_{i-1}\right)
$$

By repeating this process, varying only the starting point x_{i}, we obtain a set of n such ordered n-tuples. This set is a cyclic n-sequence

$$
\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle \in X(n ; a, b, c)
$$

where a, b, and c have the same meaning as in the previous section, and (2-2) holds.

Thus to any coloring of the spokes of C in colors α, β, and γ, there corresponds a cyclic n-sequence in some set $X(n ; a, b, c)$, and to any element of any set $X(n ; a, b, c)$ there corresponds a coloring of the spokes of C in α, β, and γ.

Let $\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle \in X(n ; a, b, c)$ and let m be any integer. Let the spoke s_{m+j} of C be colored $\xi_{j}(j=0,1, \ldots, n-1)$. If it is possible to assign
colors α, β and γ to the edges of C in such a way that each of the vertices $x_{i} \in V(C)$ is incident to precisely one edge of each color, then $\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle$ shall be said to be extensible to C.

Lemma 3.1. Let $\Xi=\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle \in X(n ; a, b, c)$ and suppose Ξ has a segment of Type I or of Type II. Let C be any n-circuit in a trivalent graph G. Then Ξ is not extensible to C.

Proof: Let $V(C)$ be labeled as in (3-1). We may suppose that the spoke s_{i} of C at x_{i} has been colored $\xi_{i},(i=0, \ldots, n-1)$.

Suppose Ξ has a segment of Type I and, for definiteness, assume that $\left(\xi_{0}, \ldots, \xi_{j+1}\right)=\left(\alpha, \beta^{(j)}, \alpha\right)$ is such a segment, where j is an odd positive integer. The edges

$$
\begin{equation*}
\left[x_{i}, x_{i+1}\right], \quad i==0,1, \ldots, j \tag{3-2}
\end{equation*}
$$

must receive alternately the colors γ and α, beginning with γ. There is an even number of edges in (3-2) since j is odd. Thus $\left[x_{j}, x_{j+1}\right]$ receives α. But s_{j+1} is also colored α; i.e., x_{j+1} is incident to two edges colored α. Hence Ξ is not extensible to C.

If $\boldsymbol{\Xi}$ has a segment of Type II, we assume for definiteness that

$$
\left(\xi_{0}, \ldots, \xi_{j+1}\right)=\left(\alpha, \beta^{(j)}, \gamma\right)
$$

where j is an even positive integer. Again the edges (3-2) must be colored alterately in γ and α, beginning with γ. But since there is now an odd number of these edges, $\left[x_{j}, x_{j+1}\right]$ receives γ, too, and x_{j+1} is incident to two edges colored γ.

Lemma 3.2. Let $\Xi=\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle \in Y(n ; a, b, c)$ and let it not be true that

$$
\xi_{0}=\cdots=\xi_{n-1}
$$

Then Ξ is extensible to any n-circuit in a trivalent graph.
Proof: Let C be a circuit in a trivalent graph where $V(C)$ is labeled as in (3-1). Assume that the spoke s_{i} of C at x_{i} is colored $\xi_{i}(i=0, \ldots, n-1)$.

Since it is not true that $\xi_{0}=\cdots=\xi_{n-1}$, we may assume without loss of generality that $\xi_{0}=\alpha$ and $\xi_{1}=\beta$. Let $\xi_{j_{2}}$ be the next term after ξ_{1} different from β. In general, let $\xi_{j_{i+1}}$ be the first term after $\xi_{j_{i}}$ different from $\xi_{j_{i}}$.

Now color [x_{0}, x_{1}] in γ and color the $j_{2}-1$ edges

$$
\left[x_{1}, x_{2}\right], \ldots,\left[x_{j_{2}-1}, x_{j_{2}}\right]
$$

alternately first in α then in γ. Thus $\left[x_{j_{2}-1}, x_{j_{2}}\right]$ will be colored α if and only if $j_{2}-1$ is odd. Now $j_{2}-1$ is odd if and only if $\xi_{j_{2}}=\gamma$, since $\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle$ has no segment of Type I or Type II. Now consider the edges

$$
\left[x_{j_{2}}, x_{j_{2}+1}\right], \ldots,\left[x_{j_{3}-1}, x_{j_{3}}\right] .
$$

If $\xi_{j_{2}}=\gamma$ these edges are properly colorable alternately first in β then in α, whereas if $\xi_{j_{2}}=\alpha$, they are properly colorable first in β then in α. This process can be continued until all the edges of C are properly colored.

The above two lemmas imply
Theorem 1. Let $\Xi=\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle \in X(n ; a, b, c)$, and let it not be true that $\xi_{0}=\cdots=\xi_{n-1}$. Let C be any n-circuit in some trivalent graph G. Then Ξ is extensible to C if and only if $\Xi \in Y(n ; a, b, c)$.

Let $\Xi=\left\langle\xi_{0}, \ldots, \xi_{n-\mathbf{1}}\right\rangle \in X(n ; a, b, c)$. If Ξ is extensible to the outer rim of a generalized Petersen graph $G(n, k)$, then E is said to be an outer sequence for $G(n, k)$.

Corollary 1A. A cyclic n-sequence $\Xi \in X(n ; a, b, c)$ is an outer sequence for $G(n, k)$ if and only if $\Xi \in Y(n ; a, b, c)$.

Let m be any integer and let the spoke s_{m+i} of $G(n, k)$ be colored $\xi_{i} \in\{\alpha, \beta, \gamma\}(i=0,1, \ldots, n-1)$. If the edges of the inner rims of $G(n, k)$ can be assigned colors α, β, and γ in such a way that each vertex v_{i} on an inner rim is incident with precisely one edge of each color, then $\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle$ is an inner sequence for $G(n, k)$.

Corollary 1B. Let n and k satisfy (1-1) and suppose $(n, k)=1$. Let $\Xi=\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle \in X(n ; a, b, c)$ and let it not hold that $\xi_{0}=\cdots=\xi_{n-1}$. Then Ξ is an inner sequence for $G(n, k)$ if and only if $f_{k} \Xi \in Y(n ; a, b, c)$.

Proof: Let m be any integer and let the spoke s_{m+j} of $G(n, k)$ be colored $\xi_{j}(j=0,1, \ldots, n-1)$. Let the positive sense on the inner $\operatorname{rim} C$ of $G(n, k)$ be such that its vertices are encountered in the cyclic order

$$
v_{0}, v_{k}, v_{2 k}, \ldots, v_{(n-1) k}
$$

Proceed in the positive sense around C from $v_{i k}$ noting the color $\xi_{(j-m) k}$ of the spoke $s_{j k}$ as each vertex $v_{j k}$ is encountered $(j=0,1, \ldots, n-1)$. By repeating this process as $i=0,1, \ldots, n-1$, we obtain precisely the cyclic n-sequence

$$
\left\langle\xi_{0}, \xi_{k}, \ldots, \xi_{(n-1) k}\right\rangle=f_{k} \Xi
$$

The definitions imply that Ξ is an inner sequence if and only if $f_{k} \Xi$ is extensible to C. But, by Theorem $1, f_{k} \Xi$ is extensible to C if and only if it belongs to $Y(n ; a, b, c)$.

Theorem 2. Let integers n and k satisfy ($1-1$) and suppose $(n, k)=1$. The generalized Petersen graph $G(n, k)$ has a Tait coloring if and only if, for some positive integers a, b, c satisfying (2-2), there exists a cyclic n-sequence $\Xi \in Y(n ; a, b, c)$ such that $f_{k} \Xi \in Y(n ; a, b, c)$.

Proof: Let $E=\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle \in X(n ; a, b, c)$. Let m be any integer and let the spoke s_{j+m} of $G(n, k)$ be colored ξ_{j}.

Clearly $G(n, k)$ has a Tait coloring if and only if Ξ is both an outer sequence and inner sequence for $G(n, k)$. The theorem is now an immediate consequence of Corollaries 1A and 1B.

Corollary 2A. Let n and k satisfy (1-1) and suppose $(n, k)=1$. If for some cyclic n-sequence Ξ, both Ξ and $f_{k} \Xi$ are in $Y(n ; a, b, c)$, then

$$
\begin{equation*}
a \equiv b \equiv c \text { (modulo 2). } \tag{3-3}
\end{equation*}
$$

Proof: The result follows from Theorem 2 and a result by Mlle. Blanche Descartes [1] that, if S is a separating set of edges of a trivalent graph G and if a, b, and c denote the numbers of edges in S colored each of the three colors in a Tait coloring of G, then (3-3) must hold.

Remark. Unfortunately the subset $Y(n ; a, b, c)$ does not appear to emerge "naturally" from the set $X(n ; a, b, c)$ in any algebraic way. It is possibly of interest to consider the following related question:

Consider a set $X(n ; a, b, c)$ and suppose n is prime so that $F_{n}=\left\{f_{1}, \ldots, f_{n-1}\right\}$ forms a group under composition, as mentioned above. Pick a generator f_{k} of F_{n}. What can we say then as to how $X(n ; a, b, c)$ will be decomposed into orbits under f_{k}, and how might $Y(n ; a, b, c)$ be distributed among these orbits?
This has been worked out below for the set $X(7,1,3,3) . f_{3}$ is a generator of F_{7}. The columns of the table below are the orbits under f_{3}. The cyclic sequences followed by ${ }^{*}$ belong to $Y(7,1,3,3)$.

$\langle\alpha \gamma \beta \beta \gamma \gamma \beta\rangle^{*}$	$\langle\alpha \beta \beta \gamma \gamma \beta \gamma\rangle$	$\langle\alpha \gamma \gamma \beta \beta \gamma \beta\rangle$	$\langle\alpha \gamma \gamma \beta \gamma \beta \beta\rangle$
$\langle\alpha \beta \beta \beta \gamma \gamma \gamma\rangle^{*}$	$\langle\alpha \gamma \gamma \beta \beta \beta \gamma\rangle$	$\langle\alpha \beta \beta \gamma \gamma \gamma \beta\rangle$	$\langle\alpha \beta \beta \gamma \beta \gamma \gamma\rangle$
$\langle\alpha \beta \gamma \beta \gamma \beta \gamma\rangle$	$\langle\alpha \beta \gamma \gamma \beta \gamma \beta\rangle$	$\langle\alpha \gamma \beta \beta \gamma \beta \gamma\rangle$	
$\langle\alpha \beta \gamma \gamma \beta \beta \gamma\rangle^{*}$	$\langle\alpha \gamma \beta \gamma \gamma \beta \beta\rangle$	$\langle\alpha \beta \gamma \beta \beta \gamma \gamma\rangle$	
$\langle\alpha \gamma \gamma \gamma \beta \beta \beta\rangle^{*}$	$\langle\alpha \gamma \beta \beta \beta \gamma \gamma\rangle$	$\langle\alpha \beta \gamma \gamma \gamma \beta \beta\rangle$	
$\langle\alpha \gamma \beta \gamma \beta \gamma \beta\rangle$	$\langle\alpha \beta \gamma \beta \gamma \gamma \beta\rangle$	$\langle\alpha \gamma \beta \gamma \beta \beta \gamma\rangle$	

Note that $f_{6}=f_{3}{ }^{3}$ merely juxtaposes the β 's and γ 's in each cyclic sequence, not surprisingly, since $f_{6}{ }^{2}$ is the group's identity f_{1}.

4. A Near Proof of the Conjecture

It is assumed in this section that n and k are integers satisfying (1-1).
Theorem 3. If n is even, then $G(n, k)$ has a Tait coloring.
Proof: There are two cases:

1. $n /(n, k)$ is even. The outer rim as well as each of the (n, k) inner rims is an even circuit, and together they cover all of the vertices of $G(n, k)$. So $G(n, k)$ has a Tait cycle and hence a Tait coloring.
II. $n /(n, k)$ is odd. In this case there is an even number of inner rims, each of odd length.

Consider the cyclic sequence

$$
\begin{equation*}
\left\langle\alpha \beta \gamma^{(n /(n, k)-2)}\right\rangle \in X(n /(n, k) ; 1,1, n /(n, k)-2) \tag{4-1}
\end{equation*}
$$

Since $(n /(n, k), k /(n, k))=1, f_{k /(n, k)}$ is a unit in $F_{n /(n, k)}$. It has an inverse $f_{k /(n, k)}^{-1}$ which, when applied to the cyclic sequence (4-1), yields a cyclic sequence of the form

$$
\begin{equation*}
\left\langle\alpha \gamma^{(r)} \beta \gamma^{(n /(n, k)-(r+2))}\right\rangle, \tag{4-2}
\end{equation*}
$$

where r is an integer uniquely determined by n and k and satisfies $1 \leqslant r \leqslant n /(n, k)-3$.

Now let

$$
\begin{equation*}
\Xi=\left\langle\beta \alpha^{((n, k)-1)} \gamma^{((n, k) r)} \alpha \beta^{((n, k)-1)} \gamma^{(n-(n, k)(r+2) \prime}\right\rangle . \tag{4-3}
\end{equation*}
$$

Note that in (4-3) the maximal segments with a single iterated color have even length if the color is γ and odd length if the color is α or β. Thus Ξ has no segments of Type I or Type II. By Corollary 1A, $\boldsymbol{\Xi}$ is extensible to the outer rim of $G(n, k)$.

Now consider the cyclic $(n /(n, k))$ sequences formed by starting with an arbitrary term of Ξ and picking in cyclic order every (n, k)-th term. One so obtains one cyclic sequence

$$
\begin{equation*}
\left\langle\beta \gamma^{(r)} \alpha \gamma^{(n /(n, k)-(r+2) \eta}\right\rangle \tag{4-4}
\end{equation*}
$$

and $(n, k)-1$ cyclic sequences all like (4-2). The application of $f_{k /(n, k)}$ to (4-4) gives

$$
\begin{equation*}
\left\langle\beta \alpha \gamma^{(n /(n, k)-2)}\right\rangle \tag{4-5}
\end{equation*}
$$

and the application of $f_{k /(n, k)}$ to (4-2) yields (4-1). The cyclic ($n /(n, k)$) sequences (4-5) and (4-1) are extensible to the inner rims of $G(n, k)$ by Theorem 1, since they contain no segments of Type I or Type II. Thus $G(n, k)$ has a Tait coloring.

This theorem has been invoked in the coloring of $G(10,4)$ in Figure 1. In this case $(n, k)=2$ and $r=1$.

Theorem 4. Let m be a positive integer. $G(5 m, 2 m)$ has a Tait coloring if and only if $m>1$.

Proof: If m is even, then $G(5 m, 2 m)$ has a Tait coloring by Theorem 3. $G(5,2)$ is the Petersen graph which is known [2] to have no Tait coloring. Hence suppose that m is an odd integer >1.

The cuclic n-sequence

$$
\Xi=\left\langle\alpha^{(m)} \gamma \beta^{(m-1)} \gamma \alpha \beta^{(m-1)} \alpha \gamma^{(m)} \beta^{(m-2)}\right\rangle
$$

has no segment of Type I or Type II and so is an outer sequence by Corollary 1A.
Now consider the cyclic 5 -sequences formed by starting with an arbitrary term of Ξ and recording in cyclic order every m-th term. One obtains

$$
\begin{aligned}
1 \text { cyclic } 5 \text {-sequence } & \langle\alpha \gamma \gamma \beta \gamma\rangle, \\
1 \text { cyclic } 5 \text {-sequence } & \langle\alpha \beta \alpha \alpha \gamma\rangle, \\
m-2 \text { cyclic } 5 \text {-sequences } & \langle\alpha \beta \beta \gamma \beta\rangle .
\end{aligned}
$$

The application of $f_{3}=f_{2}^{-1}$ to these yields

$$
\begin{aligned}
1 \text { cyclic } 5 \text {-sequence } & \langle\alpha \beta \gamma \gamma \gamma\rangle, \\
1 \text { cyclic } 5 \text {-sequence } & \langle\beta \gamma \alpha \alpha \alpha\rangle, \\
m-2 \text { cyclic } 5 \text {-sequences } & \langle\gamma \alpha \beta \beta \beta\rangle,
\end{aligned}
$$

extensible by Theorem 1 to the inner rims of $G(n, k)$.
Theorem 5. If n is odd and $G(n /(n, k), k /(n, k))$ has a Tait coloring, then so does $G(n, k)$.

Proof: If $(n, k)=1$, the theorem is trivial, so assume $(n, k)>1$.
There exists an outer sequence $\Xi=\left\langle\xi_{0}, \ldots, \xi_{n /(n, k)-1}\right\rangle$ for $\boldsymbol{G}(n /(n, k), k /(n, k))$. Let $\Sigma=\left\langle\sigma_{0}, \ldots, \sigma_{n-1}\right\rangle$ be the cyclic n-sequence

$$
\Sigma=\left\langle\xi_{0}^{(n, k))} \xi_{1}^{(n, k))} \cdots \xi_{n-1}^{(n, k))}\right\rangle .
$$

We show that Σ is an outer sequence for $G(n, k)$. Consider a maximal segment of Σ consisting of identical terms. There is no loss of generality in denoting the segment by

$$
\begin{equation*}
\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{m(n, k)-1}\right) \tag{4-6}
\end{equation*}
$$

where

$$
\begin{equation*}
1 \leqslant m<n /(n, k) \tag{4-7}
\end{equation*}
$$

(Since n is odd, so is $n /(n, k)$, so the outer rim of $G(n /(n, k), k /(n, k))$ requires all three colors. Thus not all the ξ_{i} are the same, and strict inequality holds in the right-hand side of (4-7).) Let us suppose further that all the terms of (4-6) are β and that $\sigma_{n-1}=\alpha$. Thus $\xi_{n-1}=\alpha$ and $\xi_{0}=\cdots=\xi_{m-1}=\beta$.

If m is odd, then, since Ξ contains no segment of Type I , $\xi_{m}=\gamma$. Thus $m(n, k)$ is odd and $\sigma_{m(n, k)}=\gamma$. The segment

$$
\left(\sigma_{n-1}, \sigma_{0}, \ldots, \sigma_{m(n, k)-1}, \sigma_{m(n, k)}\right)=\left(\alpha, \beta^{(m(n, k))}, \gamma\right)
$$

is not of Type II (and clearly not of Type I).
If m is even, then since Ξ contains no segment of Type II,

$$
\xi_{m}=\alpha=\sigma_{m(n, k)}
$$

So $m(n, k)$ is even and

$$
\left(\sigma_{n-1}, \sigma_{0}, \ldots, \sigma_{m(n, k)-1}, \sigma_{m(n, k)}\right)=\left(\alpha, \beta^{(m(n, k))}, \alpha\right)
$$

is not of Type I (and clearly not of Type II). Hence Σ is extensible to the outer rim of $G(n, k)$.

The coloring induced by Σ can be extended to the (n, k) inner rims since Ξ is an inner sequence for $G(n /(n, k), k /(n, k)$), and Ξ is the cyclic $(n /(n, k))$-sequence obtained by starting with an arbitrary term of Σ and recording in order every (n, k)-th term.
Let us dispense with a trivial case:
Theorem 6. $G(n, 1)$ has a Tait coloring.
Proof: The outer rim with $\left[u_{0}, u_{1}\right]$ deleted plus the inner rim with
[v_{0}, v_{1}] deleted, together with the spokes s_{0} and s_{1}, form a Hamilton circuit of $G(n, 1)$. Hence $G(n, 1)$ has a Tait coloring.

In the light of the foregoing results, we may restrict our investigation of generalized Petersen graphs $G(n, k)$ to those for which:
(i) n is odd,
(ii) $(n, k)=1$,
(iii) $n \geqslant 7$,
(iv) $2 \leqslant k<n / 2$.

Unfortunately, we have found no general method for dispensing with all of the remaining cases. However, when n and k satisfy certain congruences, it is possible by the use of Theorem 2 to prove that $G(n, k)$ has a Tait coloring. We give three examples:
A. $n \equiv-1(\operatorname{modulo} 2 k)$.

Let $\Xi=\left\langle\alpha \beta^{(2 k-1)} \gamma^{(n-2 k)}\right\rangle$. Since $2 k-1$ and $n-2 k$ are odd, $\Xi \in Y(n ; 1,2 k-1, n-2 k)$, and if $n=2 k m-1$, then

$$
f_{k} \Xi=\left\langle\alpha \beta \gamma^{(2 m-2)} \beta^{(2)} \gamma^{(2 m-2)} \cdots \beta^{(2)} \gamma^{(2 m-3)}\right\rangle
$$

which also belongs to $Y(n ; 1,2 k-1, n-2 k)$.
B. k is odd; $n \equiv 1$ (modulo $2 k$).

Let $\Xi=\left\langle\alpha \beta \gamma^{(n-k-2)} \beta^{(2)} \gamma^{(k-2)}\right\rangle$. Then both Ξ and $f_{k} \Xi$ are in

$$
Y(n ; 1,3, n-4)
$$

C. $\quad n=3 m$ for some positive integer m.

Let $\boldsymbol{\Xi}=\langle\alpha \beta \gamma \alpha \beta \gamma \cdots \alpha \beta \gamma\rangle$. Then $\boldsymbol{\Xi} \in Y(3 m ; m, m, m)$. Since we assume $f_{k} \boldsymbol{\Xi}=\Xi$ or

$$
f_{k} \boldsymbol{\Xi}=\langle\alpha \gamma \beta \alpha \gamma \beta \cdots \alpha \gamma \beta\rangle
$$

according as $k \equiv 1$ (modulo 3) or $k \equiv 2$ (modulo 3), respectively.
Moreover, by Lemma 2.2, if $G(n, k)$ has a Tait coloring and $m k \equiv 1$ (modulo n) where $1<m<n$, then $G(n, m)$ also has a Tait coloring.

Finally, if $G(n, k)$ has a Tait coloring then so does $G(n, n-k)$, by Lemma 2.1.

We conclude with an application of some of the results of this note to show that the conjecture holds, for example, when $n=11$.

If $k=3$, then since $11 \equiv-1$ (modulo 6$)$, Case \mathbf{A} above applies and $G(11,3)$ has a Tait coloring. Since $3 \cdot 4 \equiv 1$ (modulo 11), $G(11,4)$ is also Tait colorable. By Lemma 2.1, so are $G(11,8)$ and $G(11,7)$.

If $k=5$, then k is odd and $11 \equiv 1$ (modulo 10), so Case \mathbf{B} above applies. Since $5 \cdot 9 \equiv 1$ (modulo 11), $G(11,9)$ has a Tait coloring too. By Lemma 2.1 , so do $G(11,6)$ and $G(11,2)$. Finally $G(11,1)$ and $G(11,10)$ are Tait colorable by Theorem 6.

These techniques are hardly exhaustive, however; for example, they offer no hint as to how to color $G(13,5)$. This graph does incidently have a Tait coloring, and the outer sequence could be

$$
\left\langle\alpha^{(3)} \gamma \beta^{(4)} \gamma^{(4)} \beta\right\rangle
$$

Remark. The graphs $G(n, 2)$ where $n \geqslant 7$ is odd are a subclass of a class of graphs which Robertson [3] has shown to contain a Tait cycle if $n \equiv 5$ (modulo 6) and a Hamilton circuit otherwise. Thus $G(n, 2)$ has a Tait coloring for all $n \geqslant 7$.

Since $2(n+1) / 2 \equiv 1$ (modulo n), so do

$$
G(n,(n+1) / 2) \quad \text { and } \quad G(n,(n-1) / 2) .
$$

References

1. B. Descartes, Network-colourings, Math. Gaz. 32 (1948), 67-69.
2. J. Petersen, Sur le théorème de Tait, L'Intermédiaire des Mathématiciens 5 (1898), 225-227.
3. G. N. Robertson, Graphs under Girth, Valency, and Connectivity Constraints (Dissertation), University of Waterloo, Waterloo, Ontario, Canada, 1968.
4. W. T. Tutte, A Geometrical Version of the Four Color Problem, in Combinatorial Mathematics and Its Applications: Proceedings of the Conference Held at the University of North Carolina at Chapel Hill, April 10-14, 1967, (R. C. Bose, T. A. Dowling, ed.), University of North Carolina Press, Chapel Hill, 1969, to appear.
