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Abstract

Let f be a regular function on a nonsingular complex algebraic variety of dimension d. We prove a
formula for the motivic zeta function of f in terms of an embedded resolution. This formula is over the
Grothendieck ring itself, and specializes to the formula of Denef and Loeser over a certain localization. We
also show that the space of n-jets satisfying f = 0 can be partitioned into locally closed subsets which are
isomorphic to a cartesian product of some variety with an affine space of dimension �dn/2�. Finally, we
look at the consequences for the poles of the motivic zeta function.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

(1.1) All schemes that are considered in this paper have base field C.
The topological Euler–Poincaré characteristic χ has the following properties on complex al-

gebraic varieties: χ(V ) = χ(V ′) if V is isomorphic to V ′, χ(V ) = χ(V \ W) + χ(W) if W is
a closed subset of V , and χ(V × W) = χ(V )χ(W). The Hodge–Deligne polynomial of com-
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plex algebraic varieties (see (1.5)) is a finer invariant which has also these properties. The finest
invariant with these properties is the class of a variety in the Grothendieck ring.

We recall this notion. The Grothendieck ring K0(VarC) of complex algebraic varieties is the
abelian group generated by the symbols [V ], where V is a complex algebraic variety, subject to
the relations [V ] = [V ′], if V is isomorphic to V ′, and [V ] = [V \ W ] + [W ], if W is closed
in V . One can extend the Grothendieck bracket in the obvious way to constructible sets. The ring
structure of K0(VarC) is given by [V ] · [W ] := [V × W ]. We denote by L the class of the affine
line, and by MC the localization of K0(VarC) with respect to L.

(1.2) Let Sch be the category of separated schemes of finite type over C and let n ∈ Z�0. The
functor · ×Spec C Spec C[t]/(tn+1) : Sch → Sch has a right adjoint, which we denote by Ln.
We call Ln(V ) the scheme of n-jets of V and we define an n-jet on V as a closed point
on Ln(V ). If f :W → V is a morphism of schemes, then we get an induced morphism
fn := Ln(f ) :Ln(W) → Ln(V ). For m,n ∈ Z�0 satisfying m � n, the canonical embeddings
V ×Spec C Spec C[t]/(tn+1) ↪→ V ×Spec C Spec C[t]/(tm+1) induce canonical (projection) mor-
phisms πm

n :Lm(V ) → Ln(V ). Because we want Ln(V ) to be a variety (e.g. to take its class in
the Grothendieck ring), we always endow Ln(V ) with its reduced structure, and we interpret
the morphisms above in this context. For more information about these constructions, see [DL1]
or [Mu].

If V is a closed subscheme of Am, the closed points of Ln(V ) are the (aij )1�i�m,0�j�n ∈
Am(n+1) for which (a1,0 +a1,1t +· · ·+a1,nt

n, . . . , am,0 +am,1t +· · ·+am,nt
n) ∈ (C[t]/(tn+1))m

satisfies the equations of V . Actually, we get a set of equations of (the original possibly nonre-
duced version of) Ln(V ) by substituting an arbitrary point of (C[t]/(tn+1))m in the equations
of V . If V is an arbitrary separated scheme of finite type over C, we apply the construction
above to the elements of an affine cover, and we glue them together. Note that an n-jet can be
seen as a parameterized curve modulo tn+1.

(1.3) Let X be a nonsingular irreducible algebraic variety of dimension d , and let f :X → A1

be a nonconstant regular function. Put V = div(f ). For each n ∈ Z�0, we consider the induced
morphism fn :Ln(X) → Ln(A

1). For n ∈ Z�0, the set

Xn := {
γ ∈ Ln(X)

∣∣ γ · V = n
}

is a locally closed subvariety of Ln(X). Note that γ ·V = ordt (fn(γ )). The motivic zeta function
Z(t) of f :X → A1 is by definition

Z(t) :=
∑
n�0

[Xn]tn ∈ MC�t�.

In a lot of papers, there is a normalization factor L−dn in the (n + 1)th term in the definition of
the motivic zeta function. Note that Z(L−d t) − [X \ V ] is the naive motivic zeta function from
[DL2].

(1.4) We now describe a formula for Z(t) in terms of an embedded resolution. Denef and Loeser
deduced it by using motivic integration. Let h :Y → X be an embedded resolution of f , i.e. h

is a proper birational morphism from a nonsingular variety Y such that h is an isomorphism
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on Y \ h−1(f −1{0}) and h−1(f −1{0}) is a normal crossings divisor. Let Ei , i ∈ S, be the irre-
ducible components of h−1(f −1{0}). Let KY/X be the relative canonical divisor supported in the
exceptional locus of h. We define the numerical data Ni and νi by the equalities div(f ◦ h) =∑

i∈S NiEi and KY/X = ∑
i∈S(νi −1)Ei . For I ⊂ S, denote E◦

I := (
⋂

i∈I Ei)\(
⋃

i /∈I Ei). Then,
the announced formula for Z(t) is

Z(t) =
∑
I⊂S

[
E◦

I

]∏
i∈I

(L − 1)LdNi−νi tNi

1 − LdNi−νi tNi
.

In particular, Z(t) is rational and belongs to the subring of MC�t� generated by MC and the
elements tN/(1 − LdN−ν tN ), with ν,N ∈ Z>0. Note that the equation implies, in particular, that
the right-hand side does not depend on the embedded resolution.

(1.5) We now introduce the Hodge zeta function. Recall that the Hodge–Deligne polynomial of
a complex algebraic variety W is

H(W) :=
∑
p,q

(∑
i�0

(−1)ihp,q
(
Hi

c (W,C)
))

upvq ∈ Z[u,v],

where hp,q(H i
c (W,C)) is the dimension of the (p, q)-Hodge component of the ith cohomology

group with compact support of W . The Hodge zeta function of f is

ZHod(t) :=
∑
I⊂S

H
(
E◦

I

)∏
i∈I

(uv − 1)(uv)dNi−νi tNi

1 − (uv)dNi−νi tNi
.

The right-hand side does not depend on the embedded resolution because it is obtained from the
right-hand side of the formula in (1.4) by specializing to Hodge–Deligne polynomials. Note that
the Hodge zeta function is in a lot of papers a normalization of this one.

(1.6) Let f and V be as in (1.3). We consider the power series

J (t) :=
∑
n�0

[
Ln(V )

]
tn ∈MC�t�.

Because [Xn] = Ld [Ln−1(V )] − [Ln(V )] for n � 1 and [X0] = [X] − [V ], we have the relation

J (t) = Z(t) − [X]
Ld t − 1

.

Consequently, the series J (t) and Z(t) determine each other.

(1.7) In Section 2, we prove the formula of (1.4) without using motivic integration. We will
actually prove a stronger result which is over K0(VarC) instead of MC: for an integer c satisfying
(νi − 1)/Ni � c for all i ∈ S, we have

∑
[Xn]

(
L2cd+c−d t

)n =
∑[

E◦
I

]∏ (L − 1)L(2cd+c)Ni−νi tNi

1 − L(2cd+c)Ni−νi tNi
n�0 I⊂S i∈I
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in K0(VarC)�t�. After localizing with respect to L, we can indeed deduce the formula of (1.4)
because L is not a zero-divisor in MC. However, it is unknown whether L is a zero-divisor in
K0(VarC). This implies that we cannot deduce our formula straightforward from the one in (1.4)
and that we do not know whether the formula of (1.4) holds in K0(VarC)�t� whenever dNi −νi �
0 for all i ∈ S. (There always exists an embedded resolution for which this condition is satisfied.)

In Section 3, we will prove that [Ln(V )] is a multiple of L�dn/2� in K0(VarC) for all n ∈ Z�0.
(We use the notation �x� for the smallest integer larger than or equal to x ∈ R.) We will actually
construct a partition of Ln(V ) into locally closed subsets which are isomorphic to W × A�dn/2�
for some variety W depending on the locally closed subset. The first author proved already an
analogous result for the number of solutions of polynomial congruences in [Se2]. The difficulty
here is that we do not have to count solutions, but that we have to construct isomorphisms. We
also note that our setting of (1.3) is more general than polynomials, i.e. regular functions on
affine space.

In Section 4, we will consider Z(t) as a power series over a ring R which is a quotient of the
image of the localization map in MC. Using the previous result, we prove that Z(t) belongs to
the subring of R�t� generated by R[t] and the elements 1/(1 − LdN−νtN ), with ν,N ∈ Z>0 and
ν/N � d/2. An analogous result was already proved in [Se2] for the topological zeta function
(and for Igusa’s p-adic zeta function), where it says that there are no poles (with real part) less
than −d/2. See [RV] for a possible definition of the notion of pole for the motivic zeta function.
Because the ring R specializes to Hodge–Deligne polynomials, this result is also true for the
Hodge zeta function.

In Section 5, we adapt the previous results in a relative setting.

2. The motivic zeta function over the Grothendieck ring

(2.1) If g :Y → Z is étale, one can sometimes reduce a problem about Lm(Y ) to an analogous
problem for Lm(Z) because of the following proposition. For a proof, see for example [Bl,
Proposition 2.2].

Proposition. Let g :Y → Z be étale and m ∈ Z>0. Then the natural map Lm(Y ) → Y ×Z Lm(Z)

is an isomorphism.

If g :Y → Ad is étale, we obtain

Lm(Y ) ∼= Y ×Ad Lm

(
Ad

) = Y ×Ad

(
Ad × Adm

) ∼= Y × Adm.

If Y is an arbitrary nonsingular irreducible algebraic variety of dimension d , we can cover Y with
open subsets U for which Lm(U) ∼= U × Adm. Consequently, [Lm(Y )] = [Y ]Ldm.

Note that also the equality [Xn] = Ld [Ln−1(V )] − [Ln(V )] for n � 1 of (1.6) can be proved
by using this proposition.

(2.2) We need a theorem of Denef and Loeser [DL1, Lemma 3.4], see also [ELM], to obtain our
formula.

Theorem. Let X and Y be nonsingular irreducible algebraic varieties of dimension d , and let
h :Y → X be a proper birational morphism. For e,m ∈ Z�0 satisfying m � e, the set

Δe,m := {
γ ∈ Lm(Y )

∣∣ γ · KY/X = e
}
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is a locally closed subset of Lm(Y ). If m � 2e, then Δe,m is the union of fibers of hm and the
restriction Δe,m → hm(Δe,m) of hm is a piecewise trivial fibration with fiber Ae. Moreover, two
elements of the same fiber have the same image in Lm−e(Y ).

(2.3) Let X be a nonsingular irreducible algebraic variety of dimension d , and let f :X → A1 be
a nonconstant regular function. Let h :Y → X be an embedded resolution of f . Let Ei , i ∈ S, be
the irreducible components of h−1(f −1{0}), and let Ni and νi , with i ∈ S, be the numerical data.

Theorem. If c is an integer satisfying (νi − 1)/Ni � c for all i ∈ S, then

∑
n�0

[Xn]
(
L2cd+c−d t

)n =
∑
I⊂S

[
E◦

I

]∏
i∈I

(L − 1)L(2cd+c)Ni−νi tNi

1 − L(2cd+c)Ni−νi tNi
(1)

in K0(VarC)�t�.

Proof. For n,m ∈ Z�0 satisfying m � n, the set

Xn,m := {
γ ∈ Lm(X)

∣∣ γ · div(f ) = n
}

is a locally closed subvariety of Lm(X). Note that Xn = Xn,n. Because Xn,m
∼= Xn × Ad(m−n) if

X admits an étale map X → Ad , we have [Xn,m] = [Xn]Ld(m−n) for general X.
Let γ ∈ h−1

m (Xn,m). We have that

∑
i∈S

Ni(γ · Ei) = γ ·
(∑

i∈S

NiEi

)
= hm(γ ) · div(f ) = n,

and that

γ · KY/X = γ ·
(∑

i∈S

(νi − 1)Ei

)
=

∑
i∈S

(νi − 1)(γ · Ei).

Let c be an integer satisfying (νi − 1)/Ni � c for all i ∈ S. Such an integer exists because S is
finite. Note that there exists an embedded resolution h (which is a composition of blowing-ups
with well chosen center) for which νi/Ni � d − 1 for all i ∈ S [Se1, Proof of Theorem 2.4.0].
We obtain

γ · KY/X =
∑
i∈S

(νi − 1)(γ · Ei) � c
∑
i∈S

Ni(γ · Ei) = cn.

In particular, there are only a finite number of possibilities for γ ·KY/X . In view of (2.2), we will
try to find a formula for

∑
n�0

Lcn[Xn,2cn]tn =
∑
n�0

[Xn]
(
L2cd+c−d t

)n ∈ K0(VarC)�t�

in terms of h.
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Fix n ∈ Z>0. For an |S|-tuple of positive integers a = (ai)i∈S , we define Sa := {i ∈ S | ai > 0},
E◦

a := E◦
Sa

and |a| := Card(Sa). We define a set A by

A :=
{
(ai)i∈S

∣∣∣ ∀i ∈ S: ai ∈ Z�0,
∑
i∈S

aiNi = n and E◦
a 
= ∅

}
,

and obtain a disjoint union

h−1
2cn(Xn,2cn) =

⊔
a∈A

{
γ ∈ L2cn(Y )

∣∣ ∀i ∈ S: γ · Ei = ai

}
.

Fix a ∈ A. Put e = ∑
i∈S ai(νi − 1). Denote the origin of γ by γ0. If Ut , t ∈ T , is a partition

of E◦
a , then

{
γ ∈ L2cn(Y )

∣∣ ∀i ∈ S: γ · Ei = ai

} =
⊔
t∈T

{
γ ∈ L2cn(Y )

∣∣ ∀i ∈ S: γ · Ei = ai and γ0 ∈ Ut

}
.

Using (2.1), we can take [Cr, Proof of Proposition 2.5] a partition Ut , t ∈ T , of E◦
a into locally

closed subset such that for each t ∈ T , the set

Fa,t := {
γ ∈ L2cn(Y )

∣∣ ∀i ∈ S: γ · Ei = ai and γ0 ∈ Ut

}

is isomorphic to Ut × A2cdn−∑
i∈Sa

ai × (A1 \ {0})|a|, and hence

[Fa,t ] = [Ut ]L2cdn−∑
i∈Sa

ai (L − 1)|a|.

Because Fa,t ⊂ Δe,2cn is a union of fibers of h2cn (one can use the last statement in Theorem 2.2
to prove this), we obtain from (2.2) that the restriction Fa,t → h2cn(Fa,t ) of h2cn is a piecewise
trivial fibration with fiber Ae. Hence,

[Fa,t ] = Le
[
h2cn(Fa,t )

]
.

By summing over all t ∈ T , we obtain

Le
[
h2cn

({
γ ∈ L2cn(Y )

∣∣ ∀i ∈ S: γ · Ei = ai

})]

= Le

[
h2cn

( ⊔
t∈T

Fa,t

)]
=

∑
t∈T

Le
[
h2cn(Fa,t )

]

=
∑
t∈T

[Fa,t ] = [
E◦

a

]
L2cdn−∑

i∈Sa
ai (L − 1)|a|.

Now we multiply both sides of the obtained equality with Lcn−e and sum over all a ∈ A. Note
that e depends on a. We obtain
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Lcn[Xn,2cn] =
∑
a∈A

[
E◦

a

]
L2cdn−∑

i∈Sa
ai Lcn−e(L − 1)|a|

=
∑
a∈A

[
E◦

a

]
(L − 1)|a|L(2cd+c)n−e−∑

i∈Sa
ai

=
∑
a∈A

[
E◦

a

]
(L − 1)|a|L

∑
i∈Sa

((2cd+c)Ni−νi )ai

=
∑
a∈A

[
E◦

a

] ∏
i∈Sa

(L − 1)L((2cd+c)Ni−νi )ai .

The last expression is the coefficient of tn in the formal power series

∑
I⊂S

[
E◦

I

]∏
i∈I

(L − 1)L(2cd+c)Ni−νi tNi

1 − L(2cd+c)Ni−νi tNi
,

and consequently, we have finished our proof. �
Remark. If we consider (1) as an equality in MC�t� and if we replace t by L−(2cd+c−d)t , we
obtain

Z(t) =
∑
I⊂S

[
E◦

I

]∏
i∈I

(L − 1)LdNi−νi tNi

1 − LdNi−νi tNi

in MC�t�. This is the formula of (1.4) which was first proved by Denef and Loeser using motivic
integration.

3. Divisibility of jet spaces in K0(VarCCC)

(3.1) Let X be a d-dimensional complex analytic manifold with analytic coordinates (u1, . . . , ud).
These coordinates induce tangent vector fields ∂/∂u1, . . . , ∂/∂ud along X. Let f be a complex
analytic function on X and let b ∈ X. By Taylor’s theorem, we have for points x in a small
enough neighborhood of b that

f (x) = lim
m→∞

∑
α∈Z

d
�0:|α|�m

(∂ |α|f/∂uα)(b)

α! (x − b)α

= f (b) +
d∑

j=1

(∂f/∂uj )(b)(xj − bj ) + · · · .

We explain the notation. The coordinates of b are (b1, . . . , bd) and those of x are (x1, . . . , xd).
For α = (α1, . . . , αd) ∈ Zd

�0, we put α! = α1! · · ·αd !, (x − b)α = (x1 − b1)
α1 · · · (xd − bd)αd ,

|α| = α1 + · · · + αd and ∂ |α|f/∂uα = ∂α1+···+αd f/∂u
α1
1 · · · ∂u

αd

d .
Let γ be a convergent arc in X, i.e. a d-tuple of convergent power series in t with origin in X.

Let l ∈ Z>0. Write γ = b + t lz, where b is a d-tuple of polynomials in t of degree less than l and
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where z is a d-tuple of convergent power series. For every t ∈ C in the convergence domain of γ

(and for which γ (t) ∈ X), we have

f
(
γ (t)

) = lim
m→∞

∑
α∈Z

d
�0:|α|�m

(∂ |α|f/∂uα)(b(t))

α! t |α|l(z(t))α
,

and consequently, we obtain the equality

f (γ ) = lim
m→∞

∑
α∈Z

d
�0: |α|�m

(∂ |α|f/∂uα)(b)

α! t |α|lzα

as formal power series in t .
Since every n-jet is liftable to a convergent arc, we get for an n-jet of the form γ = b + t lz

that

f (γ ) =
�n/l�∑
|α|=0

(∂ |α|f/∂uα)(b)

α! t |α|lzα mod tn+1.

(3.2) Let X be a nonsingular irreducible algebraic variety of dimension d and let g :X → Ad

be an étale map. We identify Ln(X) and X ×Ad Ln(A
d) by using the canonical isomorphism

of (2.1).
The coordinates (u1, . . . , ud) on Ad induce analytic coordinates on a complex neighborhood

of every point of X. The tangent vector fields ∂/∂u1, . . . , ∂/∂ud , which we define along the
whole of X, are actually algebraic. This implies that all first and higher order partial derivatives
of a regular function on X with respect to u1, . . . , ud are regular functions on X.

Let f be a regular function on X. Let l ∈ {1, . . . , n}. Let (x, b) ∈ X ×Ad Ln(A
d) = Ln(X) and

let z = (z1, . . . , zd) ∈ Ln−l (A
d). Then

f
(
x, b + t lz

) =
�n/l�∑
|α|=0

(∂ |α|f/∂uα)(x, b)

α! t |α|lzα mod tn+1.

(3.3) Theorem. Let X be a nonsingular irreducible algebraic variety of dimension d ∈ Z>1 and
let f :X → A1 be a regular function. Put V := div(f ). Then [Ln(V )] is a multiple of L�dn/2� in
K0(VarC) for all n ∈ Z�0.

Remark. It follows that [Xn] is also a multiple of L�dn/2� for all n ∈ Z�0.

Proof. We are going to partition Ln(V ) into a finite number of locally closed subsets which are
isomorphic to W × A�dn/2� for some variety W depending on the locally closed subset.

If the theorem holds for the members of an open cover of X and all their intersections, then it
holds for X, by additivity of the Grothendieck bracket. Hence, we may assume that there exists
an étale map g :X → Ad .

Let r be n/2 if n is even and (n + 1)/2 if n is odd. We define
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Ln,r (V ) = {
(x, b) ∈ Ln(X)

∣∣ ∀j ∈ {1, . . . , d}: (∂f/∂uj )(x, b) ≡ 0 mod t r and

f (x, b) ≡ 0 mod tn+1}

and for k ∈ {0,1, . . . , r − 1}, we define

Ln,k(V ) = {
(x, b) ∈ Ln(X)

∣∣ ∀j ∈ {1, . . . , d}: (∂f/∂uj )(x, b) ≡ 0 mod tk,

∃j ∈ {1, . . . , d}: (∂f/∂uj )(x, b) 
≡ 0 mod tk+1 and f (x, b) ≡ 0 mod tn+1}.
Then, the sets Ln,k(V ), k ∈ {0,1, . . . , r}, are locally closed subsets of Ln(V ) which partition
Ln(V ).

We prove that Ln,r (V ) is isomorphic to W × A�dn/2� for some variety W . Let (x, b) ∈
Ln,r (V ). For z = (z1, . . . , zd) ∈ Lr−1(A

d), we have that

f
(
x, b + tn−r+1z

) = f (x, b) +
d∑

j=1

(∂f/∂uj )(x, b)tn−r+1zj + t2(n−r+1)(. . .)

≡ 0 mod tn+1,

such that (x, b + tn−r+1Lr−1(A
d)) ⊂ Ln(V ). Because n − r + 1 � r , we obtain that (x, b +

tn−r+1Lr−1(A
d)) ⊂ Ln,r (V ). Consequently, Ln,r (V ) ∼= πn

n−r (Ln,r (V )) × Adr . This proves our
assertion for Ln,r (V ) because dr � �dn/2�.

Let k ∈ {0,1, . . . , r − 1}. We study Ln,k(V ). Let p ∈ {1, . . . , d} and let l ∈ {k, . . . , n − k}. We
define

Ln,k,p(V ) = {
(x, b) ∈ Ln(X)

∣∣ ∀j ∈ {1, . . . , d}: (∂f/∂uj )(x, b) ≡ 0 mod tk

and (∂f/∂up)(x, b) 
≡ 0 mod tk+1 and f (x, b) ≡ 0 mod tn+1}

and

Ol,k,p(V ) = {
(x, b) ∈ Ll(X)

∣∣ ∀j ∈ {1, . . . , d}: (∂f/∂uj )(x, b) ≡ 0 mod tk

and (∂f/∂up)(x, b) 
≡ 0 mod tk+1 and f (x, b) ≡ 0 mod tk+l+1}.
Note that Ln,0,p(V ) = On,0,p(V ). We check that f (x, b) is well defined modulo tk+l+1 in the
definition of Ol,k,p(V ). Suppose that (x, b) ∈ Ll(X) satisfies (∂f/∂uj )(x, b) ≡ 0 mod tk for all
j ∈ {1, . . . , d}. Then

f
(
x, b + t l+1z

) = f (x, b) +
d∑

j=1

(∂f/∂uj )(x, b)t l+1zj + t2(l+1)(. . .)

≡ f (x, b) mod tk+l+1,

and consequently, f (x, b) is well defined modulo tk+l+1.
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The following isomorphisms can be checked easily:

Ln,k,p(V ) ∼= On−k,k,p(V ) × Adk,

Ol+1,k,p(V ) ∼= Ol,k,p(V ) × Ad−1, for l ∈ {k, . . . , n − k − 1},

where the projections on the first factor are respectively πn
n−k and πl+1

l . The isomorphism
Ol,k,p(V ) × Ad−1 → Ol+1,k,p(V ) maps ((x;b10 + b11t + · · · + b1l t

l , . . . , bd0 + bd1t + · · · +
bdlt

l), (a1, . . . , ad−1)) to the unique element of Ol+1,k,p(V ) of the form (x;b10 + b11t + · · · +
b1l t

l + a1t
l+1, . . . , bp0 + bp1t + · · · + bplt

l + ct l+1, . . . , bd0 + bd1t + · · · + bdlt
l + ad−1t

l+1).
The unique value c ∈ C is obtained by solving a linear equation.

Consequently,

Ln,k,p(V ) ∼= Ok,k,p(V ) × A(d−1)(n−2k)+dk,

where the projection on the first factor is πn
k . This implies

Ln,k,1(V ) ∼= Ok,k,1(V ) × A(d−1)(n−2k)+dk,

Ln,k,2(V ) \Ln,k,1(V ) ∼= (
Ok,k,2(V ) \Ok,k,1(V )

) × A(d−1)(n−2k)+dk,

...

Ln,k,d (V )
∖( ⋃

1�p�d−1

Ln,k,p(V )

)
∼=

(
Ok,k,d (V )

∖( ⋃
1�p�d−1

Ok,k,p(V )

))
×A(d−1)(n−2k)+dk.

This finishes our proof because the left-hand sides form a partition of Ln,k(V ) into locally closed
subsets and because (d − 1)(n − 2k) + dk � �dn/2�. �
4. The smallest poles of motivic zeta functions

(4.1) Let X be a nonsingular irreducible algebraic variety of dimension d ∈ Z>1 and let f :
X → A1 be a regular function. Put V := div(f ). In this section, we fix an embedded resolution
for which dNi − νi � 0 for every i ∈ S. Note that we mentioned already in (2.3) that there
always exists an embedded resolution which satisfies the stronger condition νi/Ni � d − 1 for
every i ∈ S.

Consider the ideal

I ′ = {
α ∈ K0(VarC)

∣∣ ∃k ∈ Z�0: Lkα = 0
}

of K0(VarC) and put R′ = K0(VarC)/I ′. The image of L in R′, which is also denoted by L, is
not a zero-divisor in R′. Note that I ′ is the kernel of the localization map K0(VarC) → MC,
such that R′ can be considered as the image of this map in MC. Consequently, the formula of
(1.4) still holds if we consider Z(t) as a power series over R′. Although Poonen [Po] proved that
K0(VarC) is not a domain, it is still not known whether the localization map is injective.

We want to use for instance that
⋂

k∈Z�0
(Lk) = {0} and that a number k ∈ Z\{0} is not a zero-

divisor. Because we do not know whether these are true in R′, we will work in an appropriate
quotient of R′. Consider the ideal
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I =
⋂

k∈Z�0

{
α ∈ R′ ∣∣ ∃n ∈ Z \ {0}: nα ∈ (

Lk
)}

=
⋂

k∈Z�0

{
α ∈ R′ ∣∣ ∃n ∈ Z \ {0}: nα is divisible by Lk in R′}

of R′ and put R = R′/I . Note that R specializes to Hodge–Deligne polynomials and that we do
not know whether I 
= {0}. One verifies easily that an element of Z \ {0} is not a zero-divisor
in R. One also checks that the image in R of {α ∈ R′ | ∃n ∈ Z \ {0}: nα ∈ (Lk)} contains (Lk),
and consequently

⋂
k∈Z�0

(Lk) = {0} in R. Thus, if α is a nonzero element of R, there exists

a k ∈ Z�0 such that α is divisible by Lk but not by Lk+1 in R. Moreover, if α is a nonzero
element of R, there exists a positive integer k which has for every n ∈ Z \ {0} the property
that nα is not divisible by Lk . We also have that 1 − Lk , with k ∈ Z>0, is not a zero-divisor
in R. Indeed, if α ∈ R satisfies (1 − Lk)α = 0, then α = Lkα = L2kα = L3kα = · · · , and thus
α ∈ ⋂

k∈Z�0
(Lk) = {0}.

From now on, we will consider the motivic zeta function Z(t) as a power series over R. The
formula of Z(t) in terms of an embedded resolution also holds over R. We write the motivic zeta
function in the form

Z(t) = B(t)∏
i∈I (1 − LdNi−νi tNi )

,

where I ⊂ S and where B(t) is not divisible by any of the 1 − LdNi−νi tNi , with i ∈ I . Put
l := min{−νi/Ni | i ∈ I }.

In the next paragraphs, we will work in a more general context. By abuse of notation, we will
use the symbols of this particular situation.

(4.2) Let Z(t) be an arbitrary element of R�t� of the form

Z(t) = B(t)∏
i∈I (1 − LdNi−νi tNi )

,

where every (νi,Ni) ∈ Z>0 × Z>0 satisfies dNi − νi � 0 and where B(t) ∈ R[t] is not divisible
by any of the 1 − LdNi−νi tNi , with i ∈ I . Put l := min{−νi/Ni | i ∈ I }. Define the elements
γn ∈ R by the equality

Z(t) =
∑
n�0

γnt
n.

(4.3) Proposition. There exists an integer a which is independent of n such that γn is a multiple
of L�(d+l)n−a� in R for all integers n satisfying (d + l)n − a � 0.

Remark. (i) The statement in the proposition is obviously equivalent to the following. If l′ � l,
then there exists an integer a which is independent of n such that γn is a multiple of L�(d+l′)n−a�
for all integers n satisfying (d + l′)n − a � 0.

(ii) Suppose that we are in the situation of (4.1). It follows from (4.6) that d + l > 0, so
that (d + l)n − a rises linearly as a function of n with a slope depending on l. The condition
(d + l)n − a � 0 is thus satisfied for n large enough.
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Proof. We will say that a formal power series in t has the divisibility property if the coefficient
of tn is a multiple of L�(d+l)n� for every n.

For i ∈ I , the series

1

1 − LdNi−νi tNi
=

∑
n�0

Ln(dNi−νi )tnNi

has the divisibility property because dNi − νi is an integer larger than or equal to Ni(d + l).
One can easily check that the product of a finite number of power series with the divisibility

property also has the divisibility property. Let g be the degree of B(t). For n � g, we will have
that γn is a multiple of L�(d+l)(n−g)�. This implies our statement. �
(4.4) We will decompose Z(t) into partial fractions in (4.6). To this end, we need to apply the
following lemma several times.

Lemma.

(a) Let i, j ∈ I such that νi/Ni 
= νj /Nj . Then, there exist polynomials g(x, t), h(x, t) ∈ Z[x, t]
and an integer k ∈ Z>0 such that

g(x, t)
(
1 − xdNi−νi tNi

) + h(x, t)
(
1 − xdNj −νj tNj

) = 1 − xk

holds in Z[x, t], and consequently such that

g(L, t)
(
1 − LdNi−νi tNi

) + h(L, t)
(
1 − LdNj −νj tNj

) = 1 − Lk

holds in R[t].
(b) Let D(t) ∈ R[t]. There exist polynomials g(t), h(t) ∈ R[t] with deg(h) < Ni and a k ∈ Z�0

such that

LkD(t) = (
1 − LdNi−νi tNi

)
g(t) + h(t).

Proof. (a) Although Z[x, t] is not a PID, we can obtain the first relation by applying the algo-
rithm of Bezout–Bachet in number theory to the polynomials 1−xdNi−νi tNi and 1−xdNj −νj tNj

in the variable t . The number k is different from 0 because otherwise the polynomials 1 −
xdNi−νi tNi and 1 − xdNj −νj tNj would have a nontrivial common divisor, and this is not the
case because νi/Ni 
= νj /Nj . (b) This is straightforward by applying the division algorithm. �
(4.5) For r ∈ Z>0, we define a function fr : Z�0 → Z�0 by the relation

1

(1 − x)r
=

∞∑
n=0

fr(n)xn.

One proves by induction on r that

fr(n) = (n + r − 2)!
(r − 1)!(n − 1)! = n(n + 1) . . . (n + r − 2)

(r − 1)! .



D. Segers et al. / Journal of Algebra 317 (2007) 851–866 863
Lemma. Let m ∈ Z>1. Let n1, . . . , nm be m different natural numbers. Then, the determinant of
the matrix with the elements

v1 = (
f1(n1), f2(n1), . . . , fm(n1)

)
,

v2 = (
f1(n2), f2(n2), . . . , fm(n2)

)
,

...

vm = (
f1(nm),f2(nm), . . . , fm(nm)

)

of Zm in the rows is equal to

∏
j>i(nj − ni)∏m−1

i=1 i! .

Remark.

(i) This determinant is different from zero, so the set {v1, v2, . . . , vm} is linearly independent.
Consequently, every element ei of the standard basis of the Z-module Zm has a multiple
which is generated by it.

(ii) This lemma is probably known. We include its proof by lack of reference.

Proof. The proof is by induction on m. The statement is trivial for m = 2. Let now m > 2. We
expand the determinant along the last column, apply the induction hypothesis to the cofactors,
use Vandermonde determinants, and obtain that it is equal to

1∏m−2
i=1 i!

∣∣∣∣∣∣∣∣∣∣

1 n1 n2
1 · · · nm−2

1 fm(n1)

1 n2 n2
2 · · · nm−2

2 fm(n2)
...

...
...

...
...

1 nm n2
m · · · nm−2

m fm(nm)

∣∣∣∣∣∣∣∣∣∣
.

By using properties of determinants and the Vandermonde determinant, we see that this is equal
to

1∏m−1
i=1 i!

∣∣∣∣∣∣∣∣∣∣

1 n1 n2
1 · · · nm−2

1 nm−1
1

1 n2 n2
2 · · · nm−2

2 nm−1
2

...
...

...
...

...

1 nm n2
m · · · nm−2

m nm−1
m

∣∣∣∣∣∣∣∣∣∣
=

∏
j>i(nj − ni)∏m−1

i=1 i! . �

(4.6) Proposition. There exist an integer a which is independent of n and positive integers N

and b such that γnN+b is not a multiple of L�(d+l)(nN+b)+a� in R for n large enough.

Proof. Put I1 = {j ∈ I | −νi/Ni = l} and I2 = I \ I1. Let N be the lowest common multiple of
the Ni , i ∈ I1, and let ν be the lowest common multiple of the νi , i ∈ I1. Remark that ν/N =
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νi/Ni for all i ∈ I1. Let m be the cardinality of I1. Because 1 − LdN−νtN is a multiple of
1 − LdNi−νi tNi for all i ∈ I1, we can write

Z(t) = D(t)

(1 − LdN−νtN )m
∏

i∈I2
(1 − LdNi−νi tNi )

,

where D(t) ∈ R[t]. Applying decomposition into partial fractions (see Lemma 4.4), we can write

wZ(t) = μm,0 + μm,1t + · · · + μm,N−1t
N−1

(1 − LdN−ν tN )m
+ μm−1,0 + μm−1,1t + · · · + μm−1,N−1t

N−1

(1 − LdN−νtN )m−1

+ · · · + μ1,0 + μ1,1t + · · · + μ1,N−1t
N−1

1 − LdN−ν tN
+ E(t)∏

i∈I2
(1 − LdNi−νi tNi )

=
N−1∑
b=0

∞∑
n=0

(
fm(n)μm,b + · · · + f1(n)μ1,b

)
LndN−nνtnN+b (2)

+ E(t)∏
i∈I2

(1 − LdNi−νi tNi )
, (3)

where μi,j ∈ R, where E(t) ∈ R[t] and where w is a product of elements of the form 1 − Lk and
Lk , with k > 0. Note that wD(t) is not divisible by 1 − LdN−ν tN because w is not a zero divisor
in R, the constant term of 1 − LdN−νtN is a unit in R and D(t) is not divisible by 1 − LdN−νtN .

We now consider the first part (2) of wZ(t). Because wD(t) is not divisible by (1 −
LdN−νtN )m, there exists a b ∈ {0, . . . ,N − 1} for which the coefficient of tnN+b is differ-
ent from 0 for infinitely many n. Fix from now on such a b and a j ∈ {1, . . . ,m} for which
μj,b 
= 0. Take a positive integer c such that we have for every n ∈ Z \ {0} that nμj,b is not
divisible by Lc . There do not exist m positive integers n1, . . . , nm for which fm(n1)μm,b + · · ·+
f1(n1)μ1,b, . . . , fm(nm)μm,b +· · ·+f1(nm)μ1,b are multiples of Lc, because otherwise, we can
use Lemma 4.5 to obtain that μj,b has an integer multiple which is a multiple of Lc . Conse-
quently, for n large enough, fm(n)μm,b +· · ·+f1(n)μ1,b is not a multiple of Lc . The coefficient
of tnN+b in the power series expansion of (2) is equal to (fm(n)μm,b +· · ·+f1(n)μ1,b)L

(d+l)nN ,
which is not a multiple of L(d+l)nN+c = L(d+l)(nN+b)−(d+l)b+c for n large enough. So let a be
the largest integer smaller than or equal to c − (d + l)b.

Now we consider the remaining part (3) of wZ(t). We obtain from Proposition 4.3 that there
exists an l′ > l and an integer a′ such that the coefficient of tn in the power series expansion of
(3) is a multiple of L�(d+l′)n−a′� for n large enough. Consequently, this coefficient is a multiple
of L�(d+l)n+a� for n large enough.

Because wγnN+b is the sum of two elements of which exactly one is a multiple of
L�(d+l)(nN+b)+a� for n large enough, we obtain that wγnN+b , and thus also γnN+b , is not a
multiple of L�(d+l)(nN+b)+a� for n large enough. �
Corollaries.

(i) If there exists an integer a such that γn is a multiple of L�(d+l′)n−a� for all n satisfying
(d + l′)n − a � 0, then l′ � l. This is the converse of Proposition 4.3.

(ii) Because we saw in the previous section that [Xn] is a multiple of L�dn/2� if we are in the
situation of (4.1), we obtain that l � −d/2.
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Because of the second corollary, we have proved the following theorem.

Theorem. The motivic zeta function Z(t) ∈ R�t� belongs to the subring of R�t� generated by
R[t] and the elements 1/(1 − LdN−νtN ), with ν,N ∈ Z>0 and ν/N � d/2.

(4.7) In (4.1), we denoted the image of the localization map K0(VarC) → MC by R′. We in-
troduced an ideal I of R′ and put R = R′/I . The previous theorem is a priori weaker than the
analogous statement over R′ (or MC), but it is not if I = {0}. We do not know whether I 
= {0},
but at any rate the theorem specializes to Hodge–Deligne polynomials. This gives us the follow-
ing.

Theorem. The Hodge zeta function ZHod(t) belongs to the subring of Q(u, v)(t) generated by
Q(u, v)[t] and the elements 1/(1 − (uv)dN−ν tN ), with ν,N ∈ Z>0 and ν/N � d/2.

5. The relative setting

The generalization to the relative setting was suggested by the referee. Let X be a nonsin-
gular irreducible algebraic variety of dimension d , and let f :X → A1 be a nonconstant regular
function. Let X0 be the reduced scheme determined by f = 0. Note that X0 = L0(V ), where
V = div(f ) as before. For n � 1, we have that Xn is an X0 variety because of the canonical
morphism πn

0 :Xn → X0. Therefore, we can consider the class [Xn/X0] of Xn in the relative
Grothendieck ring K0(VarX0) of X0-varieties. The definition is the straightforward generaliza-
tion of the usual one, see for example [DL2].

One obtains analogously as in Section 2 that

∑
n�1

[Xn/X0]
(
L2cd+c−d t

)n =
∑

∅
=I⊂S

[
E◦

I /X0
]∏

i∈I

(L − 1)L(2cd+c)Ni−νi tNi

1 − L(2cd+c)Ni−νi tNi

in K0(VarX0)�t�. Here, c is an arbitrary integer satisfying (νi − 1)/Ni � c for all i ∈ S and L is
the class of A1 × X0 in K0(VarX0).

The main result of Section 3 can also be adapted to this context. Suppose that the dimension
d of X is in Z>1. Then [Ln(V )/X0] is a multiple of L�dn/2� in K0(VarX0) for all n ∈ Z�0.

Also Section 4 can be generalized. One analogously constructs a ring R from K0(VarX0) such
that Z(t), considered as an element of R�t�, belongs to the subring of R�t� generated by R[t]
and the elements 1/(1 − LdN−ν tN ), with ν,N ∈ Z>0 and ν/N � d/2.
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