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This Letter is a generalization of previous results on gravitational waves (GWs) from f (R) theories of
gravity. In some previous papers, particular f (R) theories have been linearized for the first time in the
literature. Now, the process is further generalized, showing that every f (R) theory can be linearized
producting a third massive mode of gravitational radiation. In this framework, previous results are
particular cases of the more general problem that is discussed in this Letter. The potential detectability
of such massive GWs with LISA is also discussed with the auxilium of longitudinal response functions.

© 2008 Elsevier B.V. All rights reserved.
Recently, the data analysis of interferometric GWs detectors has
been started (for the current status of GWs interferometers see
[1–8]) and the scientific community aims at a first direct detection
of GWs in next years.

Detectors for GWs will be important for a better knowledge of
the Universe and either to confirm or ruling out the physical con-
sistency of General Relativity or any other theory of gravitation
[9–14].

An early, but quite interesting, paper on other theories of grav-
ity was written by Wagoner [28].

In this Letter, the production of a hypothetical massive compo-
nent of gravitational radiation which arises from a general f (R)

theory of gravity is shown. The presence of the mass could also
have important applications in cosmology because the fact that
GWs can have mass could give a contribution to the dark matter
of the Universe.

The first and simplest f (R) theory of gravity was proposed by
Starobinsky [15], who discussed the action

S =
∫

d4x
√−g

(
R + αR2) + Lm. (1)

The production and the potential detection of GWs from this the-
ory has been analysed in [16]. In [17], it has been also shown that,
from this particular linearized theory, it is possible to obtain an
oscillating model of Universe.
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Another example is the action

S =
∫

d4x
√−g

(
R + R−1) + Lm. (2)

This action has been analysed in a cosmological context in [18],
while the GWs case has been analysed in [19]. This kind of theory
could, in principle, be connected with the Dark Matter problem
too [20]. Criticisms on f (R) theories of gravity arises from the
fact that lots of such theories can be excluded by requirements of
Cosmology and Solar System tests [24,25]. It is important to em-
phasize that the theory of Eq. (2), differently from the theory of
the action (1) is not in conflict with such constrains [24,25]. In
this context, even the theory

S =
∫

d4x
√−g f0 R1+ε + Lm, (3)

which has been discussed in [25], is quite interesting.
Equations (1), (2) and (3) are particular choices in respect to

the well-known canonical one of general relativity (the Einstein–
Hilbert action [21,22]) which is

S =
∫

d4x
√−g R + Lm, (4)

where R is the Ricci scalar curvature.
Now, we will analyse the general case, i.e.

S =
∫

d4x
√−g f (R) + Lm, (5)

where f (R) is a generic high order theory of gravity.
Of course, the cases which have been analysed in [16] and

in [19] are particular cases of the more general case that we are
going to analyse now.
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As we will interact with gravitational waves, i.e. the linearized
theory in vacuum, Lm = 0 will be put and the pure curvature ac-
tion

S =
∫

d4x
√−g f (R) (6)

will be considered.
By varying the action (6) in respect to gμν (see Refs. [16,17,19]

for a parallel computation) the field equations are obtained (note
that in this Letter we work with G = 1, c = 1 and h̄ = 1):

f ′(R)Rμν − 1

2
f (R)gμν − f ′(R);μ;ν + gμν� f ′(R) = 0 (7)

which are the modified Einstein field equations. f ′(R) is the
derivative of f in respect to the Ricci scalar. Writing down, ex-
plicitly, the Einstein tensor, Eqs. (7) become

Gμν = 1

f ′(R)

{
1

2
gμν

[
f (R) − f ′(R)R

]

+ f ′(R);μ;ν − gμν� f ′(R)

}
. (8)

Taking the trace of the field equations (8) one gets

3� f ′(R) + R f ′(R) − 2 f (R) = 0, (9)

and, with the identifications [23]

Φ → f ′(R) and
dV

dΦ
→ 2 f (R) − R f ′(R)

3
(10)

a Klein–Gordon equation for the effective Φ scalar field is ob-
tained:

�Φ = dV

dΦ
. (11)

To study gravitational waves, the linearized theory has to be
analyzed, with a little perturbation of the background, which is
assumed given by a Minkowskian background plus Φ = Φ0, i.e. we
are linearizing into a background with constant curvature [19,24].
We also assume Φ0 to be a minimum for V :

V � 1

2
αδΦ2 ⇒ dV

dΦ
� m2δΦ, (12)

and the constant m has mass dimension.
Putting

gμν = ημν + hμν,

Φ = Φ0 + δΦ, (13)

to first order in hμν and δΦ , calling R̃μνρσ , R̃μν and R̃ the lin-
earized quantity which correspond to Rμνρσ , Rμν and R , the lin-
earized field equations are obtained [16,17,19]:

R̃μν − R̃

2
ημν = (∂μ∂νh f − ημν�h f ),

�h f = m2h f , (14)

where

h f ≡ δΦ

Φ0
. (15)

R̃μνρσ and Eqs. (14) are invariants for gauge transformations
[16,17,19]

hμν → h′
μν = hμν − ∂(μεν),

δΦ → δΦ ′ = δΦ; (16)
then

h̄μν ≡ hμν − h

2
ημν + ημνh f (17)

can be defined, and, considering the transformation for the param-
eter εμ ,

�εν = ∂μh̄μν, (18)

a gauge parallel to the Lorenz one of electromagnetic waves can be
chosen:

∂μh̄μν = 0. (19)

In this way, field equations read like

�h̄μν = 0, (20)

�h f = m2h f . (21)

Solutions of Eqs. (20) and (21) are plan waves [16,17,19]:

h̄μν = Aμν(	p)exp
(
ipαxα

) + c.c., (22)

h f = a(	p)exp
(
iqαxα

) + c.c., (23)

where

kα ≡ (ω, 	p), ω = p ≡ |	p|,
qα ≡ (ωm, 	p), ωm =

√
m2 + p2. (24)

In Eqs. (20) and (22) the equation and the solution for the stan-
dard waves of General Relativity [21,22] have been obtained, while
Eqs. (21) and (23) are respectively the equation and the solution
for the massive mode (see also [16,17,19]).

The fact that the dispersion law for the modes of the massive
field h f is not linear has to be emphasized. The velocity of every
“ordinary” (i.e. which arises from General Relativity) mode h̄μν is
the light speed c, but the dispersion law (the second of Eq. (24))
for the modes of h f is that of a massive field which can be dis-
cussed like a wave-packet [16,17,19]. Also, the group-velocity of a
wave-packet of h f centered in 	p is

	vG = 	p
ω

, (25)

which is exactly the velocity of a massive particle with mass m
and momentum 	p.

From the second of Eqs. (24) and Eq. (25) it is simple to obtain:

vG =
√

ω2 − m2

ω
. (26)

Then, wanting a constant speed of the wave-packet, it has to be
[16,17,19]

m =
√

1 − v2
G ω. (27)

Now, the analysis can remain in the Lorenz gauge with trans-
formations of the type �εν = 0; this gauge gives a condition
of transversality for the ordinary part of the field: kμ Aμν = 0,
but does not give the transversality for the total field hμν . From
Eq. (17) it is

hμν = h̄μν − h̄

2
ημν + ημνh f . (28)

At this point, if being in the massless case [16,17,19], it could
been put

�εμ = 0,

∂μεμ = − h̄ + h f , (29)

2
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which gives the total transversality of the field. But in the massive
case this is impossible. In fact, applying the Dalembertian operator
to the second of Eqs. (29) and using the field equations (20) and
(21) it results

�εμ = m2h f , (30)

which is in contrast with the first of Eqs. (29). In the same way, it
is possible to show that it does not exist any linear relation be-
tween the tensorial field h̄μν and the massive field h f . Thus a
gauge in which hμν is purely spatial cannot be chosen (i.e. it can-
not be put hμ0 = 0, see Eq. (28)). But the traceless condition to the
field h̄μν can be put:

�εμ = 0,

∂μεμ = − h̄

2
. (31)

These equations imply

∂μh̄μν = 0. (32)

To save the conditions ∂μh̄μν and h̄ = 0 transformations like

�εμ = 0,

∂μεμ = 0, (33)

can be used and, taking 	p in the z direction, a gauge in which only
A11, A22, and A12 = A21 are different to zero can be chosen. The
condition h̄ = 0 gives A11 = −A22. Now, putting these equations in
Eq. (28), it results

hμν(t, z) = A+(t − z)e(+)
μν + A×(t − z)e(×)

μν + h f (t − vG z)ημν. (34)

The term A+(t − z)e(+)
μν + A×(t − z)e(×)

μν describes the two stan-
dard polarizations of gravitational waves which arise from General
Relativity, while the term h f (t − vG z)ημν is the massive field aris-
ing from the generic high order f (R) theory. In other words, the
function f ′(R) of the Ricci scalar generates a third massive po-
larization for gravitational waves which is not present in standard
General Relativity. Note that the line element (34) has been ob-
tained in both of Refs. [16] and [19] starting by the actions (1) and
(2) respectively. Here we have shown that such a line element is
characteristic of every f (R) theory of gravity.

The analysis of the two standard polarization is well known in
the literature [2,3,21,22]. For a pure polarization arising from the
f (R) theory Eq. (34) can be rewritten as

hμν(t − vG z) = h f (t − vG z)ημν (35)

and the correspondent line element is the conformally flat one

ds2 = [
1 + h f (t − vG z)

](−dt2 + dz2 + dx2 + dy2). (36)

In [19] it has been shown that in this kind of line element
the effect of the mass is the generation of a longitudinal force (in
addition to the transverse one) while in the limit m → 0 the lon-
gitudinal force vanishes.

Now, before starting the analysis, it has to be discussed if there
are phenomenological limitations to the mass of the GW [19,24].
A strong limitation arises from the fact that the GW needs a
frequency which falls in the frequency-range for both of earth
based and space based gravitational antennas, that is the interval
10−4 Hz � f � 10 KHz [1,4–8,26,27]. For a massive GW, from [12,
14,16,19] it is:

2π f = ω =
√

m2 + p2, (37)

were p is the momentum. Thus, it needs

0 eV � m � 10−11 eV. (38)
A stronger limitation is given by requirements of cosmology and
Solar System tests on extended theories of gravity. In this case it
is [24]

0 eV � m � 10−33 eV. (39)

For these light scalars, their effect can be still discussed as a
coherent GW.

The frequency-dependent response function, for a massive
mode of gravitational radiation, has been obtained in [19] for the
particular case f (R) = R + R−1. Here the computation will be per-
formed with another treatment and the results will be applied to
LISA, following the advice in [24].

Eq. (36) can be rewritten as
(

dt

dτ

)2

−
(

dx

dτ

)2

−
(

dy

dτ

)2

−
(

dz

dτ

)2

= 1

1 + h f
, (40)

where τ is the proper time of the test masses.
From Eqs. (36) and (40) the geodesic equations of motion for

test masses (i.e. the beam-splitter and the mirrors of the interfer-
ometer), can be obtained

d2x

dτ 2
= 0,

d2 y

dτ 2
= 0,

d2t

dτ 2
= 1

2

∂t(1 + h f )

(1 + h f )
2

,

d2z

dτ 2
= −1

2

∂z(1 + h f )

(1 + h f )
2

. (41)

The first and the second of Eqs. (41) can be immediately integrated
obtaining

dx

dτ
= C1 = const, (42)

dy

dτ
= C2 = const. (43)

In this way Eq. (40) becomes
(

dt

dτ

)2

−
(

dz

dτ

)2

= 1

1 + h f
. (44)

If we assume that test masses are at rest initially we get C1 =
C2 = 0. Thus we see that, even if the GW arrives at test masses,
we do not have motion of test masses within the x–y plane in this
gauge. We could understand this directly from Eq. (36) because the
absence of the x and of the y dependences in the metric implies
that test masses momentum in these directions (i.e. C1 and C2
respectively) is conserved. This results, for example, from the fact
that in this case the x and y coordinates do not explicitly enter
in the Hamilton–Jacobi equation for a test mass in a gravitational
field [2].

Now we will see that, in presence of the GW, we have mo-
tion of test masses in the z direction which is the direction of the
propagating wave. An analysis of Eqs. (41) shows that, to simplify
equations, we can introduce the retarded and advanced time coor-
dinates (u, v):

u = t − vG z,

v = t + vG z. (45)

From the third and the fourth of Eqs. (41) we have

d

dτ

du

dτ
= ∂v [1 + h f (u)]

(1 + h (u))2
= 0. (46)
f
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This equation can be integrated obtaining

du

dτ
= α, (47)

where α is an integration constant. From Eqs. (44) and (47), we
also get

dv

dτ
= β

1 + h f
, (48)

where β ≡ 1
α , and

τ = βu + γ , (49)

where the integration constant γ corresponds simply to the re-
tarded time coordinate translation u. Thus, without loss of gen-
erality, we can put it equal to zero. Now let us see what is the
meaning of the other integration constant β . We can write the
equation for z from Eqs. (47) and (48):

dz

dτ
= 1

2β

(
β2

1 + h f
− 1

)
. (50)

When it is h f = 0 (i.e. before the GW arrives at the test masses)
Eq. (50) becomes

dz

dτ
= 1

2β

(
β2 − 1

)
. (51)

But this is exactly the initial velocity of the test mass, thus we
have to choose β = 1 because we suppose that test masses are at
rest initially. This also imply α = 1.

To find the motion of a test mass in the z direction we see
that from Eq. (49) we have dτ = du, while from Eq. (48) we have
dv = dτ

1+h f
. Because it is vG z = v−u

2 we obtain

dz = 1

2vG

(
dτ

1 + h f
− du

)
, (52)

which can be integrated as

z = z0 + 1

2vG

∫ (
du

1 + h f
− du

)

= z0 − 1

2vG

t−vG z∫
−∞

h f (u)

1 + h f (u)
du, (53)

where z0 is the initial position of the test mass. Now the displace-
ment of the test mass in the z direction can be written as

�z = z − z0

= − 1

2vG

t−vG z0−vG �z∫
−∞

h f (u)

1 + h f (u)
du

� − 1

2vG

t−vG z0∫
−∞

h f (u)

1 + h f (u)
du. (54)

We can also rewrite the results in function of the time coordi-
nate t:

x(t) = x0,

y(t) = y0,

z(t) = z0 − 1

2vG

t−vG z0∫
−∞

h f (u)

1 + h f (u)
d(u),

τ (t) = t − vG z(t). (55)
Calling l and L + l the unperturbed positions of the beam-splitter
and of the mirror and using the third of Eqs. (55) the varying po-
sition of the beam-splitter and of the mirror are given by

zBS(t) = l − 1

2vG

t−vG l∫
−∞

h f (u)

1 + h f (u)
d(u),

zM(t) = L + l − 1

2vG

t−vG (L+l)∫
−∞

h f (u)

1 + h f (u)
d(u). (56)

But we are interested in variations in the proper distance (time)
of test masses, thus, in correspondence of Eqs. (56), using the
fourth of Eqs. (55) we get

τBS(t) = t − vGl − 1

2

t−vG l∫
−∞

h f (u)

1 + h f (u)
d(u),

τM(t) = t − vG L − vGl − 1

2

t−vG (L+l)∫
−∞

h f (u)

1 + h f (u)
d(u). (57)

Then the total variation of the proper time is given by

�τ(t) = τM(t) − τBS(t) = vG L − 1

2

t−vG (L+l)∫
t−vG l

h f (u)

1 + h f (u)
d(u). (58)

In this way, recalling that in the used units the unperturbed proper
distance (time) is T = L, the difference between the total variation
of the proper time in presence and the total variation of the proper
time in absence of the GW is

δτ (t) ≡ �τ(t) − L

= −L(vG + 1) − 1

2

t−vG (L+l)∫
t−vG l

h f (u)

1 + h f (u)
d(u). (59)

This quantity can be computed in the frequency domain, defin-
ing the Fourier transform of h f as

h̃ f (ω) =
∞∫

−∞
dt h f (t)exp(iωt), (60)

and using the translation and derivation Fourier theorems, obtain-
ing

δτ̃ (ω) = L
(
1 − v2

G

)
exp

[
iωL(1 + vG)

]

+ L

2ωL(v2
G − 1)2

[
exp[2iωL](vG + 1)3(−2i + ωL(vG − 1)

)

+ 2L exp
[
iωL(1 + vG)

](
6ivG + 2iv3

G − ωL + ωLv4
G

)
+ L(vG + 1)3(−2i + ωL(vG + 1)

)]
h̃R . (61)

A “signal” can be also defined:

S̃(ω) ≡ δτ̃ (ω)

L

= (
1 − v2

G

)
exp

[
iωL(1 + vG)

]

+ 1

2ωL(v2
G − 1)2

[
exp[2iωL](vG + 1)3(−2i + ωL(vG − 1)

)

+ 2 exp
[
iωL(1 + vG)

](
6ivG + 2iv3

G − ωL + ωLv4
G

)
+ (vG + 1)3(−2i + ωL(vG + 1)

)]
h̃R . (62)
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Fig. 1. The longitudinal response function (63) of an arm of LISA for vG = 0.1 (non-
relativistic case).

Fig. 2. The longitudinal response function (63) of an arm of LISA for vG = 0.9 (rela-
tivistic case).

Then the function

Υl(ω) ≡ (
1 − v2

G

)
exp

[
iωL(1 + vG)

]
+ 1

2ωL(v2
G − 1)2

[
exp[2iωL](vG + 1)3(−2i + ωL(vG − 1)

)

+ 2 exp
[
iωL(1 + vG)

](
6ivG + 2iv3

G − ωL + ωLv4
G

)
+ (vG + 1)3(−2i + ωL(vG + 1)

)]
, (63)

is the response function of an arm of the interferometer located
in the z-axis, due to the longitudinal component of the massive
gravitational wave arising from the high order gravity theory and
propagating in the same direction of the axis.

For vG → 1 it is Υl(ω) → 0. Such a response function has been
obtained in [19] too, but with a different kind of analysis.

In Figs. 1 and 2 are shown the response functions (63) for an
arm of LISA (L = 5 × 106 km) [26,27] for vG = 0.1 (non-relativistic
case) and vG = 0.9 (relativistic case). We see that in the non-
relativistic case the signal is stronger as it could be expected (for
m → 0 we expect Υl(ω) → 0).

It is very important to emphasize that, differently from the
response functions of massless gravitational waves, this longitu-
dinal response function increases with frequency, i.e., the presence
of the mass prevents signal to drop off the regime in the high-
frequency portion of the sensitivity band. Thus, considering such a
high-frequency portion of the sensitivity band becomes fundamen-
tal if LISA would detect massive GWs arising from f (R) theories of
gravity which are not banned by requirements of Cosmology and
Solar System tests [24,25], like, for example, the two theories aris-
ing from the actions (2) and (3).

Conclusions

This Letter has been a generalization of previous results on
gravitational waves (GWs) from f (R) theories of gravity. In some
previous papers, particular f (R) theories have been linearized for
the first time in the literature. Now, the process has been fur-
ther generalized, showing that every f (R) theory can be linearized
producting a third massive mode of gravitational radiation. In this
framework, previous results are particular cases of the more gen-
eral problem that has been discussed in this Letter. The potential
detectability of such massive GWs with LISA has been also dis-
cussed with the auxilium of longitudinal response functions.
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