On the Cohomology of an Algebra Morphism

MURRAY GERSTENHABER

Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

AND

SAMUEL D. SCHACK

Department of Mathematics, State University of New York, Buffalo, New York 14214

Communicated by I. N. Herstein

Received November 2, 1983

INTRODUCTION

The major theorems of this paper constitute a special case of two theorems of [3]; however, the technique of proof is entirely new. We have isolated this special case for three reasons:

1. The techniques suggest a spectral sequence argument for a valuable generalization of the theorems (discussed below).

2. In [3] we introduced a cochain map of some importance but were unable to work with it directly. Here that is precisely what we do.

3. Of necessity [3] is rather densely packed. We hope that a detailed discussion of a special case—namely, algebra morphisms—will make it more accessible.

Here is a precis of the cohomological aspects of [3]: Define a diagram of k-algebras over a partially ordered set \mathscr{I} to be a contravariant functor \mathbb{A} from \mathscr{I} to the category of k-algebras. (A presheaf of algebras.) An \mathbb{A} bimodule is a presheaf of bimodules. The category of \mathbb{A} -bimodules is abelian and, so, has a Yoneda cohomology theory, $\operatorname{Ext}_{\mathbb{A}}^{*}(-, -)$. Since it has enough projectives and injectives, $\operatorname{Ext}_{\mathbb{A}}^{*}(-, -)$ is universal in each variable. We provide a natural generalization of Hochschild cochains and show $H^{*}(\mathbb{A}, -) \cong \operatorname{Ext}_{\mathbb{A}}^{*}(\mathbb{A}, -)$. Moreover, associated to each diagram \mathbb{A} and \mathbb{A} -bimodule \mathbb{M} there is an algebra \mathbb{A} ! and an \mathbb{A} !-bimodule \mathbb{M} !. We establish a natural transformation ω^{*} : $\operatorname{Ext}_{\mathbb{A}}^{*}(\mathbb{N}, \mathbb{M}) \to \operatorname{Ext}_{\mathbb{A}}^{*}(\mathbb{N}!, \mathbb{M}!)$. The *Cohomology Comparison Theorem* (CCT) asserts: when \mathscr{I} is finite (and in certain infinite cases) ω^* is an isomorphism. The proof proceeds by the construction and comparison of particular projective resolutions of \mathbb{N} and \mathbb{N} !. The existence of ω^* yields a morphism of Hochschild cohomologies $H^*(\mathbb{A}, \mathbb{M}) \to H^*(\mathbb{A}^!, \mathbb{M}^!)$. We provide a cochain map τ^* which effects this morphism but are unable to bypass ω^* in proving that $H^*(\tau)$ is an isomorphism when \mathscr{I} is finite.

The work of [3] was initiated—as its title suggests—in order to study the deformation theory of diagrams. Indeed in a wide variety of cases—including that of an algebra morphism—the deformation theories of \mathbb{A} and \mathbb{A} ! are the same. However, the importance of the cohomology transcends its applications to deformation theory. For example, in [4] we associate with any simplicial complex Σ a particular diagram \mathbb{k}_{Σ} . It is elementary that $H^*(\Sigma, k) = H^*(\mathbb{k}_{\Sigma}, \mathbb{k}_{\Sigma})$. Hence, the results of [3] imply $H^*(\Sigma, k) \cong$ $H^*(\mathbb{k}_{\Sigma}!, \mathbb{k}_{\Sigma}!)$; that is, every simplicial complex has a naturally associated kalgebra whose Hochschild cohomology is the simplicial cohomology.

We state—without details—our conjectured generalization of the CCT. Diagrams and bimodules can be defined over any category \mathscr{C} , as can their Hochschild and Yoneda cohomologies. We have proved that, as before, $H^*(\mathbb{A}, -) = \operatorname{Ext}^*_{\mathbb{A}}(\mathbb{A}, -)$. We associate to each small category \mathscr{C} a "barycentric subdivision" Sd \mathscr{C} and a covariant functor Sd $\mathscr{C} \to \mathscr{C}$. This induces (by composition) a functor subdividing diagrams, $\mathbb{A} \to \operatorname{Sd} \mathbb{A}$, and a functor Sd: \mathbb{A} -bimodules $\to (\operatorname{Sd} \mathbb{A})$ -bimodules.

Conjecture 1. Ext^{*}_A(\mathbb{N} , \mathbb{M}) \cong Ext^{*}_{Sd A}(Sd \mathbb{N} , Sd \mathbb{M}). Now subdivision has the properties: (i) Sd(Sd \mathscr{C}) is always a poset; (ii) if \mathscr{C} is finite and has no loops then Sd \mathscr{C} is a finite poset. Hence in case (ii) the CCT and the conjecture yield Ext^{*}_A(\mathbb{N} , \mathbb{M}) \cong Ext^{*}_{(Sd A)!}((Sd \mathbb{N})!, Sd \mathbb{M})!).

Conjecture 2. When $\mathscr{C} = any$ poset (even infinite), $H^*(\mathbb{A}, -) \cong H^*(\mathbb{A}^1, -!)$.

The two conjectures combine as: for any \mathscr{C} and any \mathbb{A} we have $H^*(\mathbb{A}, -) \cong H^*(\mathbb{A}!!, -!!)$, where $-!! = \mathrm{Sd}(\mathrm{Sd}(-))!$.

In this work we generalize the Hochschild cochain complex for a kalgebra to give one for a k-algebra morphism $\phi: B \to A$. We show that many standard results (discussed next) carry over (Section 1). In Section 2 we construct the ring ϕ ! and the cochain map τ^* ; then we show the latter to be a cohomology isomorphism. Finally, in Section 3 we use more sophisticated techniques—again differing from those in [3]—to show the full CCT (as described above) for the case of a morphism.

Let k be a commutative ring and Λ , a k-algebra. An epimorphism or monomorphism of Λ -bimodules is called *allowable* if it splits when considered merely as a k-module morphism. An arbitrary morphism is allowable if it has an epi-mono factorization by allowable morphisms [7, IX.4]. An exact sequence is allowable if every morphism appearing in it is allowable. Allowable exact sequence form the foundation of a relative Yoneda cohomology, $\operatorname{Ext}_{A}^{*}(-, -)$, [7, XII.4]. (Briefly: $\operatorname{Ext}_{A}^{0}(\mathcal{N}, \mathcal{M}) =$ $\operatorname{Hom}_{A}(\mathcal{N}, \mathcal{M})$; for n > 0, $\operatorname{Ext}_{A}^{n}(\mathcal{N}, \mathcal{M}) =$ equivalence classes of allowable *n*fold extensions $0 \to \mathcal{M} \to \mathscr{E}_{n-1} \to \cdots \to \mathscr{E}_{0} \to \mathcal{N} \to 0$.) This is a relative δ functor; that is, an allowable short exact sequence, \mathscr{E} , induces the usual long exact sequence of cohomology (by splicing with \mathscr{E}).

To be a *relative projective* a Λ -bimodule need only enjoy the usual lifting property with respect to allowable epimorphisms. Relative injectives are defined dually. The category of Λ -bimodules has enough of each [7, IX.6); that is, every Λ -bimodule has an allowable monomorphism into a relative injective, and, dually, an allowable epimorphism from a relative projective. It follows that $Ext_{4}^{*}(-, -)$ is *universal* in each variable [7, XII.9]; that is, if F^* is a relative δ -functor then any natural transformation Hom $_{\mathcal{A}}(\mathcal{N}, -) \to F^0$ extends uniquely to Ext $_{\mathcal{A}}^*(\mathcal{N}, -) \to F^*$. (Similarly, Hom $_{\mathcal{A}}(-, \mathcal{M}) \to F^0$ extends uniquely to Ext $_{\mathcal{A}}^*(-, \mathcal{M}) \to F^*$). Of course, \mathcal{A} also has a Hochschild cochain complex $C^*(\Lambda, -)$ [6; 7, X.3], whose cohomology is $H^*(\Lambda, -)$. Then $H^*(\Lambda, -) \cong \operatorname{Ext}_{A}^*(\Lambda, -)$ [7, X.1, 3]. There is a subcomplex of normal cochains, $C_n^*(\Lambda, -)$, whose cohomology is identical with $H^*(\Lambda, -)$, [7, X.2, 3]. A singular extension of Λ by a bimodule \mathcal{M} is a k-split exact sequence $0 \to \mathcal{M} \to \Lambda' \to \pi \Lambda \to 0$ in which: Λ' is a kalgebra; π is an algebra morphism; $\mathcal{M}^2 = 0$ in Λ' ; and $\lambda'_1 m \lambda'_2 = \pi(\lambda'_1) m \pi(\lambda'_2)$ [6; 7, X.3]. The Yoneda equivalence classes [7, VII.5, XII.4] of singular extensions form a k-module exal(Λ , \mathcal{M}) under Baer sum [7, III.5]. Then $H^{2}(\Lambda, -) \cong exal(\Lambda, -)$ [6; 7, X.3]. The complex $C^{*}(\Lambda, \Lambda)$ has several graded products: a pre-Lie product $\overline{\circ}$; a Lie bracket [-, -]; and a cup product \sim [2]. The latter two induce products on $H^*(\Lambda, \Lambda)$; the former does not [2]. In Section 1 we shall replicate these results in the case of a morphism.

The following notational conventions will be in force throughout this paper: k will be a commutative ring with unit; all algebras and morphisms will be unital. If Λ and Λ' are algebras the category of left Λ -right Λ' bimodules will be denoted $(\Lambda - \Lambda')$ -MOD; when $\Lambda = \Lambda'$ we shorten this to Λ -MOD. We shall use + to indicate direct sum for k-modules only; otherwise we use \oplus . Matrix notation will be used for morphisms between direct sums; $\binom{\alpha}{\beta}$; $X \to Y \oplus Z$ will usually be denoted $(\alpha \beta)'$. Finally, $\phi: B \to A$ will be a fixed k-algebra morphism. It is frequently convenient to write b^{ϕ} instead of $\phi(b)$. An A-module \mathscr{M} can be viewed as a B-module (base change) via $b \cdot m = b^{\phi}m$ or $m \cdot b = mb^{\phi}$. Occasionally we shall denote Mwith this structure by ${}_{\phi}M, M_{\phi}$, or ${}_{\phi}M_{\phi}$ (as appropriate); usually we forego the additional notation. Following tradition we refer to Lemma p of Section q as Lemma q. p; also, Theorem q will refer to the (unique) theorem in Section q. While the proofs in Sections 2, 3 are new we should comment that both the results and proofs in Section 1 first appeared in [9, Sect. 3].

GERSTENHABER AND SCHACK

1. ϕ -BIMODULES AND HOCHSCHILD COHOMOLOGY

A ϕ -bimodule is a triple $\langle N, M, T \rangle$ in which $N \in B$ -MOD, $M \in A$ -MOD, and $T: N \to {}_{\phi} M_{\phi}$ is a *B*-bimodule morphism. We habitually abbreviate these data to $T: N \to M$ or simply *T*. A morphism $T \to T'$ consists of a *B*bimodule morphism $f: N \to N'$ and an *A*-bimodule morphism $g: M \to M'$ making the evident square commutative (T'f = gT). It is allowable if *f* and *g* are. Elementary axiom checking shows that the category of ϕ -bimodules, ϕ -MOD, is a bicomplete abelian category. (All constructions are performed "object-wise.") Though we shall never use this fact it is worth noting that ϕ -MOD is a comma category, [8, II.6]: ϕ -MOD = $(id_{B-Mod} \downarrow_{\phi} - _{\phi})$.

There are obvious exact restriction functors $\operatorname{res}_B: \phi \operatorname{-MOD} \to B \operatorname{-MOD}$ and $\operatorname{res}_A: \phi \operatorname{-MOD} \to A \operatorname{-MOD}$. Each of these has left and right adjoints (the *inflations*):

$$\lim f_B(N) = N \to A \otimes_B N \otimes_B A; \qquad \lim f_A(M) = 0 \to M. \tag{1.1}$$

$$\operatorname{rinf}_{B}(N) = N \to 0; \quad \operatorname{rinf}_{A}(M) = {}_{\phi}M_{\phi} \to M.$$
 (1.2)

(Note: only $\lim_B \operatorname{can} \operatorname{fail}$ to be exact). All six functors preserve allowability. The exactness of res_B and res_A implies that the left inflations preserve (relative) projectives and the right inflations preserve (relative) injectives. (Of course one can verify this directly from the definitions.) Consequently, ϕ -MOD has enough of each. For example, if T is a ϕ -bimodule pick allowable monomorphisms $N \to I \in B$ -MOD and $M \to I' \in A$ -MOD with Iand I' relative injectives. Then $\operatorname{rinf}_B(I) \oplus \operatorname{rinf}_A(I')$ is a relative injective in ϕ -MOD and there is an allowable monomorphism $T \to \operatorname{rinf}_B(I) \oplus \operatorname{rinf}_A(I')$. (All relative injectives have this form [3, Sect. 1], a fact we shall not need until Section 3, where it appears as Lemma 3.2).

The relative Yoneda cohomology on ϕ -MOD, $\operatorname{Ext}_{\phi}^{*}(-, -)$, is defined precisely as in the case of algebras. The presence of enough relative injectives implies that for each $T \in \phi$ -MOD, $\operatorname{Ext}_{\phi}^{*}(T, -)$ is a universal relative δ -functor. We wish, following Hochschild, to define a cochain complex whose cohomology is $\operatorname{Ext}_{\phi}^{*}(\phi, -)$. The correct complex arises as a mapping cylinder.

If C^* and D^* are cochain complexes in an abelian category and $f: C^* \to D^*$ is a cochain map then the *algebraic mapping cylinder* Mc(f) is defined by $Mc(f)^* = C^* \oplus D^{*-1}$ and

$$\delta = \begin{pmatrix} \delta_C & 0 \\ f & -\delta_D \end{pmatrix}.$$

Note that the natural inclusion $D^* \to Mc(f)^{*+1}$ is not a cochain map. However, $D^n \xrightarrow{i} Mc(f)^{n+1}$, $d \mapsto (-1)^n d$, is. (The sign $(-1)^n$ reflects the dimension shift.) Then there is an exact sequence of cochain complexes $0 \rightarrow D^{*-1} \xrightarrow{i} Mc(f)^* \xrightarrow{\pi} C^* \rightarrow 0$, yielding the long exact cohomology sequence

$$\cdots \to H^{n-1}(D) \xrightarrow{H(i)} H^n(Mc(f)) \xrightarrow{H(\pi)} H^n(C) \to H^n(D) \to \cdots$$

The connecting homomorphism $H^n(C) \to H^n(D)$ is usually defined via the snake lemma as: $c \in Z^n(C) \mapsto i^{-1}\delta\{c; 0\} = i^{-1}\{0; fc\} = (-1)^n fc$. To rid ourselves of the nettlesome $(-1)^n$ we take instead for the connecting homomorphism $c \mapsto (-1)^n i^{-1}\delta\{c; 0\}$; then it is just $H^n(f)$.

Given a ϕ -bimodule T we define the Hochschild cochains $C^*(\phi, T)$ to be the mapping cylinder of $\Phi: C^*(B, N) + C^*(A, M) \to C^*(B, M)$, $\Phi(\langle \Gamma^B, \Gamma^A \rangle) = T \circ \Gamma^B - \Gamma^A \circ \phi$. Thus, $C^n(\phi, T) = C^n(B, N) + C^n(A, M) + C^{n-1}(B, M)$ and $\delta\{\Gamma^B, \Gamma^A; \Gamma^{AB}\} = \{\delta\Gamma^B, \delta\Gamma^A; T\Gamma^B - \Gamma^A\phi - \delta\Gamma^{AB}\}$. We shall generally write Γ for $\{\Gamma^B, \Gamma^A; \Gamma^{AB}\}$. The sequence of complexes becomes

 $0 \to C^{*-1}(B, M) \xrightarrow{i} C^{*}(\phi, T) \to C^{*}(B, N) + C^{*}(A, M) \to 0.$ (1.3)

Clearly. any morphism $T \rightarrow T'$ induces a cochain map $C^*(\phi, T) \rightarrow C^*(\phi, T')$. Moreover, for any short exact sequence $\mathscr{E} \in \phi$ -MOD, $C^*(\phi, \mathscr{E}) = C^*(B, \operatorname{res}_B \mathscr{E}) + C^*(A, \operatorname{res}_A \mathscr{E}) + C^{*-1}(B, \operatorname{res}_A \mathscr{E}).$ So $C^*(\phi, \mathscr{E})$ is exact and the snake lemma provides the connecting homomorphisms required to make $H^*(\phi, -)$ a relative δ -functor. From the definitions it is immediate that $C^*(\phi, T \oplus T') = C^*(\phi, T) + C^*(\phi, T')$ and, so, $H^{*}(\phi, T \oplus T') = H^{*}(\phi, T) + H^{*}(\phi, T').$ Observe that $H^0(\phi, T) =$ $\operatorname{Hom}_{\phi}(\phi, T) = \operatorname{Ext}^{0}(\phi, T)$. Hence there is a unique morphism $\operatorname{Ext}_{\phi}^{*}(\phi, -) \rightarrow$ $H^*(\phi, -)$ extending the identity. This is an isomorphism if $H^*(\phi, -)$ is universal.

THEOREM. $H^*(\phi, -) \cong \operatorname{Ext}_{\phi}^*(\phi, -).$

Proof. We shall establish the required universality of $H^*(\phi, T)$ by showing that $H^{n+1}(\phi, -)$, $n \ge 0$, vanishes on enough relative injectives, namely products of inflations.

Let $I \in B$ -MOD be a (relative) injective. Then (1.3) yields

$$\cdots \to H^n(B,0) \to H^{n+1}(\phi, \operatorname{rinf}_B(I)) \to H^{n+1}(B,I) + H^{n+1}(A,0) \to \cdots$$

Since I is a B-relative-injective $H^{n+1}(B, I) = 0$ and, so $H^{n+1}(\phi, \operatorname{rinf}_B(I)) = 0$, $n \ge 0$.

Now let $I \in A$ -MOD be a (relative) injective. This time (1.3) yields

$$\cdots \to H^n(B, I) + H^n(A, I) \xrightarrow{H(\phi)} H^n(B, I) \xrightarrow{H(i)} H^{n+1}(\phi, \operatorname{rinf}_{\mathcal{A}}(I)) \to \cdots$$

For n > 0, $H^n(A, I) = 0$ and, so, $H^n(\Phi) = id$, an isomorphism. Also, $H^0(\Phi)$ is an epimorphism since $H^0(\Phi)(\langle \beta, 0 \rangle) = \beta$. It follows that $H^{n+1}(\phi, \operatorname{rinf}_{\mathcal{A}}(I)) = 0, n \ge 0$.

Recall that a (standard) Hochschild cochain f is normal if $f(x_1,...,x_n) = 0$ whenever any $x_i = 1$. The normal cochains form a subcomplex and the inclusion of complexes induces a cohomology isomorphism. [8, X.2]. Let $C_n^*(B, -)$ and $C_n^*(A, -)$ be the normal cochain complexes. Clearly, Φ restricts to give $C_n^*(B, N) + C_n^*(A, M) \to C_n^*(B, M)$. The mapping cylinder $C_n^*(\phi, T)$ fits into a short exact sequence

$$0 \to C_n^{*-1}(B, M) \to C_n^{*}(\phi, T) \to C_n^{*}(B, N) + C_n^{*}(A, M) \to 0.$$
(1.4)

The inclusion of complexes gives a map of sequences $(1.4) \rightarrow (1.3)$ having cohomology isomorphisms at each end. Hence the Five Lemma implies that the middle is a cohomology isomorphism. That is, $H^*(\phi, T)$ can be computed using *normal* cochains, (those Γ for which Γ^B , Γ^A , and Γ^{AB} are all normal).

One place the Hochschild theory for algebras and morphisms differs from that for arbitrary diagrams is the representation of singular extensions. A singular extension of ϕ by T is a short exact sequence (\mathscr{E}): $0 \to T \to \phi' \to \phi \to 0$ in which ϕ' is an algebra morphism and res_B \mathscr{E} , res_A \mathscr{E} are singular algebra extensions, (as defined in the Introduction). The Yoneda equivalence classes of these form a group $exal(\phi, T)$ under Baer sum.

The obvious generalization of the next proposition is *not* true for diagrams over partially ordered sets. However, something close to it is [3, Sect. 8]. Consequencely, we merely sketch the details.

PROPOSITION. $H^2(\phi, -) \cong \operatorname{exal}(\phi, -).$

Proof (Sketch). Given $\{\Gamma^B, \Gamma^A; \Gamma^{AB}\} \in Z_n^2(\phi, T)$ define $\phi': B' \to A'$ via: B' = B + N with $\langle b_1, n_1 \rangle \cdot \langle b_2, n_2 \rangle = \langle b_1 b_2, b_1 n_2 + n_1 b_2 + \Gamma^B(b_1, b_2) \rangle$; A' = A + M with $\langle a_1, m_1 \rangle \cdot \langle a_2, m_2 \rangle = \langle a_1 a_2, a_1 m_2 + m_1 a_2 + \Gamma^A(a_1 a_2) \rangle$; $\phi'(\langle b, n \rangle) = \langle \phi b, Tn + \Gamma^{AB}(b) \rangle$.

Given $0 \to T \to \phi' \to \phi \to 0$ pick k-linear splittings $s_B: B \to B'$ and $s_A: A \to A'$. Define $\Gamma \in Z_n^2(\phi, T)$ via: $\Gamma^B(b_1, b_2) = s_B(b_1) s_B(b_2) - s_B(b_1b_2)$; $\Gamma^A(a_1, a_2) = s_A(a_1) s_A(a_2) - s_A(a_1a_2)$; $\Gamma^{AB} = \phi' s_B - s_A \phi$.

So far the Hochschild theories of algebras and morphisms appear identical. Thus encouraged one might anticipate that $C^*(\phi, \phi)$ carries graded Lie and graded cup products. We know of none. However, the parallel persists: $C^*(\phi, \phi)$ does carry graded pairings which induce such products on $H^*(\phi, \phi)$. For $\Gamma \in C^m(\phi, \phi)$, $\Delta \in C^n(\phi, \phi)$ these are

$$[\Gamma, \Delta] = \Gamma \cdot \Delta - (-1)^{(m-1)(n-1)} \Delta \cdot \Gamma$$
(1.5)

where

$$\Gamma \cdot \varDelta = \{ \Gamma^B \circ \varDelta^B, \, \Gamma^A \circ \varDelta^A; \, \Gamma^A \circ \varDelta^{AB} + (-1)^{n-1} \Gamma^{AB} \circ \varDelta^B + \varDelta^{AB} \smile \Gamma^{AB} \}$$
(1.6)

$$\Gamma \smile \varDelta = \{ \Gamma^B \smile \varDelta^B, \, \Gamma^A \smile \varDelta^A; \, \Gamma^{AB} \smile \phi \varDelta^B + (-1)^m \Gamma^A \phi \smile \varDelta^{AB} \}.$$
(1.7)

Direct calculational proofs of the properties of [,] and \smile are possible but unilluminating. [9, Sect. 4]. A less calculational proof using the CCT appears in [3, Sect. 18]. Both the generalization of (1.5)–(1.7) to diagrams over partially ordered sets and a still better proof of their properties appear in [4, Sects. 4, 5].

2. The Mapping Ring and the Hochschild Cohomology Isomorphism

The most economical description of the mapping ring, $\phi!$, is: $\phi! = \begin{pmatrix} B & 0 \\ A & A \end{pmatrix}$ with $(a \ 0)\begin{pmatrix} b \\ 0 \end{pmatrix} = (ab^{\phi} \ 0)$. For calculational purposes the following is a more convenient representation: as a k-module, $\phi! = B + A + A\phi$ (the suffix ϕ distinguishes the off-diagonal copy of A from the diagonal copy); the multiplication is determined by linearity, the products in B and A, and

$$B \cdot A = B \cdot A\phi = A \cdot B = A\phi \cdot A = A\phi \cdot A\phi = 0$$

$$a\phi \cdot b = ab^{\phi}\phi \qquad (2.1)$$

$$a \cdot a'\phi = aa'\phi.$$

Since $a \cdot \phi = a \cdot 1_A \phi$, we abbreviate $1_A \phi$ to ϕ and think of ϕ as an element of the ring. Observe that 1_B and 1_A are orthogonal idempotents and that ϕ ! is a unital k-algebra with $1 = 1_B + 1_A$.

Since $1_B \cdot \phi! \subset \phi! \cdot 1_B$ and $\phi! \cdot 1_A \subset 1_A \cdot \phi!$ we see that $\phi! 1_B = B + A\phi$ and $1_A \phi! = A + A\phi$ are two sided ideals. Hence there are algebra epimorphisms $\phi! \rightarrow \pi_A \phi! / \phi! 1_B = A$ and $\phi! \rightarrow \pi_B \phi! / 1_A \phi! = B$. These then induce change-ofbase functors from, variously, A-MOD, (A - B)-MOD, B-MOD, and (B - A)-MOD to $\phi!$ -MOD. All four base changes are exact and preserve allowability. We shall use them without further comment to view modules in any of the source categories as $\phi!$ -bimodules.

The mapping bimodule of a ϕ -bimodule T is $T! = \begin{pmatrix} N & 0 \\ M & M \end{pmatrix} = N + M + M\phi$ with the nonobvious operation given by

$$a\phi \cdot n = an^{T}\phi; \ m\phi \cdot b = mb^{\phi}\phi.$$
(2.2)

It is immediate that $!: \phi \text{-MOD} \rightarrow \phi !\text{-MOD}$ is an exact embedding and preserves allowability. Hence there is a natural transformation

$$\omega^*: \operatorname{Ext}_{\phi}^*(-, -) \to \operatorname{Ext}_{\phi!}^*(-!, -!).$$

Of course, in dimension 0 this is just ω^{0} : Hom_{ϕ} $(-, -) \rightarrow$ Hom_{ϕ}!(-!, -!).

PROPOSITION. ! is full; that is, ω^0 is an isomorphism.

Proof. If $f \in \operatorname{Hom}_{\phi!}(T!, T'!)$ then $f(N) = f(1_B T! 1_B) \subset 1_B T'! 1_B = N'$; so $f|_N \in \operatorname{Hom}_B(N, N')$. Similarly, $f|_M \in \operatorname{Hom}_A(M, M')$. Then $\langle f|_N, f|_M \rangle$ is a ϕ -bimodule morphism $T \to T'$, as we now show: $f(\phi \cdot n) = \phi \cdot f(n) = \phi \cdot f|_N(n) = f|_N(n)^T \phi = T' \circ f|_N(n)\phi$; also $f(\phi \cdot n) = f(n^T \phi) = f(n^T)\phi = f|_M(n^T)\phi = f|_M \circ T(n)\phi$. But right multiplication by ϕ is a k-isomorphism $M' \to M'\phi$. Hence $T' \circ f|_N = f|_M \circ T$, as required. It is trivial that $\langle f|_M, f|_M \rangle ! = f$.

In fact ω^* is an isomorphism, a special case of the CCT of [3]. This, together with Theorem 1 and the comments in the Introduction, implies that there is an isomorphism $H^*(\phi, -) \rightarrow H^*(\phi!, -!)$. We shall soon define a cochain map $\tau^*: C^*(\phi, -) \rightarrow C^*(\phi!, -!)$ and prove—without invoking the CCT—that $H^*(\tau)$ is an isomorphism. But first we examine the $\phi!$ -bimodule T! more closely.

Observe that $1_A T! 1_B = M\phi$ is a submodule of T!. It is also an (A - B)bimodule and its module structure over ϕ ! is the same as that obtained through base change from its (A - B)-structure. The quotient module $T!/M\phi$ is isomorphic (over k) to N + M. This is immediately seen to be a ϕ !-direct sum, where N and M are viewed as ϕ !-bimodules through ϕ ! $\rightarrow^{\pi_B} B$ and ϕ ! $\rightarrow^{\pi_A} A$. Thus there is an allowable exact sequence in ϕ !-MOD

$$0 \to M\phi \to T! \to N \oplus M \to 0. \tag{2.3}$$

Of course, (2.3) and the cochain isomorphism $C^*(\phi!, N \oplus M) = C^*(\phi!, N) + C^*(\phi!, M)$ induce

$$0 \to C^*(\phi!, M\phi) \to C^*(\phi!, T!) \to C^*(\phi!, N) + C^*(\phi!, M) \to 0.$$
(2.4)

We shall reserve the symbol x to represent *pure elements* of ϕ !, i.e., those in B, A, and $A\phi$. A cochain is completely determined by its values on tuples of pure elements. Consequently, in (2.5)–(2.8) we shall define cochains by giving their values *only* on pure tuples. We define $\tau\Gamma$ for $\Gamma = \{\Gamma^B, \Gamma^A; \Gamma^{AB}\} C^n(\phi, T)$ by $\tau\Gamma|_B = \Gamma^B; \tau\Gamma|_A = \Gamma^A$ $\tau\Gamma(a\phi, b_2, ..., b_n) = \Gamma^A(a, b_2^{\phi}, ..., b_n^{\phi})\phi + a\Gamma^{AB}(b_2, ..., b_n)\phi$ $\tau\Gamma(a_1, ..., a_{r-1}, a_r\phi, b_{r+1}, ..., b_n) = \Gamma^A(a_1, ..., a_r, b_{r+1}^{\phi}, ..., b_n^{\phi})\phi$ (2.5) $\tau\Gamma(x_1, ..., x_n) = 0$ otherwise.

Routine but quite tedious calculations verify that τ is a cochain map. As a courtesy to the reader we omit them.

Now using $i: C^{*-1}(B, M) \to C^*(\phi, T)$ we may restrict τ . It is immediate from (2.5) that $im(\tau i) \subset C^*(\phi!, M\phi)$. In fact τi is described by

$$\tau i \Gamma^{AB}(a\phi, b_2, ..., b_n) = (-1)^n a \Gamma^{AB}(b_2, ..., b_n) \phi$$

$$\tau i \Gamma^{AB}(x_1, ..., x_n) = 0 \qquad \text{otherwise.}$$
(2.6)

Putting (1.3) and (2.4) together we obtain

$$0 \to C^{*-1}(B, M) \xrightarrow{i} C^{*}(\phi, T) \to C^{*}(B, N) + C^{*}(A, M) \to 0$$
$$\downarrow^{\tau i} \qquad \qquad \downarrow^{\tau} \qquad \qquad \downarrow^{\bar{\tau}} \qquad \qquad \downarrow^{\bar{\tau}} \qquad \qquad (2.7)$$
$$0 \to C^{*}(\phi!, M) \to C^{*}(\phi!, T!) \to C^{*}(\phi!, N) + C^{*}(\phi!, M) \to 0$$

It is easy to check that

$$\bar{\tau} = \begin{pmatrix} \bar{\tau}_B & 0\\ 0 & \bar{\tau}_A \end{pmatrix}$$

where $\bar{\tau}_B$ and $\bar{\tau}_A$ are defined by

$$\bar{\tau}_B \Gamma^B|_B = \Gamma^B; \ \bar{\tau}_B \Gamma^B(x_1, ..., x_n) = 0 \quad \text{otherwise.}$$

$$\bar{\tau}_A \Gamma^A|_A = \Gamma^A; \ \bar{\tau}_A \Gamma^A(x_1, ..., x_n) = 0 \quad \text{otherwise.}$$

$$(2.8)$$

The cochain map τ appeared in [3] for arbitrary diagrams and may seem somewhat mysterious. However, the definitions of τi and $\bar{\tau}$ seem quite natural. This then removes some of the mystery concerning τ , for it is the "simplest" cochain map inducing τi and $\bar{\tau}$ as in (2.7); it respects the natural filtrations on $C^*(\phi, T)$ and $C^*(\phi!, T!)$.

We are now in a position to prove:

THEOREM. $H^*(\tau)$ is an isomorphism.

Proof. The Five Lemma implies that τ is a cohomology isomorphism if

both τi and $\overline{\tau}$ are. Hence the theorem follows from Lemmas 1 and 2 below.

LEMMA 1. $H^*(\tau i)$ is an isomorphism.

LEMMA 2. $H^*(\bar{\tau})$ is an isomorphism.

Note that Lemma 2 is equivalent to the conjunction of Lemmas 3 and 4:

LEMMA 3. $H^*(\bar{\tau}_B)$ is an isomorphism.

LEMMA 4. $H^*(\bar{\tau}_A)$ is an isomorphism.

To prove Lemma 1 we shall require two intermediate constructions, namely particular functors

$$\sim : (A - \phi!) - \text{MOD} \rightarrow \phi! \text{-MOD}, \mathcal{M} \rightsquigarrow \tilde{\mathcal{M}},$$

and

$$\wedge : (\phi! - A) - \text{MOD} \to \phi! \text{-MOD}, \mathcal{N} \rightsquigarrow \widehat{\mathcal{N}}.$$

As k-modules $\tilde{\mathcal{M}} = \mathcal{M} + {}_{\phi}\mathcal{M}$ and $\hat{\mathcal{N}} = \mathcal{N} + \mathcal{N}_{\phi}$; the operation of ϕ ! on $\tilde{\mathcal{M}}$ and $\hat{\mathcal{N}}$ are given by

$$\phi \langle m_1, m_2 \rangle = \langle m_2, 0 \rangle$$

$$b \langle m_1, m_2 \rangle = \langle 0, b^{\phi} m_2 \rangle; \qquad a \langle m_1, m_2 \rangle = \langle a m_1, 0 \rangle$$

$$\langle m_1, m_2 \rangle x = \langle m_1 x, m_2 x \rangle$$
(2.9)

and

$$\langle n_1, n_2 \rangle \phi = \langle 0, n_1 \rangle \langle n_1, n_2 \rangle b = \langle 0, n_2 b^{\phi} \rangle; \qquad \langle n_1, n_2 \rangle a = \langle n_1 a, 0 \rangle$$
 (2.10)
$$x \langle n_1, n_2 \rangle = \langle xn_1, xn_2 \rangle.$$

Of course, we may—as usual—consider \mathcal{M} and $_{\phi}\mathcal{M}$ as ϕ !-bimodules through $\phi! \to A$ and $\phi! \to B$. When so considered \mathcal{M} is a submodule of $\tilde{\mathcal{M}}$ —but $_{\phi}\mathcal{M}$ is not (since $\phi \cdot_{\phi}\mathcal{M} = 0$ while $\phi \langle 0, m \rangle = \langle m, 0 \rangle$). However, there is an allowable exact sequence of ϕ !-bimodules

$$0 \to \mathcal{M} \to \tilde{\mathcal{M}} \to {}_{\phi}\mathcal{M} \to 0. \tag{2.11}$$

Analogously, there is an allowable exact sequence $0 \to \mathcal{N}_{\phi} \to \hat{\mathcal{N}} \to \mathcal{N} \to 0$. Observe that if \mathcal{N} is actually an A-bimodule M' then $\hat{\mathcal{N}} = (0 \to M')! = M' + M'\phi$. In the long exact cohomology sequence induced by (2.11) the connecting homomorphism

$$\operatorname{Ext}_{\phi!}^{*}(-, {}_{\phi}\mathcal{M}) \to \operatorname{Ext}_{\phi!}^{*+1}(-, \mathcal{M})$$
(2.12)

is given by splicing with (2.11). When $-=\phi!$ we also have:

LEMMA 5. The connecting homomorphism $H^*(\phi!, {}_{\phi}\mathcal{M}) \to H^{*+1}(\phi!, \mathcal{M})$ is induced by the cochain map $C^*(\phi!, {}_{\phi}\mathcal{M}) \to C^{*+1}(\phi!, \mathcal{M}), f \mapsto f'$, where

Proof. That $f \mapsto f'$ is a cochain map is merely a tedious computation. There is a short exact sequence of complexes induced by (2.11): $0 \to C^*(\phi!, \mathcal{M}) \to C^*(\phi!, \tilde{\mathcal{M}}) \to C^*(\phi!, {}_{\phi}\mathcal{M}) \to 0$. The connecting homomorphism is described by the snake lemma as follows: if $f \in Z^n(\phi!, {}_{\phi}\mathcal{M})$ then $(0 f)^t \in C^n(\phi!, \tilde{\mathcal{M}})$, $(-1)^n \delta(0 f)^t \in Z^{n+1}(\phi!, \mathcal{M})$, and $[f] \mapsto [(-1)^n \delta(0 f)^t]$. Now $\delta(0 f)^t (z_0, ..., z_n) = z_0(0 f)^t (z_1, ..., z_n) + \sum (-1)^{i+1} (0 f)^t (..., z_i z_{i+1}, ...) + (-1)^{n+1} (0 f)^t (z_1, ..., z_{n-1}) z_n$. If $z_0 \in B + A$ then $z_0(0 f)^t = (0 z_0 f)^t$ and $\delta(0 f)^t (z_0, ..., z_n) = \langle 0, \delta f(z_0, ..., z_n) \rangle = 0$.

If $z_0 = a\phi$ then $a\phi(0 f)^t = (af 0)^t$ while $(a\phi)f = 0$, (since $f \in C^n(\phi!, \phi\mathcal{M})$ and $\phi \cdot \phi\mathcal{M} = 0$). Hence $\delta(0 f)^t(a\phi, z_1, ..., z_n) = \langle af(z_1, ..., z_n), \delta f(a\phi, z_1, ..., z_n) \rangle = \langle af(z_1, ..., z_n), 0 \rangle$. Thus $(-1)^n \delta(0 f)^t = f'$ and $f \mapsto f'$ induces the connecting homomorphism.

We shall establish, as Lemma 7, that (2.12) and, so, $f \mapsto f'$ are isomorphisms when $\mathcal{M} \in (A - B) - \text{MOD}$. First observe that $\mathfrak{A} \rightsquigarrow 1_{\mathcal{A}} \mathfrak{A}$ and $\mathfrak{A} \rightsquigarrow \mathfrak{A} 1_{\mathcal{A}}$ define functors ϕ !-MOD $\rightarrow (A - \phi$!)-MOD and ϕ !-MOD \rightarrow $(\phi$!-A)-MOD, which are obviously exact and preserve allowability. It is also obvious that both \sim and \curvearrowright are exact and preserve allowability. Moreover, we have

LEMMA 6. ~ is right adjoint to $\mathfrak{A} \to 1_A \mathfrak{A}$ and ~ is left adjoint to $\mathfrak{A} \to \mathfrak{A}_A$, that is, $\operatorname{Hom}_{\phi!}(\mathfrak{A}, \widetilde{\mathfrak{M}}) \to \operatorname{Hom}_{\mathcal{A}-\phi!}(1_A\mathfrak{A}, \mathfrak{M}), f \mapsto f|_{1_A\mathfrak{A}}$, and $\operatorname{Hom}_{\phi!}(\widehat{\mathcal{N}}, \mathfrak{A}) \to \operatorname{Hom}_{\phi!-\mathcal{A}}(\mathcal{N}, \mathfrak{A}1_A), g \mapsto g|_{\mathcal{N}}$, are natural isomorphisms.

Proof. Clearly, $f \mapsto f|_{1,\mathfrak{A}}$ and $g \mapsto g|_{\mathscr{N}}$ are natural transformations. We shall give their inverses, thereby establishing that they are isomorphisms.

Let \mathfrak{A} be a ϕ !-bimodule; as a k-module $\mathfrak{A} = 1_A \mathfrak{A} + 1_B \mathfrak{A}$. Given $h \in \operatorname{Hom}_{A-\phi!}(1_A \mathfrak{A}, \mathscr{M})$ define $h': 1_B \mathfrak{A} \to \phi^{\mathscr{M}}$ by $h' = 1_B \mathfrak{A} \to \phi^{\circ} \cdot 1_A \mathfrak{A} \to h$ $\mathscr{M} \to \cong {}_{\phi} \mathscr{M}$ and let $\tilde{h} = ({}_{0}^{h} {}_{h'}^{0})$. It is routine to check that \tilde{h} is a ϕ !-bimodule morphism and $\tilde{h}|_{1_A\mathfrak{A}} = h$ while $(\tilde{f}|_{1_A\mathfrak{A}})^{\sim} = f$. Hence $h \mapsto \tilde{h}$ is inverse to $f \mapsto f|_{1_A\mathfrak{A}}$.

Next, write $\mathfrak{A} = \mathfrak{A} \mathfrak{I}_A + \mathfrak{A} \mathfrak{I}_B$ and, for $h \in \operatorname{Hom}_{\phi! - A}(\mathcal{N}, \mathfrak{A} \mathfrak{I}_A)$, set $h' = \mathcal{N}_{\phi} \to \overset{\simeq}{=} \mathcal{N} \to {}^h \mathfrak{A} \mathfrak{I}_A \to {}^{\phi} \mathfrak{A} \mathfrak{I}_B$ and define $\hat{h} \colon \hat{\mathcal{N}} \to \mathfrak{A}$ by $\hat{h} = \begin{pmatrix} h & 0 \\ 0 & h' \end{pmatrix}$. As before, it is routine that \tilde{h} is a ϕ !-bimodule morphism and that $h \mapsto \hat{h}$ is inverse to $g \mapsto g|_{\mathcal{N}}$.

We shall adhere to the following notational conventions: if $\mathscr{E}: 0 \to K \to \mathscr{E}_{n-1} \to \cdots \to \mathscr{E}_1 \to \mathscr{E}_0 \to {}^{\partial_0} G \to 0$ is an *n*-fold extension and $\kappa: K \to K', \gamma: G' \to G$ are morphisms then $\kappa \mathscr{E}$ and $\mathscr{E}\gamma$ are, respectively, the pushout and pullback extensions (e.g., $\mathscr{E}\gamma = 0 \to K \to \mathscr{E}_{n-1} \to \cdots \to \mathscr{E}_1 \to \mathscr{E}_0 \gamma \to G' \to 0$, where $\mathscr{E}_0 \gamma = \{\langle e_0, g' \rangle \in \mathscr{E}_0 \times G' \mid \partial_0(e_0) = \gamma(g')\}$.) We write $\mathscr{E} \equiv \mathscr{E}'$ to indicate a congruence of extensions. Such a congruence can always be represented by a pair of morphisms of extensions $\mathscr{E} \leftarrow \mathscr{F} \to \mathscr{E}'$, each having the identity at both ends. Note that if $\mathscr{E} \to \mathscr{E}'$ is a morphism of extensions having κ at the left end and γ at the right end then $\kappa \mathscr{E} \equiv \mathscr{E}' \gamma$.

LEMMA 7. For $T' \in \phi$ -MOD and $\mathcal{M} \in (A - B)$ -MOD, $\operatorname{Ext}_{\phi!}^*(T'!, \widetilde{\mathcal{M}}) = 0$. In this case (2.12) becomes an isomorphism $\operatorname{Ext}_{\phi!}^*(T'!, \phi \mathcal{M}) \cong \operatorname{Ext}_{\phi!}^{*+1}(T'!, \mathcal{M})$.

Proof. The second statement follows trivially from the first, which we now prove.

We begin with the case of dimension zero. Since $\operatorname{Ext}_{\phi!}^0(T'!, \widetilde{\mathcal{M}}) = \operatorname{Hom}_{\phi!}(T'!, \widetilde{\mathcal{M}})$ the first adjunction of Lemma 6 reduces this case to: $\operatorname{Hom}_{\mathcal{A}-\phi!}(M' + M'\phi, \mathcal{M}) = 0$. So suppose $f: M' + M'\phi \to \mathcal{M}$ is an $(\mathcal{A}-\phi!)$ -bimodule morphism; then $f(M') \subset \mathcal{M}1_{\mathcal{A}} = 0$ and $f(M'\phi) = f(M')\phi = 0$. That is, f = 0 as required.

Next we consider the case of dimension n > 0. The long exact cohomology sequence induced by $0 \to M' + M'\phi \to T'! \to N' \to 0$ shows that the lemma will follow from: $\operatorname{Ext}_{\phi!}^*(M' + M'\phi, \widetilde{\mathcal{M}}) = 0 = \operatorname{Ext}_{\phi!}^*(N', \widetilde{\mathcal{M}})$. (In fact, this is equivalent to the lemma since $M' + M'\phi = (0 \to M')!$ and $N' = (N' \to 0)!$.)

Given $\mathscr{E}: 0 \to \widetilde{\mathscr{M}} \to \mathscr{E}_{n-1} \to \cdots \to \mathscr{E}_0 \to M' + M' \phi \to 0$ (n > 0),

consider $\mathscr{E}1_A$. From Lemma 6 and the morphism $id: \mathscr{E}1_A \to \mathscr{E}1_A$ we obtain $(\mathscr{E}1_A)^{\widehat{}} \to \mathscr{E}$. But $(\widetilde{\mathcal{M}}1_A)^{\widehat{}} = \widehat{0} = 0$ and $((M' + M'\phi) 1_A)^{\widehat{}} = \widehat{M}' = M' + M'\phi$. Hence the morphism $(\mathscr{E}1_A)^{\widehat{}} \to \mathscr{E}$ has zero at the left end and identity at the right. This yields $0 = 0(\mathscr{E}1_A)^{\widehat{}} \equiv \mathscr{E}$ id = \mathscr{E} and, hence, $\operatorname{Ext}_{\mathfrak{A}1}^*(M' + M'\phi, \widetilde{\mathcal{M}}) = 0$.

Now, suppose we are given $[\mathscr{E}] \in \operatorname{Ext}_{\mathscr{A}}^{n}(N', \widetilde{\mathscr{M}})$ (n > 0). As above, from id: $1_{\mathcal{A}}\mathscr{E} \to 1_{\mathcal{A}}\mathscr{E}$ and Lemma 6 we obtain $\mathscr{E} \to (1_{\mathcal{A}}\mathscr{E})^{\widetilde{}}$. But $(1_{\mathcal{A}}\widetilde{\mathscr{M}})^{\widetilde{}} = \widetilde{\mathscr{M}}$ while $(1_{\mathcal{A}}N')^{\widetilde{}} = \tilde{0} = 0$. Hence, $\mathscr{E} \to (1_{\mathcal{A}}\mathscr{E})^{\widetilde{}}$ has identity at the left end and

zero at the right. This yields $\mathscr{E} = \operatorname{id} \mathscr{E} \equiv (1_{\mathcal{A}} \mathscr{E})^{\widetilde{0}} = 0$ and, hence, $\operatorname{Ext}_{\mathscr{A}!}^*(N', \widetilde{\mathscr{M}}) = 0$.

The proof of Lemma 1 requires Lemma 3. Nonetheless, we present it now and then proceed to Lemmas 3 and 4.

Proof of Lemma 1. The B-bimodules M and $_{\phi}(M\phi)$ are identical. Also Lemma 3 applies to any B-bimodule N, in particular to $_{\phi}(M\phi)$. So Lemmas 3 and 7—with $T' = \phi$, $\mathcal{M} = M\phi$ —combine to give an isomorphism $H^*(B, M) \to H^*(\phi!, _{\phi}(M\phi)) \to H^{*+1}(\phi!, M\phi)$. Invoking (2.8) and Lemma 5 we see that the isomorphism is induced by τi .

We isolate two more lemmas to aid in the proofs of Lemmas 3 and 4.

LEMMA 8. Let T' be a ϕ -bimodule. Then $\operatorname{Ext}_{\mathcal{B}}^*(N', N) \to \operatorname{Ext}_{\phi!}^*(N', N)$, $[\mathscr{E}] \mapsto [\mathscr{E}]$, and $\operatorname{Ext}_{\mathcal{A}}^*(M', M) \to \operatorname{Ext}_{\phi!}^*(M', M)$, $[\mathscr{E}] \mapsto [\mathscr{E}]$, are isomorphisms.

Proof. If $[\mathscr{E}] \in \operatorname{Ext}_B^*(N', N)$ then each bimodule in \mathscr{E} becomes a ϕ !bimodule via ϕ ! $\to B$. Plainly, if $\mathscr{E} \leftarrow \mathscr{F} \to \mathscr{E}'$ is a congruence in *B*-MOD then it is one in ϕ !-MOD as well. Thus, $[\mathscr{E}] \mapsto [\mathscr{E}]$ is indeed a morphism.

Suppose that $[\mathscr{E}] \in \operatorname{Ext}_{\phi!}^*(N', N)$. For any ϕ !-bimodule \mathfrak{A} both $\mathfrak{A}1_B$ and $1_A \mathfrak{A}1_B$ are submodules. Hence there are monomorphisms of ϕ !-bimodule extensions: $\mathscr{E}1_B \subseteq \mathscr{E}$ and $1_A \mathscr{E}1_B \subseteq \mathscr{E}1_B$. The first of these is a congruence $\mathscr{E}1_B \equiv \mathscr{E}$, as it has equality at each end $(N1_B = N; N'1_B = N')$. The second has quotient $\mathscr{E}1_B \to 1_B \mathscr{E}1_B$, which again has equality at both ends and, so, is a congruence $\mathscr{E}1_B \equiv 1_B \mathscr{E}1_B$. Therefore, $\mathscr{E} \equiv 1_B \mathscr{E}1_B$. To establish that this gives a morphism $\operatorname{Ext}_{\phi!}^*(N', N) \to \operatorname{Ext}_B^*(N', N)$ we must show: $\mathscr{E} \equiv \mathscr{E}'$ in ϕ !-MOD implies $1_B \mathscr{E}1_B \equiv 1_B \mathscr{E}'1_B$ in B-MOD. So suppose that $\mathscr{E} \leftarrow \mathscr{F} \to \mathscr{E}'$ is a congruence in ϕ !-MOD. Then we have congruences $1_A \mathscr{E}1_B \leftarrow 1_A \mathscr{F}1_B \to 1_A \mathscr{E}'1_B$ and $\mathscr{E}1_B \leftarrow \mathscr{F}1_B \to \mathscr{E}'1_B$. Taking quotients we find $1_B \mathscr{E}1_B \leftarrow 1_B \mathscr{F}1_B \to 1_B \mathscr{E}'1_B$ is a congruence in B-MOD. Clearly, $[\mathscr{E}] \mapsto [1_B \mathscr{E}1_B]$ is an inverse to $\operatorname{Ext}_B^*(N', N) \to \operatorname{Ext}_{\phi!}^*(N', N)$.

The second isomorphism is established similarly. The inverse is effected by the congruence $\mathscr{E} \leftarrow 1_{\mathcal{A}} \mathscr{E} \to 1_{\mathcal{A}} \mathscr{E} 1_{\mathcal{A}}$.

LEMMA 9. Let T' be a ϕ -bimodule. Then

$$\operatorname{Ext}_{d!}^{*}(N', N) \to \operatorname{Ext}_{d!}^{*}(T'!, N), \ [\mathscr{E}] \mapsto [\mathscr{E}\pi_{N'}],$$

and

$$\operatorname{Ext}_{\mathfrak{d}!}^*(M', M) \to \operatorname{Ext}_{\mathfrak{d}!}^*(T'!, M), \ [\mathscr{E}] \mapsto [\mathscr{E}\pi_{M'}]$$

are isomorphisms.

Proof. The morphism $[\mathscr{E}] \mapsto [E\pi_{N'}]$ is induced by the allowable short exact sequence $0 \to M' + M'\phi \to T'! \to N' \to 0$. Hence it will be an isomorphism if and only if $\operatorname{Ext}_{\phi!}^*(M' + M'\phi, N) = 0$. Note that there is also an allowable exact sequence $0 \to M'\phi \to M' + M'\phi \to M' \to 0$. So the triviality of $\operatorname{Ext}_{\phi!}^*(M' + M'\phi, N)$ will follow from $\operatorname{Ext}_{\phi!}^*(M', N) = 0 =$ $\operatorname{Ext}_{\phi!}^*(M'\phi, N)$. Let \mathscr{E} represent a class in either of these groups. If \mathfrak{A} is any ϕ !-bimodule then $1_{\mathcal{A}}\mathfrak{A}$ is a submodule. Hence there is a morphism of extensions, $1_{\mathcal{A}} \mathscr{E} \subseteq \mathscr{E}$, having equality at the right end. $(1_{\mathcal{A}}M' = M';$ $1_{\mathcal{A}}M'\phi = M'\phi)$. But the left end is $0 \to N$ $(1_{\mathcal{A}}N = 0)$. Thus, $0 = 0(1_{\mathcal{A}}\mathscr{E}) \equiv$ \mathscr{E} id = \mathscr{E} ; that is, $[\mathscr{E}] = 0$.

The other isomorphism is established similarly. It arises from $0 \to N' + M'\phi \to T'! \to M' \to 0$. The triviality of $\operatorname{Ext}_{\phi!}^*(N' + M'\phi, M)$ is revealed by the exact sequence $0 \to M'\phi \to N' + M'\phi \to N' \to 0$ and the morphism of extensions $\mathscr{E}1_B \subseteq \mathscr{E}$.

At last everything is in place to give:

Proof of Lemmas 3 and 4. For any k-algebra Λ and Λ -bimodule \mathscr{M} the isomorphism $H^*(\Lambda, \mathscr{M}) \to \operatorname{Ext}^*_{\Lambda}(\Lambda, \mathscr{M})$ is achieved as follows. Let $\mathscr{P}: 0 \to \partial \mathscr{P}_n \to \Lambda^{\otimes n+1} \to \cdots \to \Lambda^{\otimes 2} \to \Lambda \to 0$ be the usual *n*th-stage truncation of the Hochschild resolution [7, X.2]. Then every class in $\operatorname{Ext}^n_{\Lambda}(\Lambda, \mathscr{M})$ is represented by an extension of the form $[\lambda \mathscr{P}]$ with $\lambda \in Z^n(\Lambda, \mathscr{M})$ and $[\lambda] \mapsto [\lambda \mathscr{P}]$ is the isomorphism [7, III.6].

Lemmas 8 and 9 combine to give an isomorphism

$$H^*(B, N) \to \operatorname{Ext}_B^*(B, N) \to \operatorname{Ext}_{\phi!}^*(\phi!, N) \to H^*(\phi!, N)$$
(2.13)

which we claim is $H^*(\bar{\tau}_B)$. Let \mathscr{P} and \mathscr{P}' be, respectively, the *n*th-stage Hochschild resolutions of ϕ ! and *B*. Then $\pi_B: \phi! \to B$ induces an obvious morphism of extensions $\mathscr{P} \to \mathscr{P}'$. If $\Gamma^B \in Z^n(B, N)$ then

$$\bar{\tau}_B \Gamma^B = \partial \mathscr{P}_n \xrightarrow{\pi_B^{\otimes n+2}} \partial \mathscr{P}'_n \xrightarrow{\Gamma^B} N$$

and, so, the composite morphism of extensions $\mathscr{P} \to \mathscr{P}' \to \Gamma^B \mathscr{P}'$ has $\bar{\tau}_B \Gamma^B : \partial \mathscr{P}_n \to N$ at the left end and $\pi_B : \phi! \to B$ at the right end. But this means that $\mathscr{P} \to \Gamma^B \mathscr{P}'$ gives a congruence $(\bar{\tau}_B \Gamma^B) \mathscr{P} \equiv (\Gamma^B \mathscr{P}') \pi_B$. Hence (2.13) is $[\Gamma^B] \mapsto [\Gamma^B \mathscr{P}'] \mapsto [(\Gamma^B \mathscr{P}') \pi_B] = [(\bar{\tau}_B \Gamma^B)] \mapsto [\bar{\tau}_B \Gamma^B]$; that is, it is $H^*(\bar{\tau}_B)$.

That $H^*(\bar{\tau}_A)$ is an isomorphism follows by the systematic substitution of A for B and M for N throughout the last paragraph.

3. THE YONEDA COHOMOLOGY ISOMORPHISM

In this section we prove:

THEOREM (CCT). ω^* : Ext $_{\phi}^*(T', T) \to \text{Ext}_{\phi!}^*(T'!, T!)$, $[\mathscr{E}] \mapsto [\mathscr{E}!]$, is an isomorphism for all $T', T \in \phi$ -MOD.

Note that Theorems 1 and 2 (together with an obvious universality argument) imply the CCT in the case $T' = \phi$. Conversely, the CCT in conjunction with either of the earlier theorems will give the others. (Again, universality arguments are needed.)

The CCT would be trivial if ! preserved either enough relative projectives or enough relative injectives; unfortunately, it does neither. [3, Sect. 11]. (See the comments following Lemma 4 below.) The proof of the CCT in [3] used projective resolutions of T' and T'! while that in Section 2 applies only to the case $T' = \phi$. The critical lemma for the one we give here is:

LEMMA 1. If $T'' \in \phi$ -MOD is a relative injective then T''! is a relative $\operatorname{Hom}_{\phi!}(T!, -)$ -acyclic bimodule; that is,

$$\operatorname{Ext}_{\phi!}^{p}(T'!, T''!) = (R^{p} \operatorname{Hom}_{\phi!}(T'!, -))(T''!) = 0 \qquad for \quad p > 0.$$

Note that since the right derived functors are computed using only allowable resolutions we could not assert more than that T''! be a *relative* acyclic bimodule.

Of course, Lemma 1 is an immediate consequence of the theorem. In a moment we shall show that it also implies the theorem, and, so, they are equivalent. But first we cite—without proof—a general, though quite standard result. Suppose: \mathscr{C} and \mathscr{D} are abelian categories, \mathscr{C} has enough (relative) injectives, $F: \mathscr{C} \to \mathscr{D}$ is a covariant left exact functor, and $0 \to C \to I_{\bullet} \in \mathscr{C}$ is an (allowable) resolution of C by (relative) F-acyclic objects. Then $(R^{p}F)(C) = H^{p}(F(I_{\bullet}))$; that is, (relative) cohomology can be computed using (relative) acyclic resolutions [1, XVII.3; 5, Theorem 2.4.1, Remark 3].

Proof (CCT). Let $0 \to T \to T_0^{"} \to T_1^{"} \to \cdots$ be an allowable relative injective resolution of *T* in ϕ -MOD. Then $0 \to T! \to T_{\bullet}^{"}!$ is an allowable resolution of *T*! in ϕ !-MOD. We have: $\operatorname{Ext}_{\phi}^{*}(T', T) = H^* \operatorname{Hom}_{\phi}(T', T_{\bullet}^{"}) = H^* \operatorname{Hom}_{\phi!}(T'!, T_{\bullet}^{"}) = (R^*(\operatorname{Hom}_{\phi!}(T'!, -))(T!) = \operatorname{Ext}_{\phi!}^{*}(T'!, T!)$. The second equality holds because ! is full (Proposition 2); the third follows from Lemma 1 and the comments above; the other two are simply the assertions that $\operatorname{Ext}_{\phi}^{*}(T', -)$ and $\operatorname{Ext}_{\phi!}^{*}(T'!, -)$ are given by relative right derived functions. ■

The first reduction of Lemma 1 is a classification of the injectives in ϕ -MOD. We use the right inflation functors of (1.2): $\operatorname{rinf}_B(N) = N \to 0$; $\operatorname{rinf}_A(M) = {}_{\phi}M_{\phi} \to M$. These preserve (relative) injectives.

LEMMA 2. If $T'' \in \phi$ -MOD is a relative injective then $T'' = rinf_B(\ker T'') \oplus rinf_A(M'')$ and $\ker T'' \in B$ -MOD, $M'' \in A$ -MOD are relative injectives.

Proof. First observe that $\operatorname{Hom}_{\phi}(N \to 0, T'') = \operatorname{Hom}_{B}(N, \ker T'')$. Hence $\operatorname{Hom}_{\phi}(-, T'')$ is exact on allowable exact sequences of the form $\operatorname{rinf}_{B} \mathscr{E}$ if and only if ker T'' is a relative injective in *B*-MOD. That is, the relative injectivity of T'' implies that of ker T'' which, in turn, implies that if $\operatorname{rinf}_{B}(\ker T'')$. Thus the allowable exact sequence

$$0 \to \operatorname{rinf}_{B}(\ker T'') \to T'' \to \overline{T}'' \to 0$$
(3.1)

splits and \overline{T}'' is also a relative injective. Note that $\overline{T}'' = N''/\ker T'' \to M''$ and $\ker \overline{T}'' = 0$. So there is an inclusion $\langle \overline{T}'', \operatorname{id} \rangle$: $\overline{T}'' \ominus \operatorname{rinf}_A(M'')$ which must then be split; the cokernel has the form $T''': N''' \to 0$ and is a summand of $\operatorname{rinf}_A(M'') = {}_{\phi}M'_{\phi} \to {}^{\operatorname{id}}M''$. But then $0 = \ker(\operatorname{id}) = \ker \overline{T}'' \bigoplus$ $\ker T''' = N'''$ and we see that $\overline{T}'' = \operatorname{rinf}_A(M'')$. Finally, referring back to the splitting of (3.1) we have the lemma.

Lemma 2 shows that Lemma 1 is equivalent to:

LEMMA 3. If $I \in B$ -MOD and $I' \in A$ -MOD are relative injectives then $(\operatorname{rinf}_{B} I)!$ and $(\operatorname{rinf}_{A} I')!$ are relative $\operatorname{Hom}_{\phi!}(T'!, -)$ -acyclic bimodules.

Half of Lemma 3—and also Lemma 2.3— follow instantly from the stronger result:

LEMMA 4. The functor B-MOD $\rightarrow \phi$!-MOD induced by ϕ ! \rightarrow B factors as B-MOD $\rightarrow {}^{inf_B} \phi$ -MOD \rightarrow ! ϕ !-MOD. It preserves relative injectives.

Proof. The factorization is easy: $(\operatorname{rinf}_B N)! = (N \to 0)! = N + 0 + 0\phi = N$. For the rest: suppose that $0 \to \mathfrak{A} \to \mathfrak{B} \in \phi$!-MOD is allowable, $I \in B$ -MOD is a relative injective, and $f \in \operatorname{Hom}_{\phi!}(\mathfrak{A}, I)$. Then $f(1_A \mathfrak{A} + 1_B \mathfrak{A} 1_A) \subset 1_A I + 1_B I 1_A = 0$ while $0 \to 1_B \mathfrak{A} 1_B \to 1_B \mathfrak{B} 1_B$ is allowable in *B*-MOD. Let $f' \in \operatorname{Hom}_B(1_B \mathfrak{B} 1_B, I)$ be an extension of f—at least one is guaranteed by the relative injectivity of I—and set $f'(1_A \mathfrak{B} + 1_B \mathfrak{B} 1_A) = 0$. One easily checks that f' is a well-defined ϕ !-bimodule morphism extending f.

Naturally, Lemma 4 raises the question: if $I \in A$ -Mod is a relative injective will $(\operatorname{rinf}_{A} I)!$ also be a relative injective? The (negative) answer is a special case of the:

PROPOSITION. $(rinf_A M)!$ is a (relative) injective if and only if M = 0.

Before proving this we note that together with Lemmas 2 and 4 it implies: the only injectives preserved by ! are those of the form $rinf_B(I)$. Since $0 \rightarrow M$ cannot be injected into one of these, ! cannot preserve enough injectives. In [3] we failed to make this simple observation—indeed, we posed it as an open problem.

Proof. (of the Proposition). Consider the submodules $\mathfrak{A} \subset \mathfrak{B}$ of $\phi! \otimes_k \phi!$ given by: $\mathfrak{B} = B \otimes A + A\phi \otimes A + B \oplus A\phi + A\phi \otimes A\phi$ and $\mathfrak{A} = A\phi \otimes A + A\phi \otimes A\phi$. Note that $\mathfrak{A} \subseteq \mathfrak{B}$ is an (allowable) monomorphism. For each $M \in A$ -Mod let F_M be the functor $\operatorname{Hom}_{\phi!}(-, (\operatorname{rinf}_A M)!)$. We shall show that $F_M(\mathfrak{B}) \to F_M(\mathfrak{A})$ is an epimorphism if and only if M = 0; this yields the proposition.

Suppose $f \in F_{\mathcal{M}}(\mathfrak{A})$. Then $f(a\phi \otimes a') = af(\phi \otimes 1_A) a'$ and $f(a\phi \otimes a'\phi) = af(\phi \otimes 1_A) a'\phi$. That is, f is completely determined by $f(\phi \otimes 1_A) = 1_A f(\phi \otimes 1_A) 1_A \in M$ and, so, $F_{\mathcal{M}}(\mathfrak{A}) = \text{Hom}_A(A\phi \otimes A, M) = M$. Meanwhile, any $g \in F_{\mathcal{M}}(\mathfrak{B})$ must have $g(1_B \otimes 1_A) \in 1_B(\text{rinf}_A M)!1_A = 0$. This is quickly seen to imply g = 0 and, so, $F_{\mathcal{M}}(\mathfrak{B}) = 0$. But then $F_{\mathcal{M}}(\mathfrak{B}) \to F_{\mathcal{M}}(\mathfrak{A})$ is $0 \to M$.

For each $M \in A$ -MOD there is an allowable exact sequence

$$\mathscr{E}: 0 \to M\phi \to (\operatorname{rinf}_{\mathcal{A}} M)! \to {}_{\phi}M_{\phi} \oplus M \to 0.$$
(3.2)

Of course, (3.2) induces a long exact sequence in which the connecting homomorphism is "splice with \mathscr{E} ," which we denote by \mathscr{E} :

$$\operatorname{Ext}_{\phi!}^{*}(T'!, {}_{\phi}M_{\phi} \oplus M) \to \operatorname{Ext}_{\phi!}^{*+1}(T'!, M\phi), \qquad [\mathscr{F}] \mapsto [\mathscr{E} \smile \mathscr{F}].$$
(3.3)

We shall compute $\operatorname{Ext}_{\phi!}^*(T'!, (\operatorname{rinf}_A M)!)$ by examining (3.3).

As always with a direct sum, there are natural inclusions and projections: ${}_{\phi}M_{\phi} \rightarrow {}^{i_1}{}_{\phi}M_{\phi} \oplus M \leftarrow {}^{i_2}M, {}_{\phi}M_{\phi} \leftarrow {}^{p_1}{}_{\phi}M_{\phi} \oplus M \rightarrow {}^{p_2}M.$ These induce a natural isomorphism

$$\operatorname{Ext}_{\phi!}^{*}(T'!, {}_{\phi}M_{\phi}) + \operatorname{Ext}_{\phi!}^{*}(T'!, M) \xrightarrow{(i_{1}i_{2})} \operatorname{Ext}_{\phi!}^{*}(T'!, {}_{\phi}M_{\phi} \oplus M), \quad (3.4)$$

namely: $\langle [\mathscr{F}], [\mathscr{F}'] \rangle \mapsto i_1[\mathscr{F}] + i_2[\mathscr{F}']$. Of course, the inverse to $(i_1 \ i_2)$ is $(p_1 \ p_2)'$.

Composing (3.4) and (3.3) gives a morphism

$$\operatorname{Ext}_{\phi!}^{*}(T'!, {}_{\phi}M_{\phi}) + \operatorname{Ext}_{\phi!}^{*}(T'!, M) \to \operatorname{Ext}_{\phi!}^{*+1}(T'!, M\phi),$$
(3.5)

specifically:

$$\langle [\mathscr{F}], [\mathscr{F}'] \rangle \mapsto [\mathscr{E}] \smile (i_1 [\mathscr{F}] + i_2 [\mathscr{F}']) = [\mathscr{E}i_1 \smile \mathscr{F}] + [\mathscr{E}i_2 \smile \mathscr{F}'].$$

LEMMA 5. $\operatorname{Ext}_{\phi!}^*(T'!, (\operatorname{rinf}_A M)!) = \ker \mathscr{E}_{\smile}.$

Proof. First we examine the submodule $M\phi \subset (\operatorname{rinf}_A M)!$. It is naturally an (A-B)-bimodule and as such $M\phi \to M_{\phi}$, $m\phi \mapsto m$, is an isomorphism. If we now view M_{ϕ} as a ϕ !-bimodule through $\phi! \to B$, $\phi! \to A$ then $M\phi \to M_{\phi}$ becomes a ϕ !-isomorphism. Thus (2.11) yields an allowable exact sequence

$$\mathscr{E}': 0 \to M\phi \to (M\phi)^{\sim} \to {}_{\phi}M_{\phi} \to 0. \tag{3.6}$$

Observe that $\mathscr{E}i_1 = \mathscr{E}'$. Also Lemma 2.7 and (2.12) imply $\operatorname{Ext}_{\phi!}^*(T'!, {}_{\phi}M_{\phi}) \to \operatorname{Ext}_{\phi!}^{*+1}(T'!, M\phi), [\mathscr{F}] \mapsto [\mathscr{E}' \smile \mathscr{F}]$, is an isomorphism.

Now (3.5) is just $(\mathscr{E}' \smile \mathscr{E}i_2 \smile)$, i.e., $\langle [\mathscr{F}], [\mathscr{F}'] \rangle \mapsto [\mathscr{E}' \smile \mathscr{F}] + [\mathscr{E}i_2 \smile \mathscr{F}']$. Since the first component is an isomorphism, it follows that $(\mathscr{E}' \smile \mathscr{E}i_2 \smile)$ is an epimorphism. But (3.5) differs from (3.3) by an isomorphism; hence $\mathscr{E} \smile$ is also an epimorphism. Also $\operatorname{Hom}_{\phi!}(T'!, M\phi) = 0$. The last two facts and the long exact sequence induced by \mathscr{E} easily imply $\operatorname{Ext}_{\phi!}^*(T'!, (\operatorname{rinf}_{\mathcal{A}} M)!) \cong \ker \mathscr{E} \smile$, as required.

We now have all the ingredients for the:

Proof of Lemma 3. First note that since (3.3) differs from (3.5) by an isomorphism we have ker $\mathscr{E}_{\smile} = \ker(\mathscr{E}' \smile \mathscr{E}_{i_2} \smile)$. Now let *I* be a relative injective *A*-bimodule. Lemmas 2.8 and 2.9 imply $\operatorname{Ext}_{\phi!}^p(T'!, I) \cong \operatorname{Ext}_{A}^p(M', I) = 0$ for p > 0. Thus (3.5), for * > 0, reduces to $\mathscr{E}' \smile$, an isomorphism. But then Lemma 5 asserts: for p > 0, $\operatorname{Ext}_{\phi!}^p(T'!, (\operatorname{rinf}_A I)!) = \ker \mathscr{E}_{\smile} \cong \ker \mathscr{E}' \smile = 0$; that is, $(\operatorname{rinf}_A I)!$ is a relative $\operatorname{Hom}_{\phi!}(T'!, -)$ -acyclic bimodule.

References

- 1. H. CARTAN AND S. EILENBERG, "Homological Algebra," Princeton Univ. Press, Princeton, N. J., 1956.
- 2. M. GERSTENHABER, The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267-288.
- 3. M. GERSTENHABER AND S. D. SCHACK, On the deformation of algebra morphisms and diagrams, *Trans. Amer. Math. Soc.* 279 (1983), 1-50.
- M. GERSTENHABER AND S. D. SCHACK, Simplicial cohomology is Hochschild cohomology, J. Pure Appl. Alg. 30 (1983), 143-156.
- 5. A. GROTHENDIECK, Sur quelques points d'algèbre homologique, Tohoku Math. J. 9 (1957), 119-221.
- 6. G. HOCHSCHILD, On the cohomology groups of an associative algebra, Ann. of Math. 46 (1945), 58-67.
- 7. S. MACLANE, "Homology," Springer-Verlag, Berlin, 1967.
- 8. S. MACLANE, "Categories for the Working Mathematician," Springer-Verlag, New York, 1971.
- 9. S. D. SCHACK, "On the Deformation of an Algebra Homomorphism," Dissertation, University of Pennsylvania, 1980.