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ABSTRACT 

A family of graphs which includes the Petersen graph is postulated, and it is 
conjectured that the Petersen graph is the only member of this family not to have a 
Tait coloring. A general theorem about Tait colorings is proved and the conjecture 
is shown to be equivalent to a combinatorial assertion involving cyclically ordered 
arrays of n objects each belonging to one of 3 distinguishable classes. Finally, the 
combinatorial formulation is used to show that the conjecture is tree wherever the 
parameters of the family satisfy any of a number of equalities or congruences. 

1. A CONJECTURE 

A Tait coloring of  a tr ivalent  graph G is an edge-coloring of  G in 3 colors 
so that  the 3 edges incident  to any vertex are differently colored.  An  isthmus 
of  a graph is an edge whose delet ion disconnects  the componen t  in which 
it lies. I t  has been conjectured by Tut te  [4] that  "any  tr ivalent  graph with 
no is thmus and no Tai t  coloring can be reduced to a Petersen graph by 
delet ing some edges and contract ing other  to single vertices." 

The converse o f  this conjecture,  however,  is false. A counterexample  
appears  in Figure 1, where the symbols c~,/3, and y denote  colors of  a 
Tai t  coloring, a l though the two subgraphs  generated by the vertices ui 
together  with the vertices vi with even subscripts in one case and with odd 
subscripts in the other  case are each contract ible  to the Petersen graph.  

Fo r  integers k and n satisfying 

1 < k  ~ n  -- 1, 2 k ~ n ,  (1-1) 

one defines the generalized Petersen graph G(n, k) with vertex set 

V(G(n, k)) -- {u0, ux ..... un-1, v0, vl ..... ~n-1}, 

and the set of  edges E(G(n, k)) consisting of  all those of  the form 

[u~, u,+d, [u~, v~], Iv,, L'i+~], 
152 
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where i is an integer. Al l  subscripts in this note are to be read modulo n. 

The particular value of n will be clear from the context, but n will always 
denote an integer >~3. 

Thus G(5, 2) is the Petersen graph, and G(10, 4) is represented in 
Figure 1. The family of generalized Petersen graphs will be denoted by J~. 
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FIG. 1 

CONJECTURE. The Petersen graph is the only member of ~ which does 
not have a Tait coloring. 

2. SOME PRELIMINARY TERMINOLOGY, NOTATION, AND REMARKS 

It is clear that the vertex map 

U i " - ~  UI+ 1 

~i --'~ /)i+1 , 
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induces an automorphism of G(n, k). Another automorphism is induced 
by the vertex map 

U i ~ U n _  i 

/3i ~ / 3 n - i  �9 

Thus the dihedral group D. is a subgroup of the group of symmetries of 
G(n, k). The existence of this latter automorphism implies 

LEMMA 2.1. G(n, k) and G(n, n -- k) are isomorphic. 

If 2k = n, then G(n, k) is not trivalent anyway. Thus the condition (1-1) 
can be replaced by 

1 <~ k < n/2. (2-1) 

The polygon generated by the vertices u0, ul ..... un-1 will be called the 
outer rim of G(n, k). Each connected component of the subgraph of G(n, k) 
generated by the vertices v o , v 1 ,..., vn-x will be an inner rim of G(n, k). 
If (n, k) denotes the greatest common divisor of the integers n and k, 
then it is seen that G(n, k) will have precisely (n, k) inner rims, each of 
which is a polygon of length n/(n, k). The edges [u;, v~] will be called the 
spokes of G(n, k). 

LEMMA 2.2. I f  1 <~ k, m <~ n -- 1 and if km ~ 1 (mod n), then G(n, k) 
and G(n, m) are isomorphic. 

PROOF: The hypothesis implies that 01, k ) =  (n, m)----1 
G(n, k) and G(n, m) have each a single inner rim. Let 

v ( G (  )) { . . . .  ' ' ' }  n, m ---- //0 ~ Ul ~'"~/ ' /n-1 ~/30 ~ U1 ~'"~ /3n-1 ~ 

where E(G(n, m)) consists of all edges of the form 

[U;, U;+I] , [Ui ,  Ui], [/3'i' /3"i+m]" 

The vertex map 

and so 

Ui ~ /3t 

/)i --~ lg~ni " 

is seen to induce a graph isomorphism of G(n, k) onto G(n, m). 
Lower case Greek letters, particularly the symbols ~, fl, and y, will be 

reserved for colors. 
A Hamilton circuit in a graph is a circuit covering all the vertices of the 

graph. A Tait cycle in a graph is the union of two or more disjoint even 
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circuits which cover all the vertices of  the graph. It is well known and 
easily verified that  a trivalent graph with a Hamil ton circuit or a Tait  
cycle has Tait  coloring. 

If  G(n, k) has a Tait  coloring and if the letters a, b, and c denote the 
number  of  spokes of  G(n, k) which have been colored a,/3, and 7, respec- 
tively, then dear ly  

a + b + e = n. (2-2) 

By a cyclic n-sequence <~o, ~1 ..... ~-1>, we mean the set of  all ordered 
n-tuples 

{(~:m, ~:m+l .... , ~,~+,-1) : m  is an integer). (2-3) 

(Recall the convention governing subscripts.) 
The set X(n; a, b, e) will consist of  all cyclic n-sequences (2-3) where 

sci ~ {~,/3, y} for all integers i and %/3, and y appear  in any element of  (2-3) 
with multiplicities a, b, and c, respectively. Thus (2-2) holds in this context,  
t o o .  

I f (n ,  k) = 1 and (1-1) holds, we define the funct ionfk f rom X(n; a, b, e) 
into itself by the rule 

fk<~:o, ~:x, sr ..... sen-l> = (s~o, ~:k, sc2k ..... str 

for  each (~o ..... ~n-l> z X(n; a, b, c). It is easily seen that  the subscripts 
0, k, 2k ..... (n --  1)k are a permutat ion of  0, 1, 2,..., n - -  1. Equivalently,  
fk is well defined if and only if (n, k) = 1. 

It is also easily verified that, if (n, k) = (n, m) = 1, then 

fkfm =fk,~. 

Under  the isomorphism k ~---~f~ the semigroup F,, = {f l  ..... fn-1} with the 
binary operat ion of  composi t ion is isomorphic to the multiplicative 
semigroup of  residues modulo  n. F,~ is a group if and only if n is prime. 

A segment of  the cyclic n-sequence <~:0 ,.-., ~n-x> is an ordered j- tuple 
(Po ..... Pc-x) consisting of  the first j terms in order f rom some ordered 
n-tuple belonging to <~:o ,..., sr �9 I f  pl . . . . .  p~_s = a, the segment 
may be abbreviated by (Po, olJ-2', P~-O, and (Gro{~O)O'l (pt)  " ' "  (Yr (vr)> denotes 
the cyclic n-sequence <~o .... , ~-1> where 

~o . . . . .  ~ ~  = ~o 

~ n - - ~ ,  - -  -- ~fl--1 = 0", " 

58z16/z-4 



156 WATKINS 

We distinguish two types of segments which may occur in an element 

(~o ..... ~._~) ~ X(n; a, b, c). 

Here (~, ~, 0) is any permutation whatever of the symbols (a, fl, 7): 

Type I: (~, "qt~), ~), where j is an odd positive integer. 

Type II: (~, ~lJ}, 0), where j is an even positive integer. 

We let Y(n; a, b, c) denote the set of those cyclic n-sequences in 
X(n, a, b, c) which have no segment of Type I or Type II. 

3. A GENERAL THEOREM ON TAIT COLORINGS AND 

A N  EQUIVALENT COMBINATORIAL PROBLEM 

Let G be an arbitrary trivalent graph and let C be a circuit in G. Let the 
vertices of C be denoted in some cyclic order by 

X0, X 1 . . . . .  Xn_ 1 . (3.1) 

A positive sense in C is defined if the vertices are encountered in the 
order (3-1), extended cyclically. Incident to each vertex al there is an edge s~ 
not in C called the spoke of  C at x~. 

Let the n spokes of C be assigned colors %/3, and 7 arbitrarily. Pick a 
vertex x~ and proceed around C in the positive sense from xi while noting 
the color ~r ~ {c~, fl, 7) of the spoke sj as each vertex x~ is encountered. This 
yields an ordered n-tuple 

(~i ..... & - l ,  ~:o ..... ~i-1). 

By repeating this process, varying only the starting point x i ,  we obtain 
a set of n such ordered n-tuples. This set is a cyclic n-sequence 

(~o ..... ~,~-1) ~ X(n; a, b, c), 

where a, b, and c have the same meaning as in the previous section, 
and (2-2) holds. 

Thus to any coloring of the spokes of C in colors ~, fl, and 7, there 
corresponds a cyclic n-sequence in some set X(n; a, b, c), and to any 
element of any set X(n; a, b, c) there corresponds a coloring of the spokes 
of C in ~, fl, and 7. 

Let (~0 ..... ~ -1 )  ~ X(n; a, b, c) and letm beany integer. Let the spoke 
s,~+j of C be colored se~ - ( j  ~ 0, 1 ..... n -- l). If  it is possible to assign 
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colors a , /3  and 7 to the edges of  C in such a way that  each of  the 
vertices x~ ~ V(C) is incident to precisely one edge of  each color, then 
<~:0 .... , {:,-1) shall be said to be extensible to C. 

LEMMA 3.1. Let 3 = <~o ..... ~-1> ~ X(n; a, b, c) and suppose S has a 
segment o f  Type I or o f  Type H. Let C be an}, n-circuit in a trivalent graph G. 
Then 2 is not extensible to C. 

PROOF: Let F(C) be labeled as in (3-1). We may  suppose that  the 
spoke si o f  C at xi has been colored ~:i, (i = 0,..., n - -  1). 

Suppose Z has a segment of  Type  I and, for  definiteness, assume that  
(~:0 ..... ~:~+1) ---- (% fll~, a) is such a segment, where j is an odd positive 
integer. The edges 

[xi ,  x/+l], i = 0, 1 ..... j ,  (3-2) 

must  receive alternately the colors y and ~, beginning with 7- There is an 
even number  of  edges in (3-2) since j is odd. Thus [xj ,  xi+~] receives ~. 
But sj+x is also colored o~; i.e., Xj+l is incident to two edges colored ~. 
Hence 3 is not  extensible to C. 

I f  2 has a segment  of  Type  11, we assume for  definiteness that  

( (0  .... , ~ i+ l )  = (5 ,  /3(J), 7 ) '  

where j is an even positive integer. Again the edges (3-2) must  be colored 
alterately in y and a, beginning with 5'. But since there is now an odd 
number  of  these edges, [xj ,  xj§ receives 7, too,  and Xj+l is incident to 
two edges colored 7. 

LEMMA 3.2. Let 3 = <~o ..... ~n-l> ~ Y(n; a, b, c) and let it not be true 
that 

~:0 . . . . .  ~:~-1, 

Then S is extensible to any n-circuit in a trivalent graph. 

PROOF: Let C be a circuit in a trivalent graph where V(C) is labeled 
as in (3-1). Assume that  the spoke si of  C at xi is colored ~:i (i : 0 ..... n - -  1). 

Since it is not  true that  ~:o - -  - -  ~n-1, we may  assume without  loss 
of  generality that  ~:0 = a and ~:1 : / 3 .  Let ~:~2 be the next te rm after ~:1 
different f rom ft. In general, let ~;,~a be the first term after sej, different 
f rom ~:j. 

Now color [x0, Xl] in 7 and color  the J2 - -  1 edges 

[Xl, x2] ..... [x~_~, xQ 
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alternately first in a then in 7. Thus [x~^_ 1 , x~o] will be colored a if and 
only if J2 --  1 is odd. Now J2 --  1 is odd " if and only if ~:j. = 7, since 
<~:o ..... ~,_~) has no segment of  Type I or Type II. Now consider the edges 

[x h , Xh+ll ..... [xj~-i, x j .  

If  ~j~ = 7 these edges are properly colorable alternately first in fl then in a, 
whereas if ~:j~ = ~, they are properly colorable first in fl then in a. This 
process can be continued until all the edges of  C are properly colored. 

The above two lemmas imply 

THEOREM 1. Let 3 = (~:o ..... ~_~) e X(n; a, b, c), and let it not be true 
that ~o -- -- ~ - l .  Let C be any n-circuit in some trivalent graph G. 
Then 3 is extensible to C if  and only i f  ~ e Y(n; a, b, c). 

Let 3 = (~0 ,..-, ~:~-~) ~ X(n; a, b, c). If  • is extensible to the outer rim 
of  a generalized Petersen graph G(n, k), then 3 is said to be an outer 
sequence for G(n, k). 

COROLLARY 1A. A cycfic n-sequence ~ e X(n; a, b, c) is an outer 
sequence for G(n, k) i f  and only i f  ~ e Y(n; a, b, c). 

Let m be any integer and let the spoke Sm+~ of  G(n, k) be colored 
~ ~ {a, fl, 7} (i = O, 1,..., n --  1). I f  the edges of  the inner rims of  G(n, k) 
can be assigned colors ~, fl, and 7 in such a way that each vertex v~ on an 
inner rim is incident with precisely one edge of  each color, then 
(~:0 .... , ~:~-l> is an inner sequence for G(n, k). 

COROLLARY lB. Let n and k satisfy (1-1) and suppose (n, k) = 1. 
L e t ~  = (~o ..... ~n-1) e X(n; a, b, c) andlet i tnothoMthat~o -- -- ~_~. 
Then ~ is an inner sequence for G(n, k) i f  and only i f  f k Z  e Y(n; a, b, c). 

PROOF: Let m be any integer and let the spoke sm+~ of  G(n, k) be colored 
~cj ( j  = O, 1,..., n -  1). Let the positive sense on the inner rim C of  
G(n, k) be such that its vertices are encountered in the cyclic order 

UO ,U!c , V2k  , . . . ,  U ( n - 1 ) k  �9 

Proceed in the positive sense around C from v~k noting the color 
r of  the spoke sjk as each vertex vj~ is encountered( j  = 0, 1,..., n --  1). 
By repeating this process as i - -  0, 1 ..... n --  1, we obtain precisely the 
cyclic n-sequence 

<~0, ~ ..... ~c~-1~> = A s .  
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The definitions imply that g is an inner sequence if and only if f~E is 
extensible to C. But, by Theorem 1, f~E is extensible to C if and only if it 
belongs to Y(n; a, b, c). 

THEOREM 2. Let integers n and k satisfy (1-1) and suppose (n, k) = 1. 
The generalized Petersen graph G(n, k) has a Tait coloring if  and only if, 

for some positive integers a, b, c satisfying (2-2), there exists a cyclic 
n-sequence ~ e Y(n; a, b, c) such that f ~  e Y(n; a, b, c). 

PROOF: Let 3 = (~:0 ..... ~-~)  ~ X(n; a, b, c). Let m be any integer and 
let the spoke s~+m of G(n, k) be colored ~:j. 

Clearly G(n, k) has a Tait coloring if and only if ~ is both an outer 
sequence and inner sequence for G(n, k). The theorem is now an immediate 
consequence of Corollaries 1A and lB. 

COROLLARY 2A. Let n and k satisfy (1-1) and suppose (n, k ) =  1. 
I f  for some cyclic n-sequence 3, both S and f k ~  are in Y(n; a, b, c), then 

a ~ b -~ c (modulo 2). (3-3) 

PROOF: The result follows from Theorem 2 and a result by Mlle. Blanche 
Descartes [1] that, if S is a separating set of edges of  a trivalent graph G 
and if a, b, and c denote the numbers of edges in S colored each of the three 
colors in a Tait coloring of G, then (3-3) must hold. 

REMARK. Unfortunately the subset Y(n; a, b, c) does not appear to 
emerge "naturally" from the set X(n; a, b, c) in any algebraic way. It is 
possibly of interest to consider the following related question: 

Consider a set X(n; a, b, c) and suppose n is prime so that 
F~ = {fl  ..... fn-x} forms a group under composition, as mentioned above. 
Pick a generator f~ of Fn. What can we say then as to how X(n; a, b, c) 
will be decomposed into orbits under fk ,  and how might Y(n; a, b, c) be 
distributed among these orbits ? 

This has been worked out below for the set )((7; 1, 3, 3).fa is a generator 
of F 7 . The columns of the table below are the orbits under f3 .  The cyclic 
sequences followed by * belong to Y(7; 1, 3, 3). 
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Note that f6 = f3 3 merely juxtaposes the ~'s and y's in each cyclic sequence, 
not surprisingly, sincefe ~ is the group's identityf~. 

4. A NEAR PROOF OF THE CONJECTURE 

It is assumed in this section that n and k are integers satisfying (1-1). 

THEOREM 3. I f  n is even, then G(n, k) has a Tait coloring. 

PROOF: There are two cases: 

1. n/(n, k) is even. The outer rim as well as each of the (n, k) inner 
rims is an even circuit, and together they cover all of the vertices of 
G(n, k). So G(n, k) has a Tait cycle and hence a Tait coloring. 

II. n/(n, k) is odd. In this case there is an even number of inner rims, 
each of odd length. 

Consider the cyclic sequence 

(~/~y(,~/<,~,k)-2~) e X(n/(n, k); 1, 1, n/(n, k) -- 2). (4-1) 

Since (n/(n, k), k/(n, k)) = 1, fk/(,,k) is a unit in F,/(,,k). It has an inverse 
--1 fs which, when applied to the cyclic sequence (4-1), yields a cyclic 

sequence of the form 

(4-2) 

where r is an integer uniquely determined by n and k and satisfies 
I <~ r ~ n/(n,  k )  - -  3. 

Now let 

= ( ~ O ~ ( ( n ' k ) - - l ) ~ ( l n ' k ) r ) o ~ ( l n ' k ) - l ) ~ ( n - l n ' k ) ( r + 2 ) ) ) ,  (4-3) 

Note that in (4-3) the maximal segments with a single iterated color have 
even length if the color is ), and odd length if the color is ~ or ft. Thus S 
has no segments of Type I or Type II. By Corollary 1A, N is extensible 
to the outer rim of G(n, k). 

Now consider the cyclic (hi(n, k)) sequences formed by starting with an 
arbitrary term of ~ and picking in cyclic order every (n, k)-th term. 
One so obtains one cyclic sequence 

(~y(r)~y(,/{,.k)--(r+2,) (4-4) 
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and (n, k) -- 1 cyclic sequences all like (4-2). The application off~/t~.k~ 
to (4-4) gives 

and the application off~/t~,k~ to (4-2) yields (4-1). The cyclic (n/(n, k)) 
sequences (4-5) and (4-1) are extensible to the inner rims of G(n, k) by 
Theorem 1, since they contain no segments of Type I or Type II. Thus 
G(n, k) has a Tait coloring. 

This theorem has been invoked in the coloring of G(10, 4) in Figure 1. 
In this case (n, k) = 2 and r = 1. 

THEOREM 4. Let m be a positive integer. G(5m, 2m) has a Tait coloring 
i f  and only i f  m ~ 1. 

PROOF: If m is even, then G(5m, 2m) has a Tait coloring by Theorem 3. 
G(5, 2) is the Petersen graph which is known [2] to have no Tait coloring. 

Hence suppose that m is an odd integer > 1. 
The cuclic n-sequence 

has no segment of Type I or Type II and so is an outer sequence by 
Corollary 1A. 

Now consider the cyclic 5-sequences formed by starting with an 
arbitrary term of 3 and recording in cyclic order every m-th term. One 
obtains 

1 cyclic 5-sequence (ayyfl~>, 

1 cyclic 5-sequence ( ~ f l ~ ) ,  

m -- 2 cyclic 5-sequences (aflflyfl>. 

The application offa = f~-i to these yields 

m m 

1 cyclic 5-sequence <afly),y>, 

1 cyclic 5-sequence (flyaaa>, 

2 cyclic 5-sequences (~,~fl~fl>, 

extensible by Theorem 1 to the inner rims of G(n, k). 

THEOREM 5. I f  n is odd and G(n/(n, k), k/(n, k)) has a Tait coloring, then 
so does G(n, k). 
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PROOF: I f  (n, k) = 1, the theorem is trivial, so assume (n, k) > 1. 

There exists an outer sequence E = (~:0,..., ~,/(,,.kl-l) for 
G(n/(n, k), k/(n, k)). Let 27 = ( %  .... , a ,-a~ be the cyclic n-sequence 

Z = ([:,n,k}}l:((n.k)) .../:((n.k}) 3 
\ ~ 0  ~1  ~ n - 1  / "  

We show that  27 is an outer sequence for  G(n, k). Consider a maximal  
segment of  27 consisting of identical terms. There is no loss of  generality 
in denoting the segment by 

( % ,  o, .... , o . , ( . .k , -0,  (4-6) 

where 

1 <~ m < n/(n, k). (4-7) 

(Since n is odd, so is n/(n, k), so the outer rim of  G(n/(n, k), k/(n, k)) 
requires all three colors. Thus not all the ~ are the same, and strict 
inequality holds in the right-hand side of  (4-7).) Let us suppose further 
that  all the terms of  (4-6) are fl and that  o,_ 1 = a. Thus ~:n-~ = ~ and 

~o . . . . .  ~m-1 - -  f~. 
I f  m is odd, then, since ~ contains no segment of  Type I, ~,,, --  y. Thus 

m(n, k) is odd and o,,,,.~) = ~,. The segment 

(%-~,  % ..... % ( . . ~ ) - 1 ,  %(. .k))  = (c,,/3( "(n.~' ,  ~,) 

is not of  Type I I  (and clearly not  of  Type I). 
I f  m is even, then since ~ contains no segment of  Type  II,  

So m(n, k) is even and 

( a n - 1  ' (3"0 . . . .  ' % ( n . k ) - i  ' ~m(n.k)) = (0~, [~(m(n.k)), O0 

is not  of  Type I (and clearly not  o f  Type II). Hence 27 is extensible to the 
outer r im of  G(n, k). 

The coloring induced by 27 can be extended to the (n, k) inner r ims since 
is an inner sequence for  G(n/(n, k), k/(n, k)), and ~ is the cyclic 

(n/(n, k))-sequence obtained by starting with an arbi trary term of  Z' and 
recording in order every (n, k)-th term. 

Let us dispense with a trivial case: 

TrlEOREM 6. G(n, 1) has a Tait coloring. 

PROOF: The outer r im with [u0, Ul] deleted plus the inner rim with 
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[v0, vz] deleted, together with the spokes so and sx, form a Hamil ton 
circuit of  G(n, 1). Hence G(n, 1) has a Tait coloring. 

In the light of the foregoing results, we may restrict our investigation 
of generalized Petersen graphs G(n, k) to those for which: 

(i) n is odd, 

(ii) (n, k)  ---- 1, 

(iii) n >/7,  

(iv) 2 <~ k < n/2. 

Unfortunately, we have found no general method for dispensing with 
all of  the remaining cases. However, when n and k satisfy certain con- 
gruences, it is possible by the use of  Theorem 2 to prove that G(n, k) has 
a Tait coloring. We give three examples: 

A. n ~ --1 (modulo 2k). 
Let 3 = (~/3(~k-1)y('~-2k)). Since 2 k -  1 and n -  2k are odd, 

S e  Y(n; 1, 2k --  l, n --  2k), and i f n  = 2kin - -  1, then 

f ~S =- ( oLf~)t(2m-2) ~(g)~J (2m-2) "'" ~(2)~(2m-3)), 

which also belongs to Y(n; 1, 2k -- 1, n -- 2k). 

B. k is odd; n ~ 1 (modulo 2k). 
Let S = (afly("-k-2)fl(2)y(k-2)). Then both S and f~S are in 

Y(n; 1, 3, n -- 4). 

C. n = 3m for some positive integer m. 
Let S = (afly~fly ... afl~,). Then S e Y(3m; m, m, m). Since we assume 

fkS  = S or 

according as k ~ 1 (modulo 3) or k ~ 2 (modulo 3), respectively. 
Moreover, by Lemma 2.2, if G(n, k) has a Tait coloring and mk ~ 1 

(modulo n) where 1 < m < n, then G(n, m) also has a Tait coloring. 
Finally, if G(n, k) has a Tait coloring then so does G(n, n - - k ) ,  by 

Lemma 2.1. 

We conclude with an application of some of the results of this note to 
show that the conjecture holds, for example, when n = 11. 

I f  k = 3, then since 11 ~ --1 (modulo 6), Case A above applies and 
G(l l ,  3) has a Tait coloring. Since 3 �9 4 ~ 1 (modulo l l ) ,  G ( l l ,  4) is also 
Tait colorable. By Lemma 2.1, so are G( l l ,  8) and G(l l ,  7). 
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I f  k = 5, then k is odd and 11 ~ 1 (modulo 10), so Case B above 
applies. Since 5 �9 9 ------ 1 (modulo 11), G(I 1, 9) has a Tait  coloring too. 
By L e m m a  2.1, so do G( l l ,  6) and G( l l ,  2). Finally G( l l ,  1) and G( l l ,  10) 
are Tait  colorable by Theorem 6. 

These techniques are hardly exhaustive, however; for example, they 
offer no hint as to how to color G(13, 5). This graph does incidently 
have a Tait  coloring, and the outer sequence could be 

REMARK. The graphs G(n, 2) where n/>- 7 is odd are a subclass of  a 
class of  graphs which Rober tson [3] has shown to contain a Tait  cycle 
if n ~ 5 (modulo 6) and a Hamil ton  circuit otherwise. Thus G(n, 2) has 
a Tait  coloring for all n ~> 7. 

Since 2(n + 1)/2 ------ 1 (modulo n), so do 

G(n, (n + 1)/2) and G(n, (n -- 1)/2). 
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