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Abstract

The relationship between two important problems in tree pattern matching, the largest common subtree and the smallest common
supertree problems, is established by means of simple constructions, which allow one to obtain a largest common subtree of two
trees from a smallest common supertree of them, and vice versa. These constructions are the same for isomorphic, homeomorphic,
topological, and minor embeddings, they take only time linear in the size of the trees, and they turn out to have a clear algebraic
meaning.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Subtree isomorphism and the related largest common subtree and smallest common supertree problems have practical
applications in combinatorial pattern matching [14,19,28], pattern recognition [7,10,25], computational molecular
biology [2,20,30], chemical structure search [3,4,11], and other areas of engineering and life sciences. In these areas,
they are some of the most widely used techniques for comparing tree-structured data.

Largest common subtree is the problem of finding a largest tree that can be embedded in two given trees, while
smallest common supertree is the dual problem of finding a smallest tree into which two given trees can be embedded.
A tree S can be embedded in another tree T when there exists an injective mapping f from the nodes of S to the
nodes of T that transforms arcs into paths in some specific way. The type of embedding depends on the properties

∗ Corresponding author. Tel.: +34 971 173202; fax: +34 971 173003.
E-mail addresses: cesc.rossello@uib.es (F. Rosselló), valiente@lsi.upc.edu (G. Valiente).

1 Partially supported by the Spanish DGES and the EU program FEDER, project ALBIOM (BFM2003-00771).
2 Partially supported by Spanish CICYT projects MAVERISH (TIC2001-2476-C03-01) and GRAMMARS (TIN2004-07925-C03-01), and by

the Ministry of Education, Science, Sports and Culture of Japan through Grant-in-Aid for Scientific Research B-15300003 for visiting JAIST
(Japan Advanced Institute of Science and Technology).

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.05.031

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82618445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:cesc.rossello@uib.es
mailto:valiente@lsi.upc.edu


34 F. Rosselló, G. Valiente / Theoretical Computer Science 362 (2006) 33 –53

of the mapping f. In this paper we consider the following four types of tree embeddings, defined by suitable extra
conditions on f:

Isomorphic embedding: if there is an arc from a to b in S, then there is an arc from f (a) to f (b) in T.
Homeomorphic embedding: if there is an arc from a to b in S, then there is a path from f (a) to f (b) in T with all

intermediate nodes of total degree 2 and no intermediate node belonging to the image of f.
Topological embedding: if there is an arc from a to b in S, then there is a path from f (a) to f (b) in T with no

intermediate node belonging to the image of f; and if there are arcs from a to two distinct nodes b and c in S, then the
paths from f (a) to f (b) and to f (c) in T have no common node other than f (a).

Minor embedding: if there is an arc from a to b in S, then there is a path from f (a) to f (b) in T with no intermediate
node belonging to the image of f.

The different subtree embedding problems of deciding whether a given tree can be embedded into another given tree,
for the different types of embedding defined above, have been thoroughly studied in the literature. Their complexity is
already settled: they are polynomial-time solvable for isomorphic, homeomorphic, and topological embeddings, and
NP-complete for minor embeddings [8,16–18]. Efficient algorithms are known for subtree isomorphism [21,26], for
subtree homeomorphism [5,27,28], for largest common subtree under isomorphic embeddings [26] and homeomorphic
embeddings [19], and for both largest common subtree and smallest common supertree under isomorphic and topological
embeddings [12]. The only (exponential) algorithm known for largest common subtree under minor embeddings is
given in [22].

Particular cases of these embedding problems for trees have also been thoroughly studied in the literature. On ordered
trees, they become polynomial-time solvable for isomorphic, homeomorphic, topological, and also minor embeddings.
In this particular case, the largest common subtree problem under homeomorphic embeddings is known as the maximum
agreement subtree problem [1,6,24], the largest common subtree problem under minor embeddings is known as the
tree edit problem [9,23,31], and the smallest common supertree problem under minor embeddings is known as the tree
alignment problem [13,15,29]. The smallest common supertree problem under minor embeddings was also studied
in [18] for trees of bounded degree.

In this paper, we establish in a unified way the relationship between the largest common subtree and the smallest
common supertree problems for isomorphic, homeomorphic, topological, and minor embeddings. A similar corre-
spondence between largest common subgraphs and smallest common supergraphs under isomorphic embeddings was
studied in [10]. More specifically, we give a simple and unique construction that allows one to obtain in all four cases
a largest common subtree of two trees from any smallest common supertree of them, and vice versa, another simple
and unique construction that allows one to obtain in all four cases a smallest common supertree of two trees from
any largest common subtree of them. These constructions take only time linear in the size of the trees, and, moreover,
they have a clear algebraic meaning: in all four types of embeddings, a largest common subtree of two trees is ob-
tained as the pullback of their embeddings into a smallest common supertree, and a smallest common supertree of two
trees is obtained as the pushout of the embeddings of a largest common subtree into them. This is, to the best of our
knowledge, the first unified construction showing the relation between largest common subtrees and smallest common
supertrees for isomorphic, homeomorphic, topological, and minor embeddings. These results answer the open problem
of establishing the relationship between the largest common subtree and the smallest common supertree under any
embedding relation, posed by the last author in his talk “Subgraph Isomorphism and Related Problems for Restricted
Graph Classes’’ at Dagstuhl Seminar 04221, “Robust and Approximative Algorithms on Particular Graph Classes,’’
May 23–28, 2004.

Roughly speaking, our constructions work as follows. Given two trees T1 and T2 and a largest common subtree
T� explicitly embedded into them, a smallest common supertree of T1 and T2 is obtained by first making the disjoint
sum of T1 and T2, then merging in this sum each two nodes of T1 and T2 that are related to the same node of T�, and
finally removing all parallel arcs and all arcs subsumed by paths. Conversely, given two trees T1 and T2 embedded
into a smallest common supertree T of them, a largest common subtree of T1 and T2 is obtained by removing all nodes
in T not coming from both T1 and T2, and then replacing by arcs all paths between pairs of remaining nodes that do
not contain other remaining nodes. Unfortunately, the justification for these simple constructions, as well as the proof
of their algebraic meaning, is rather intricate, and at some points it differs substantially for the different notions of
embedding.

Beyond their theoretical interest, these constructions provide an efficient solution of the smallest common supertree
problem under homeomorphic embeddings, for which no algorithm was known until now. The solution extends the
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largest common homeomorphic subtree algorithm of [19], which in turn extended the subtree homeomorphism algorithm
of [27,28]. Likewise, these constructions also provide a solution to the smallest common supertree problem under
minor embeddings, for which no algorithm was known previously, either. The solution extends the unordered tree edit
algorithm of [22].

2. Preliminaries

In this section we recall the categorical notions of pushouts and pullbacks, as they are needed in the following
sections, and the notions of isomorphic, homeomorphic, topological, and minor embeddings of trees, together with
some results about them that will be used in the rest of the paper.

2.1. Pushouts and pullbacks

A category is a structure consisting of: a class of objects; for every pair of objects A, B, a class Mor(A, B) of
morphisms; and, for every objects A, B, C, a binary operation

◦ : Mor(A, B) × Mor(B, C) → Mor(A, C)

(f, g) �→ g ◦ f

called composition, which satisfies the following two properties:
Associativity: for every f ∈ Mor(A, B), g ∈ Mor(B, C), and h ∈ Mor(C, D), h◦(g◦f ) = (h◦g)◦f ∈ Mor(A, D).
Existence of identities: for every object A, there exists an identity morphism IdA ∈ Mor(A, A) such that IdA ◦f = f ,

for every f ∈ Mor(B, A), and g ◦ IdA = g, for every g ∈ Mor(A, B).
It is usual to indicate that f ∈ Mor(A, B) by writing f : A → B.
All categories considered in this paper have all trees as objects and different types of embeddings of trees as

morphisms: see the next subsection.
A pushout in a category C of two morphisms f1 : A → B1 and f2 : A → B2 is an object P together with two

morphisms g1 : B1 → P and g2 : B2 → P satisfying the following two conditions:
(i) g1 ◦ f1 = g2 ◦ f2.

(ii) (Universal property) If X is any object together with a pair of morphisms g′
1 : B1 → X and g′

2 : B2 → X such
that g′

1 ◦ f1 = g′
2 ◦ f2, then there exists a unique morphism h : P → X such that h ◦ g1 = g′

1 and h ◦ g2 = g′
2.

A pullback in a category C of two morphisms f1 : A1 → B and f2 : A2 → B is an object Q together with two
morphisms g1 : Q → A1 and g2 : Q → A2 satisfying the following two conditions:
(i) f1 ◦ g1 = f2 ◦ g2.

(ii) (Universal property) If X is any object together with a pair of morphisms g′
1 : X → A1 and g′

2 : X → A2 such
that f1 ◦ g′

1 = f2 ◦ g′
2, then there exists a unique morphism h : X → Q such that g′

1 = g1 ◦ h and g′
2 = g2 ◦ h.

Two pushouts in C of the same pair of morphisms, as well as two pullbacks in C of the same pair of morphisms, are
always isomorphic in C.

2.2. Embeddings of trees

A directed graph is a structure G = (V , E) consisting of a set V, whose elements are called nodes, and a set E
of ordered pairs (a, b) ∈ V × V with a �= b; the elements of E are called arcs. For every arc (v, w) ∈ E, v is
its source node and w its target node. A graph is finite if its set of nodes is finite. The in-degree of a node v in a
finite graph is the number of arcs that have v as target node and its out-degree is the number of arcs that have v as
source node.

An isomorphism f : G → G′ between graphs G = (V , E) and G′ = (V ′, E′) is a bijective mapping f : V → V ′
such that, for every a, b ∈ V , (a, b) ∈ E if and only if (f (a), f (b)) ∈ E′.

Apath in a directed graphG = (V , E) is a sequence of nodes (v0, v1, . . . , vk) such that (v0, v1), (v1, v2), (v2, v3), . . . ,

(vk−1, vk) ∈ E; its origin is v0, its end is vk , and its intermediate nodes are v1, . . . , vk−1. Such a path is non-trivial if
k�1. We shall represent a path from a to b, that is, a path with origin a and end b, by a � b.

A (rooted ) tree is a directed finite graph T = (V , E) with V either empty or containing a distinguished node r ∈ V ,
called the root, such that for every other node v ∈ V there exists one, and only one, path r� v. Note that every node
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in a tree has in-degree 1, except the root that has in-degree 0. Henceforth, and unless otherwise stated, given a tree
T we shall denote its set of nodes by V (T ) and its set of arcs by E(T ). The size of a tree T is its number |E(T )|
of arcs.

The children of a node v in a tree T are those nodes w such that (v, w) ∈ E(T ): in this case we also say that v

is the parent of its children. The only node without parent is the root, and the nodes without children are the leaves
of the tree.

A path (v0, v1, . . . , vk) in a tree T is elementary if, for every i = 1, . . . , k − 1, vi+1 is the only child of vi ; in other
words, if all its intermediate nodes have out-degree 1. In particular, an arc forms an elementary path.

Two non-trivial paths (a, v1, . . . , vk) and (a, w1, . . . , w�) in a tree T are said to diverge if their origin a is their only
common node. Note that, by the uniqueness of paths in trees, this condition is equivalent to v1 �= w1. The definition
of trees also implies that, for every two nodes b, c of a tree that are not connected by a path, there exists one, and only
one, node a such that there exist divergent paths a� b and a� c: we shall call this node the least common ancestor of
b and c. The adjective “least’’ refers to the obvious fact that if there exist paths from a node x to b and to c, then these
paths consist of a path from x to the least common ancestor of b and c followed by the divergent paths from this node
to b and c.

Definition 1. Let S and T be trees.
(i) S is a minor of T if there exists an injective mapping f : V (S) → V (T ) satisfying the following condition: for

every a, b ∈ V (S), if (a, b) ∈ E(S), then there exists a path f (a)� f (b) in T with no intermediate node in
f (V (S)). In this case, the mapping f is said to be a minor embedding f : S → T .

(ii) S is a topological subtree of T if there exists a minor embedding f : S → T such that, for every (a, b), (a, c) ∈
E(S) with b �= c, the paths f (a)� f (b) and f (a)� f (c) in T diverge. In this case, f is called a topological
embedding f : S → T .

(iii) S is a homeomorphic subtree of T if there exists a minor embedding f : S → T satisfying the following extra
condition: for every (a, b) ∈ E(S), the path f (a)� f (b) in T is elementary. In this case, f is said to be a
homeomorphic embedding f : S → T .

(iv) S is an isomorphic subtree of T if there exists an injective mapping f : V (S) → V (T ) satisfying the fol-
lowing condition: if (a, b) ∈ E(S), then (f (a), f (b)) ∈ E(T ). Such a mapping f is called an isomorphic
embedding f : S → T .

Lemma 2. Every isomorphic embedding is a homeomorphic embedding, every homeomorphic embedding is a topo-
logical embedding, and every topological embedding is a minor embedding.

Proof. It is obvious from the definitions that every isomorphic embedding is a homeomorphic embedding and
that every topological embedding is a minor embedding. Now, let f : S → T be a homeomorphic embedding
and let (a, b), (a, c) ∈ E(S) be such that b �= c. Then, the paths f (a)� f (b) and f (a)� f (c) are elemen-
tary and they do not contain any intermediate node in f (V (S)). This implies that neither f (b) is intermediate in
the path f (a)� f (c), nor f (c) is intermediate in the path f (a)� f (b). Therefore, f (b) and f (c) are not con-
nected by a path. But then the least common ancestor x of f (b) and f (c) must have out-degree at least 2, and
thus it cannot be intermediate in the paths from f (a) to these nodes. Since there exists a path f (a)� x, we con-
clude that f (a) = x, that is, the paths f (a)� f (b) and f (a)� f (c) diverge. This shows that f is a topological
embedding. �

The implications in the last lemma are strict, as the following example shows.

Example 3. Let S and T be the trees described in Fig. 1, with roots r and 1, respectively.
(a) The mapping f0 : V (S) → V (T ) defined by f0(r) = 1, f0(x) = 3 and f0(y) = 4 is not a minor embedding,

because, although it transforms arcs in S into paths in T, the path f0(r)� f0(y) contains the node 3 = f0(x),
which belongs to f0(V (S)).

(b) The mapping f1 : V (S) → V (T ) defined by f1(r) = 1, f1(x) = 5 and f1(y) = 6 is a minor embedding, because
the arcs (r, x), (r, y) ∈ E(S) become paths f1(r)� f1(x) and f1(r)� f1(y) in T with no intermediate node in
f1(V (S)). But it is not a topological embedding, because these paths do not diverge.
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Fig. 1. The trees S and T in Example 3.

(c) The mapping f2 : V (S) → V (T ) defined by f2(r) = 1, f2(x) = 2 and f2(y) = 6 is a topological embedding,
because the arcs (r, x), (r, y) ∈ E(S) become divergent paths f2(r)� f2(x) and f2(r)� f2(y) in T without
intermediate nodes in f2(V (S)). But it is not a homeomorphic embedding, because the path f2(r)� f2(y) contains
an intermediate node with more than one child.

(d) The mapping f3 : V (S) → V (T ) defined by f3(r) = 1, f3(x) = 2 and f3(y) = 4 is a homeomorphic embedding,
because the arcs (r, x), (r, y) ∈ E(S) become elementary paths f3(r)� f3(x) and f3(r)� f3(y) in T with
no intermediate node in f3(V (S)). But it is not an isomorphic embedding, because the path f3(r)� f3(y) is
not an arc.

(e) The mappings f4 : V (S) → V (T ) defined by f4(r) = 1, f4(x) = 2 and f4(y) = 3, and f5 : V (S) → V (T )

defined by f5(r) = 4, f5(x) = 5 and f5(y) = 6 are isomorphic embeddings, because they transform every arc in
S into an arc in T.

The following lemmas will be used several times in the next sections.

Lemma 4. Let f : S → T be a minor embedding. For every a, b ∈ V (S), there exists a path a� b in S if and only
if there exists a path f (a)� f (b) in T. Moreover, if the path f (a)� f (b) is elementary, then the path a� b is also
elementary, and if there is an arc from f (a) to f (b) in T, then there is an arc from a to b in S.

Proof. Since the arcs in S become paths in T without intermediate nodes in f (V (S)), it is obvious that a path a� b in
S becomes, under f, a path f (a)� f (b) in T whose intermediate nodes belonging to f (V (S)) are exactly the images
under f of the intermediate nodes of the path a� b.

Assume now that there exists a path f (a)� f (b) in T, and let r be the root of S. If a = r or a = b, it is clear
that there exists a path a� b in S. If a �= r and a �= b, then the images of the paths r� a and r� b in S are paths
f (r)� f (a) and f (r)� f (b) in T. Now, the uniqueness of paths in T implies that the path f (r)� f (b) splits into
the path f (r)� f (a) and the path f (a)� f (b). Therefore, f (a) is an intermediate node of the path f (r)� f (b).
As a consequence, since f is injective and any intermediate node of this path belonging to f (V (S)) must be the image
under f of an intermediate node of the path r� b, the node a must be intermediate in the path r� b, which yields a
path a� b in S.

Moreover, if a node in S has more than one child, then its image under f has also more than one child. This implies
that if the path f (a)� f (b) is elementary, then the path a� b is elementary, too. Finally, if there is an arc from f (a)

to f (b), then the path a� b cannot have any intermediate node: it must be an arc. �

By Lemma 2, the last lemma applies also to isomorphic, homeomorphic, and topological embeddings.

Lemma 5. Let f : S → T be a topological embedding. For every a, b ∈ V (S) not connected by a path, if x is their
least common ancestor in S, then f (x) is the least common ancestor of f (a) and f (b) in T.

Proof. Since a and b are not connected by a path in S, by the last lemma we know that f (a) and f (b) are not connected
by a path in T, either. Let now x be the least common ancestor of a and b in S, and let v and w be the children of x
contained in the divergent paths x� a and x� b, respectively. Then, since f is a topological embedding, there exist
in T divergent paths f (x)� f (v) and f (x)� f (w), which are followed by paths f (v)� f (a) and f (w)� f (b),
respectively. This means that f (x) is the node in T from which there exist divergent paths to f (a) and to f (b), that is,
the least common ancestor of these two nodes. �
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By Lemma 2, the last lemma applies also to isomorphic and homeomorphic embeddings. But the thesis of this lemma
need not hold if f is only a minor embedding: see, for instance Example 3(b), where r is the least common ancestor of
x and y, but the least common ancestor of f1(x) = 5 and f1(y) = 6 is 4, and not f1(r) = 1.

Lemma 6. Every bijective minor embedding is an isomorphism of graphs.

Proof. Let f : S → T be a minor embedding such that f : V (S) → V (T ) is bijective, and let a, b ∈ V (S).
If (a, b) ∈ E(S), then there exists a path f (a)� f (b) in T without any intermediate node in f (V (S)). Since f is
bijective, this means that this path has no intermediate node, and thus it is an arc. This proves that if (a, b) ∈ E(S),
then (f (a), f (b)) ∈ E(T ). The converse implication is given by Lemma 4. �

By Lemma 2, the last lemma implies that every bijective isomorphic, homeomorphic, or topological embedding is
an isomorphism of graphs.

Definition 7. Let S and T be trees.
(i) A largest common isomorphic subtree (homeomorphic subtree, topological subtree, minor) of S and T is a tree that

is an isomorphic subtree (respectively, homeomorphic subtree, topological subtree, minor) of both of them and
has the largest size among all trees with this property.

(ii) A smallest common isomorphic supertree (homeomorphic supertree, topological supertree, supertree under minor
embeddings) of S and T is a tree such that both S and T are isomorphic subtrees (respectively, homeomorphic
subtrees, topological subtrees, minors) of it and has the least size among all trees with this property.

We shall denote by Treeiso, Treehom, Treetop, and Treemin the categories with objects all trees and with morphisms
the isomorphic, homeomorphic, topological, and minor embeddings, respectively. Whenever we denote generically
any one of these categories by Tree∗, we shall use the following notations. By a Tree∗-embedding we shall mean a
morphism in the corresponding category. By a common Tree∗-subtree of two trees we shall mean a tree together with
Tree∗-embeddings into these two trees. By a largest common Tree∗-subtree of two trees we shall mean a largest size
common Tree∗-tree. By a common Tree∗-supertree of two trees we shall mean a tree together with Tree∗-embeddings
of these two trees into it. By a smallest common Tree∗-supertree of two trees we shall mean a least size common
Tree∗-supertree. And by a Tree∗-path we shall understand an arc if Tree∗ stands for Treeiso, an elementary path if Tree∗
denotes Treehom, and an arbitrary path if Tree∗ means Treetop or Treemin. Note in particular that all trivial paths and
all arcs are Tree∗-paths, for every category Tree∗.

The following corollary is a simple rewriting of the definitions.

Corollary 8. Let Tree∗ denote any category Treeiso, Treehom, or Treemin. For every trees S, T , a mapping f : V (S) →
V (T ) is a Tree∗-embedding if and only if, for every (a, b) ∈ E(S), there is a Tree∗-path f (a)� f (b) in T with no
intermediate node belonging to f (V (S)).

And the following corollary is a direct consequence of Lemma 4.

Corollary 9. Let Tree∗ be any category Treeiso, Treehom, Treetop, or Treemin, and let f : S → T be a Tree∗-
embedding. For every a, b ∈ V (S), if there exists a Tree∗-path f (a)� f (b) in T, then there exists a Tree∗-path a� b

in S.

Finally, we have the following result, which will be used later.

Lemma 10. Let Tree∗ be any category Treeiso, Treehom, Treetop, or Treemin, let S, T , U be trees and f : V (S) →
V (T ) and g : V (T ) → V (U) mappings between their sets of nodes. If g ◦ f : S → U and g : T → U are
Tree∗-embeddings, then f : S → T is also a Tree∗-embedding.

Proof. Since g ◦ f is injective, it is clear that f is injective. Let now a, b ∈ S be such that (a, b) ∈ E(S). Since
g ◦ f : S → U is a Tree∗-embedding, there exists a Tree∗-path g(f (a))� g(f (b)) in U without any intermediate
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node in g(f (V (S))). Since g : T → U is a Tree∗-embedding, the existence of this path g(f (a))� g(f (b)) in U
implies, by Corollary 9, the existence of a Tree∗-path f (a)� f (b) in T. This path cannot have any intermediate node in
f (V (S)), because any such intermediate node would become, under g, an intermediate node belonging to g(f (V (S)))

in the path g(f (a))� g(f (b)).
So, f is injective and if (a, b) ∈ E(S), then there exists a Tree∗-path f (a)� f (b) in T without intermediate

nodes in f (V (S)). This already shows, by Corollary 8, that f is a Tree∗-embedding when Tree∗ stands for Treeiso,
Treehom, or Treemin.

As far as Treetop goes, we have already proved that f transforms arcs into paths without intermediate nodes in
f (V (S)), and thus it remains to prove that if a, b, c ∈ V (S) are such that (a, b), (a, c) ∈ E(S) and b �= c, then the paths
f (a)� f (b) and f (a)� f (c) in T diverge. But since g ◦f is a topological embedding, the paths g(f (a))� g(f (b))

and g(f (a))� g(f (c)) in U are divergent, and this clearly implies that the paths f (a)� f (b) and f (a)� f (c) in
T are divergent, too: any common intermediate node in these paths would become, under g, a common intermediate
node in the paths g(f (a))� g(f (b)) and g(f (a))� g(f (c)). �

3. Common subtrees as pullbacks

In this section we study the construction of common subtrees as pullbacks of embeddings into common supertrees,
for each one of the types of tree embeddings considered in this paper. We start with the most general type, minor
embeddings.

Let f1 : T1 → T and f2 : T2 → T be henceforth two minor embeddings. Without any loss of generality, and unless
otherwise stated, we shall assume that V (T1), V (T2) ⊆ V (T ) and that the minor embeddings f1 and f2 are given
by these inclusions. For simplicity, we shall denote thus the image of a node a ∈ V (Ti) under the corresponding fi

again by a.
Let Tp be the graph with set of nodes V (Tp) = V (T1) ∩ V (T2) and set of arcs defined in the following way:

for every a, b ∈ V (T1) ∩ V (T2), (a, b) ∈ E(Tp) if and only if there are paths a� b in T1 and in T2 without
intermediate nodes in V (T1) ∩ V (T2). We shall call this graph Tp the intersection of T1 and T2 obtained through f1
and f2.

This graph satisfies the following useful lemma.

Lemma 11. For every a, b ∈ V (T1) ∩ V (T2):
(i) If there exists a path a� b in Tp, then there exist paths a� b in T1 and in T2.

(ii) If there exists a path a� b in some Ti , i = 1, 2, then there exists also a path a� b in Tp, and its intermediate
nodes are exactly the intermediate nodes of the path a� b in Ti that belong to V (T1) ∩ V (T2).

Proof. Point (i) is a direct consequence of the fact that every arc in Tp corresponds to paths in T1 and T2.
As far as point (ii) goes, we shall prove that if there exists a path a� b in T1, then there exists also a path a� b in

Tp with intermediate nodes the intermediate nodes of the path in T1 that belong to V (T1) ∩ V (T2), by induction on the
number n of such intermediate nodes belonging to V (T1) ∩ V (T2).

If n = 0, then there exists a path a� b in T1 that does not contain any intermediate node in V (T1) ∩ V (T2). Since
f1 transforms arcs into paths with no intermediate node belonging to T1, this implies that there exists a path a� b

in T that does not contain any node in V (T1) ∩ V (T2), either. Then, by Lemma 4, this path is induced by a path
a� b in T2, and by the same reason this path does not contain any intermediate node in V (T1) ∩ V (T2). So, there are
paths a� b in T1 and T2 without intermediate nodes in V (T1) ∩ V (T2), and therefore, by definition, there exists an
arc from a to b in Tp.

As the induction hypothesis, assume that the claim is true for paths in T1 with n intermediate nodes in V (T1)∩V (T2),
and assume now that the path a� b has n + 1 such nodes. Let a0 be the first intermediate node of this path
belonging to V (T1) ∩ V (T2). Then, by the case n = 0, there is an arc in Tp from a to a0, and by the induc-
tion hypothesis there is a path a0� b in Tp whose only intermediate nodes are the intermediate nodes of the path
a0� b in T1 that belong to V (T1) ∩ V (T2); by concatenating these paths in Tp we obtain the path a� b we were
looking for. �

The intersection of two minors need not be a tree, as the following simple example shows.
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Example 12. Let T be a tree with nodes a1, a2, b, c and arcs (a1, a2), (a2, b), (a2, c), let T1 be its minor with nodes
a1, b, c and arcs (a1, b), (a1, c), and let T2 be its minor with nodes a2, b, c and arcs (a2, b), (a2, c). In this case Tp is
the graph with nodes b, c and no arc, and in particular it is not a tree.

Now we have the following result.

Proposition 13. T1 and T2 have always a common minor, which is either Tp together with its inclusions in T1 and T2,
or obtained by adding a root to Tp.

Proof. If Tp is empty, then it is a tree and its inclusions into T1 and T2 are clearly minor embeddings. In this case, Tp

is a common minor of T1 and T2.
So, assume in the sequel that Tp is non-empty. If it had no node without parents, then it would contain a circuit and

this would imply, by Lemma 11(i), the existence of circuits in the trees T1 and T2, which is impossible. Therefore, Tp

contains nodes without parent. Now we must consider two cases:
(1) Tp has only one node rp without a parent. Then every other node a in Tp can be reached from rp through a path,

because this graph does not contain any circuit (as we have seen) and hence it must contain a path from a node of
in-degree 0 to a. To check that this path is unique, we shall prove that no node in Tp has in-degree greater than 1.

Indeed, assume that there are nodes a, b, c ∈ V (Tp), with b �= c, and arcs from b and c to a. This means that there
are paths in T1 and in T2 from b and c to a that do not contain any intermediate node in V (T1) ∩ V (T2). But since, say,
T1 is a tree, if there exist paths b� a and c� a in T1, one of the nodes b or c must be intermediate in the path from
the other one to a, which yields a contradiction.

This proves that, in this case, Tp is a tree. And by definition, for every a, b ∈ V (Tp), if (a, b) ∈ Tp, then there are
paths a� b in T1 and in T2 without any intermediate node in V (Tp). Therefore, the inclusions �i : V (Tp) ↪→ V (Ti)

induce minor embeddings �i : Tp → Ti , for i = 1, 2, and hence Tp is a common minor of T1 and T2.
(2) Tp contains more than one node without a parent, say x1, . . . , xk . The same argument used in (1) shows in this

case that every other node a ∈ V (Tp) can be reached from one of these nodes xi through a path in Tp, and that no node
in Tp has in-degree greater than 1.

Let now ˜Tp be the graph obtained by adding to Tp one node r and arcs (r, xi), for i = 1, . . . , k. Then, r is the only

node without a parent in ˜Tp and every node in it is reached from r through a unique path. Indeed, each xi is reached
from r through the new arc (r, xi), and then every other node in ˜Tp is reached from r by the path going from some xi to
it in Tp preceded by the arc from r to this xi . And these paths are unique, because no node in ˜Tp has in-degree greater

than 1. Therefore, ˜Tp is a tree with root r.
Now, note that there is no non-trivial path in either T1 or T2 from any node belonging to V (T1) ∩ V (T2) to any xi :

such a path, by Lemma 11, would induce a non-trivial path in Tp and therefore the node xi would have a parent in Tp.
This implies in particular that neither the root of T1 nor the root of T2 belong to V (T1) ∩ V (T2): since k�2, there are
non-trivial paths from each one of these roots to some xi .

Consider then the injective mappings �̃i : ˜Tp → Ti , i = 1, 2, defined by the inclusions on V (Tp) and sending r to
the root of the corresponding Ti . It is clear that they are minor embeddings: on the one hand, arguing as in (1) above,
we obtain that the restriction of each �̃i to Tp sends every arc to a path in Ti without any intermediate node coming
from ˜Tp; on the other hand, �̃i sends every arc (r, x�) to the path in Ti going from its root to x�, which, as we saw above,

does not contain any intermediate node in V (T1) ∩ V (T2). Thus, ˜Tp is a common minor of T1 and T2. �

If we restrict ourselves from minor embeddings to topological embeddings, then only the first case in the last
proposition can happen.

Proposition 14. If f1 : T1 → T and f2 : T2 → T are topological embeddings, then Tp is a tree and the inclusions
V (Tp) ↪→ V (Ti) are topological embeddings �i : Tp → Ti , for i = 1, 2, and therefore Tp is a common topological
subtree of T1 and T2.

Proof. Let us prove first of all that if f1 and f2 are not only minor but topological embeddings, then Tp does not have
more than one node without a parent. Indeed, assume that a, b ∈ V (T1) ∩ V (T2) have no parent in Tp. Then, neither



F. Rosselló, G. Valiente / Theoretical Computer Science 362 (2006) 33 –53 41

T1 nor T2 contains any non-trivial path from some node in V (T1) ∩ V (T2) to a or b, because, by Lemma 11, such a
path would imply a non-trivial path in Tp finishing in a or b and then one of these nodes would have a parent in Tp.
In particular, there is no path connecting a and b in either T1 or T2. For every i = 1, 2, let xi ∈ V (Ti) be the least
common ancestor of a and b in Ti . By Lemma 5, each xi is also the least common ancestor of a and b in T. But then
x1 = x2 ∈ V (T1) ∩ V (T2) and therefore both a and b can be reached from a node in V (T1) ∩ V (T2) through paths in
T1 and in T2, which yields a contradiction.

So, since every topological embedding is a minor embedding, from the proof of Proposition 13 we know that the
fact that Tp has at most (and hence, exactly) one node without a parent implies that it is a tree. Let us prove now that �1
is a topological embedding. By point (1) in the proof of Proposition 13, we already know that it is a minor embedding.
So, it remains to prove that if there are arcs from a to b and to c in Tp, then the paths a� b and a� c in T1 diverge.

To prove it, note that, since, by the definition of Tp, the paths a� b and a� c in T1 and in T2 have no intermediate
node in V (T1) ∩ V (T2), neither b nor c appears in the path from a to the other one, and therefore there is no path
connecting b and c. Thus, if, for every i = 1, 2, xi ∈ V (Ti) denotes the least common ancestor of b and c in Ti , then,
arguing as before, we deduce that x1 = x2 and in particular that this node belongs to V (T1) ∩ V (T2).

Now, the existence of the paths a� b and a� c in T1, implies that either x1 = a or there exists a non-trivial path in
T1 from a to x1. But the paths a� b and a� c in T1 do not contain any intermediate node belonging to V (T1)∩V (T2),
and therefore it must happen that a = x1 and the paths a� b and a� c in T1 diverge, as we wanted to prove. �

We have similar results if f1 and f2 are not only topological, but homeomorphic or isomorphic embeddings.

Proposition 15. If f1 : T1 → T and f2 : T2 → T are homeomorphic embeddings, then Tp is a tree and the
inclusions V (Tp) ↪→ V (Ti) are homeomorphic embeddings �i : Tp → Ti , for i = 1, 2, and therefore Tp is a common
homeomorphic subtree of T1 and T2.

Proof. We already know from Proposition 14 that Tp is a tree and that the inclusions �1 : Tp → T1 and �2 : Tp → T2
are topological embeddings. It remains to prove that they are not only topological, but homeomorphic embeddings.
We shall do it for �1 : Tp → T1.

Let a, b ∈ V (Tp) be such that (a, b) ∈ E(Tp). Then, by definition, there exists a path a� b in T1 without any
intermediate node in V (T1) ∩ V (T2). Assume that this path has an intermediate node x with more than one child. The
path a� b induces, under the homeomorphic embedding f1 : T1 → T , a path a� b in T that contains x, and this node
has also more than one child in T. Now, by Lemma 4, there is also a path a� b in T2. Since every arc in T2 becomes,
under the homeomorphic embedding f2 : T2 → T , an elementary path in T, the nodes in the path a� b in T that do
not belong to V (T2) have only one child. Therefore, x ∈ V (T2) and hence x ∈ V (T1) ∩ V (T2), which contradicts the
fact that the path a� b in T1 does not contain any intermediate node in V (T1) ∩ V (T2). This proves that this path is
elementary, as we wanted. �

Proposition 16. If f1 : T1 → T and f2 : T2 → T are isomorphic embeddings, then Tp is a tree and the inclusions
V (Tp) ↪→ V (Ti) are isomorphic embeddings �i : Tp → Ti , for i = 1, 2, and therefore, Tp is a common isomorphic
subtree of T1 and T2.

Proof. We already know from Proposition 15 that Tp is a tree and that �1 : Tp → T1 and �2 : Tp → T2 are
homeomorphic embeddings, i.e., that if (a, b) ∈ E(Tp), then there are elementary paths a� b in T1 and in T2 without
any intermediate node in V (T1) ∩ V (T2). We want to prove that each one of these paths consists of a single arc, i.e.,
that a is the parent of b in both trees.

Let c1 be the parent of b in T1 and c2 the parent of b in T2: they exist because there is a path a� b in each tree. Then,
since T1 and T2 are isomorphic subtrees of T, both c1 and c2 are parents of b in T, and therefore c1 = c2 ∈ V (T1)∩V (T2).
So, the parents in T1 and in T2 of b are the same and they belong to V (T1) ∩ V (T2). Since the paths a� b in T1 and in
T2 do not contain any intermediate node in V (T1) ∩ V (T2) and they must contain c1 and c2, respectively, this implies
that a = c1 = c2, as we claimed. �

We have finally the following result, which gives an algebraic content to the construction of intersections in Treeiso,
Treehom, and Treetop.
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Proposition 17. Let Tree∗ denote any category Treeiso, Treehom, or Treetop. For every pair of Tree∗-embeddings
f1 : T1 → T and f2 : T2 → T ,

(Tp, �1 : Tp → T1, �2 : Tp → T2)

is a pullback of f1 and f2 in Tree∗.

Proof. We know from the previous propositions that, in each case, Tp is a tree and �1 : Tp → T1 and �2 : Tp → T2
are Tree∗-embeddings, and it is clear that f1 ◦ �1 = f2 ◦ �2. Let us check now the universal property of pullbacks
in Tree∗.

Let S be any tree and let g1 : S → T1 and g2 : S → T2 be two Tree∗-embeddings such that f1 ◦ g1 = f2 ◦ g2. Then,
at the level of nodes, there exists a unique mapping g : V (S) → V (T1) ∩ V (T2) = V (Tp) such that each gi is equal to
g followed by the corresponding inclusion �i : V (Tp) ↪→ V (Ti). And since each �i : Tp → Ti and each composition
gi = �i ◦ g : S → Ti are Tree∗-embeddings, Lemma 10 implies that g is a Tree∗-embedding from S to Tp. This is the
unique Tree∗ embedding that, when composed with �1 and �2, yields g1 and g2, respectively. �

Therefore, the categories Treeiso, Treehom, and Treetop have all binary pullbacks. It is not the case with Treemin, as
the following simple example shows.

Remark 18. The minor embeddings f1 : T1 → T and f2 : T2 → T corresponding to the minors described in
Example 12 do not have a pullback in Treemin. Indeed, let P, together with g1 : P → T1 and g2 : P → T2, be a
pullback of them in Treemin. Then, since f1 ◦ g1 = f2 ◦ g2 : V (P ) → V (T ), we have that g1(V (P )) ⊆ {b, c} and
g2(V (P )) ⊆ {b, c} and hence, P being a tree and g1 and g2 being minor embeddings, there are only two possibilities
for P:
• P is empty. In this case, if we consider a tree Q with one node q and no arc, and the minor embeddings h1 : Q → T1

and h2 : Q → T2 given by h1(q) = h2(q) = c, then f1 ◦h1 = f2 ◦h2 but there is no minor embedding h : Q → P

(because P is empty), which contradicts the definition of pullback.
• P consists of only one node, say {x}, and no arc, and g1 and g2 send x to the same node, b or c, in T1 and in T2. But

then if we consider the same tree Q as before and the minor embeddings h1 : Q → T1 and h2 : Q → T2 that send
q to the node different from g1(x) and g2(x), there is again no minor embedding h : Q → P such that h1 = g1 ◦ h

and h2 = g2 ◦ h, which contradicts the definition of pullback.

Nevertheless, arguing as in the proof of Proposition 17 we obtain the following result.

Proposition 19. If f1 : T1 → T and f2 : T2 → T are minor embeddings such that Tp is a tree, then (Tp, �1 : Tp →
T1, �2 : Tp → T2) is a pullback of f1 and f2 in Treemin.

Proof. We know from the proof of Proposition 13 that if Tp is a tree, then �1 : Tp → T1 and �2 : Tp → T2 are minor
embeddings, and it is clear that f1 ◦ �1 = f2 ◦ �2. Then, exactly the same argument used in Proposition 17 shows that,
in this case, (Tp, �1 : Tp → T1, �2 : Tp → T2) satisfies the universal property of pushouts in Treemin . �

4. Common supertrees as pushouts

In this section we study the construction of common supertrees as pushouts of embeddings of largest common
subtrees, for each one of the types of tree embeddings considered in this paper. Let Tree∗ be henceforth any one of the
categories of trees Treeiso, Treehom, Treetop, or Treemin.

Let T1 and T2 be two trees. Let T� be a largest common Tree∗-subtree of them, and let m1 : T� → T1 and
m2 : T� → T2 be any Tree∗-embeddings. Let T1 + T2 be the graph obtained as the disjoint sum of the trees T1 and T2:
that is,

V (T1 + T2) = V (T1) 
 V (T2), E(T1 + T2) = E(T1) 
 E(T2).

Let � be the equivalence relation on V (T1) 
 V (T2) defined, up to symmetry, by the following condition:
(a, b) ∈ � if and only if a = b or there exists some c ∈ V (T�) such that a = m1(c) and b = m2(c).
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We shall denote the equivalence class modulo � of an element x ∈ V (T1) 
 V (T2) by [x].
Let Tpo be the quotient graph of T1 + T2 by this equivalence:

• its set of nodes V (Tpo) is the quotient set (V (T1) 
 V (T2))/�, with elements the equivalence classes of the nodes of
T1 or T2;

• its arcs are those induced by the arcs in T1 or T2, in the sense that ([a], [b]) ∈ E(Tpo) if and only if there exist
a′ ∈ [a], b′ ∈ [b] and some i = 1, 2 such that (a′, b′) ∈ E(Ti).

Note that every equivalence class [a] ∈ V (Tpo) is either a 2-elements set {m1(x), m2(x)}, with x ∈ V (T�), or a
singleton {a}, with a ∈ V (Ti) − mi(V (T�)) for some i = 1, 2. Since every node in T1 and T2 has in-degree at most 1,
every [a] ∈ V (Tpo) has in-degree at most 2, and if it is 2, then [a] must be of the first kind.

Let �i : V (Ti) → V (Tpo), i = 1, 2, denote the inclusion V (Ti) ↪→ V (T1)
V (T2) followed by the quotient mapping
V (T1) 
 V (T2) → (V (T1) 
 V (T2))/�: that is, �i(x) = [x] for every x ∈ V (Ti). Note that, by construction,

V (Tpo) = �1(V (T1)) ∪ �2(V (T2))

and

�1(V (T1)) ∩ �2(V (T2)) = �1(m1(V (T�))) = �2(m2(V (T�))).

It is straightforward to check that these mappings �i are injective, satisfy that �1 ◦ m1 = �2 ◦ m2, and they define
morphisms of graphs �i : Ti → Tpo, i = 1, 2, in the sense that if (a, b) ∈ E(Ti), then (�i(a), �i(b)) ∈ E(Tpo).

We shall call this graph Tpo, together with these injective morphisms �i : Ti → Tpo, i = 1, 2, the join of T1 and T2
obtained through m1 and m2.

Lemma 20. Let T1 and T2 be trees, let T� be a largest common Tree∗-subtree of T1 and T2, let m1 : T� → T1 and
m2 : T� → T2 be any Tree∗-embeddings, and let Tpo be the join of T1 and T2 obtained through m1 and m2.

(i) If r is the root of T�, then m1(r) is the root of T1 or r2 is the root of T2.
(ii) For every x, y ∈ V (T�), if Tpo contains a path from [m1(x)] = [m2(x)] to [m1(y)] = [m2(y)], then T� contains

a path from x to y.
(iii) Tpo contains no circuit.

Proof. (i) Assume that both m1(r) and m2(r) have parents, say v1 and v2, respectively. Lemma 4 implies that vi /∈
mi(V (T�)), for each i = 1, 2: otherwise, there would be an arc in T� from the preimage of vi to r. Then, we can enlarge
T� by adding a new node r0 and an arc (r0, r) and we can extend m1 and m2 to this new tree by sending r0 to v1 and
v2, respectively. In this way we obtain a tree strictly larger than T� and Tree∗-embeddings of this new tree into T1 and
T2, against the assumption that T� is a largest Tree∗-subtree of them.

(ii) We shall prove that if Tpo contains a path [m1(x)]� [m1(y)], then T� contains a path x� y, by induction on its
number n of intermediate nodes in �1(m1(V (T�))) = �2(m2(V (T�))).

If n = 0, that is, if no intermediate node in the path [m1(x)]� [m1(y)] comes from a node of T�, then all intermediate
nodes come only from one of the trees T1 or T2: assume, to fix ideas, that they come from T1, and that this path is

([m1(x)], [v1], . . . , [vk], [m1(y)]),
with [v1], . . . , [vk] ∈ �1(V (T1))−�1(m1(V (T�))). Since the nodes of �1(V (T1))−�1(m1(V (T�))) are (as equivalence
classes) singletons, and an arc in Tpo involving one node of this set must be induced by an arc in E(T1), we conclude
that there exists a path

(m1(x), v1, . . . , vk, m1(y))

in T1. Since m1 is a Tree∗-embedding, and in particular a minor embedding, by Lemma 4 this implies that there exists
a path x� y in T�.

As the induction hypothesis, assume that the claim is true for paths in Tpo with n intermediate nodes in �1(m1(V (T�)))

= �2(m2(V (T�))), and assume now that the path [m1(x)]� [m1(y)] has n + 1 such nodes. Let [m1(a)] be the first
intermediate node of this path belonging to �1(m1(V (T�))). Then, by the case n = 0, there is a path x� a in T�, and
by the induction hypothesis there is a path a� y; by concatenating them we obtain the path x� y in T� we were
looking for.
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(iii) Assume that Tpo contains a circuit. If at most one node in this circuit belongs to �1(m1(V (T�))), then, arguing
as in the proof of (ii), we conclude that all arcs in this circuit are induced by arcs in the same tree T1 or T2, and they
would form a circuit in this tree, which is impossible. Therefore, two different nodes in this circuit must belong to
�1(m1(V (T�))). This implies that there exist x, y ∈ V (T�), x �= y, such that Tpo contains a path [m1(x)]� [m1(y)]
and a path [m1(y)]� [m1(x)]. By point (ii), this implies that T� contains a path x� y and a path y� x, and hence a
circuit, which is impossible. Therefore, Tpo cannot contain any circuit. �

Proposition 21. Let T1 and T2 be trees, let T� be a largest common Tree∗-subtree of T1 and T2, let m1 : T� → T1 and
m2 : T� → T2 be any Tree∗-embeddings, and let Tpo be the join of T1 and T2 obtained through m1 and m2.

(i) For every v, w ∈ V (Tpo), if (v, w) ∈ E(Tpo) and there is another path v�w in Tpo, then v, w ∈ �1(V (T1)) ∩
�2(V (T2)), this path is unique, it is a Tree∗-path and it has no intermediate node in �1(V (T1)) ∩ �2(V (T2)). In
particular, if Tree∗ is Treeiso, then this situation cannot happen.

(ii) For every v, w ∈ V (Tpo), if there are two different paths from v to w in Tpo without any common intermediate
node, then one of them is the arc (v, w), and then (ii) applies. In particular, again, this situation cannot happen
if Tree∗ is Treeiso.

Proof. (i) If (v, w) ∈ E(Tpo), then there exist, say, a, b ∈ V (T1) such that v = [a], w = [b], and (a, b) ∈ E(T1).
Assume now that there is another path from [a] to [b] in Tpo. Since Tpo does not contain circuits by point (iii) in the last
lemma, this path cannot contain [a] or [b] as an intermediate node, and therefore its first intermediate node is different
from [b] and its last intermediate node is different from [a]. In particular, [b] has in-degree 2 in Tpo.

This implies that there exists some y ∈ V (T�) such that b = m1(y) and there exists some c ∈ V (T2) such that
(c, m2(y)) ∈ E(T2), and that there is a non-trivial path in Tpo from [a] to [c]. Since a ∈ V (T1) and c ∈ V (T2), this path
must contain some node belonging to �1(V (T1)) ∩ �2(V (T2)). If it is not [a], then let [m1(x)] be the first intermediate
node in the path [a]� [c] coming from T�. Since, in this case, a ∈ V (T1) − m1(V (T�)), all intermediate nodes in the
path [a]� [m1(x)] come also from V (T1)−m1(V (T�)), and therefore there exists a path a�m1(x) in T1. But, on the
other hand, since there is a path [m1(x)]� [m1(y)] in Tpo (consisting of the path [m1(x)]� [c] followed by the arc
([c], [m1(y)])), from Lemma 20(ii) we deduce that there exists a path x� y in T� and hence a path m1(x)�m1(y) = b

in T1. Summarizing, if a /∈ m1(V (T�)), then T1 contains both an arc from a to m1(y) and a non-trivial path from a to
m1(y) (through m1(x)), which is impossible.

So, a = m1(x) for some x ∈ V (T�). Since (m1(x), m1(y)) ∈ E(T1), Lemma 4 implies that (x, y) ∈ E(T�),
and therefore there exists a Tree∗-path in T2 from m2(x) to m2(y) without any intermediate node in m2(V (T�)): the
uniqueness of paths in trees implies that this path contains c as its last intermediate node before m2(y). To begin with,
this already shows that the situation considered in this point cannot happen if Tree∗ is Treeiso: a Treeiso-path is an arc,
and therefore it does not contain any intermediate node.

Thus, we assume now that Tree∗ is Treemin, Treehom or Treetop. The Tree∗-path m2(x)�m2(y) in T2 without any
intermediate node in m2(V (T�)) and containing c as the last intermediate node induces a path from [m2(x)] = [a] to
[b] in Tpo containing [c] and with all its intermediate nodes in �2(V (T2)) − �2(m2(V (T�))). This path is a Tree∗-path.
If Tree∗ stands for Treemin or Treetop, it is obvious, because in these cases Tree∗-paths are simply paths. If Tree∗ is
Treehom, then all intermediate nodes in the path m2(x)�m2(y) in T2 have only one child, and since they belong to
V (T2) − m2(V (T�)) and therefore they are not identified with any node from T1, their equivalence classes in Tpo have
also out-degree 1, and hence the path [m2(x)]� [m2(y)] in Tpo it induces is also elementary.

This proves that v, w ∈ �1(V (T1)) ∩ �2(V (T2)) and that, besides the arc (v, w), there exists a Tree∗-path v�w

without any intermediate node in �1(V (T1))∩ �2(V (T2)), which contains [c]. Assume finally that there exists a “third’’
path from v to w other than the arc and this Tree∗-path. Since w has in-degree at most 2 and Tpo contains no circuit,
arguing as in the first paragraph of this proof we deduce that this path consists of a path from v to [c] followed by the
arc ([c], w). But [c] has in-degree 1 in Tpo, as well as all intermediate nodes in the path from v to [c] induced by the
path m2(x)� c in T2. Therefore, this is the only path in Tpo from v to [c]. This shows that there is only one path from v

to w in Tpo other than the arc (v, w), and it is the Tree∗-path without any intermediate node in �1(V (T1)) ∩ �2(V (T2))

obtained above.
(ii) Assume that there exist two different paths from v to w without any intermediate node in common, and let v1 and

v2 be the nodes that precede w in each one of these two paths; by assumption v1 �= v2 and (v1, w), (v2, w) ∈ E(Tpo).
Then, w has in-degree 2 in Tpo, and this implies that there exist y ∈ V (T�), b ∈ V (T1) and c ∈ V (T2) such that, say,
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v1 = [b], v2 = [c], w = [m1(y)] = [m2(y)], and (b, m1(y)) ∈ E(T1), (c, m2(y)) ∈ E(T2). By Lemma 21(i), y has
a parent x in T�, and then there are Tree∗-paths m1(x)�m1(y) in T1 and m2(x)�m2(y) in T2. This yields, up to
symmetry, three possibilities:
• If m1(x) = b and m2(x) = c, then [b] = [c], against the assumption v1 �= v2. Besides, if Tree∗ = Treeiso, then,

since Treeiso-paths are arcs, it must happen that m1(x) = b and m2(x) = c. So, if Tree∗ = Treeiso, the situation
described in the point we are proving cannot happen. In the remaining two cases we understand that Tree∗ �= Treeiso.

• If m1(x) = b and m2(x) �= c, then in Tpo we have on the one hand the arc ([b], w) and on the other hand a path
[b]�w induced by the path m2(x)�m2(y) in T2: since c is the parent of m2(y) in T2, it is the last intermediate
node in the path m2(x)�m2(y), and therefore [c] is the last intermediate node in the path [b]�w induced by
m2(x)�m2(y). By (i), these are the only two paths from [b] to w.

Let us prove now that the path v�w containing [c] also contains [b]. Assume first that this path contains some
node in �2(m2(T�)) other than w, and let [m2(z)] be the last such node before w. This means that Tpo contains a
path [m2(z)]� [m2(y)] and therefore, by Lemma 21(ii), there is a path z� y in T�. But then this path must contain
the parent x of y, which implies that the path [m2(z)]� [m2(y)], and hence the path v�w through [c], contains in
this case [b] = [m2(x)].

Assume now that the path v�w containing [c] does not contain any node in �2(m2(T�)) other than w. Since
c ∈ V (T2), this would mean that this path is completely induced by a path in T2, that is, v = [a] for some
a ∈ V (T2)−m2(V (T�)) and there exists a path (a, . . . , c, m2(y)) in T2 with no intermediate node in m2(V (T�)). In
this case, since there is a path m2(x)�m2(y) in T2 and m2(x) is not contained in the path a�m2(y), there would
exist a non-trivial path m2(x)� a, which would induce a path from [b] = [m2(x)] to v = [a] forming a circuit with
the path v� [b]. So, this case cannot happen.

So, the path v�w containing [c] also contains [b]. But, by assumption, the paths v�w containing [b] and [c]
have no common intermediate node. Therefore, it must happen that v = [b], and hence one of the paths from v to
w is an arc, as it is claimed in the statement.

• If m1(x) �= b and m2(x) �= c, then there are Tree∗-paths (m1(x), . . . , b, m1(y)) and (m2(x), . . . , c, m2(y)) in T1
and T2, respectively, without intermediate nodes coming from V (T�).

In this case, we can enlarge T� by adding a new node x0 and replacing the arc (x, y) by two arcs (x, x0) and
(x0, y), and we can extend m1 and m2 to this new node by sending it, respectively, to b and c. It is clear that this new
tree is strictly larger than T�. Moreover, the extensions of m1 and m2 are Tree∗-embeddings: the new arc (x, x0)

is transformed under them into the Tree∗-paths—without intermediate nodes coming from V (T�)—that go from
m1(x) to b and from m2(x) to c, respectively; the new arc (x0, y) is transformed under them into the arcs (b, m1(y))

and (c, m2(y)), respectively; and it is clear that if m1 and m2 were topological embeddings, then their extensions
are still so, because the new node x0 has only one child. Thus, in this way we obtain a new common Tree∗-subtree
of T1 of T2 that is strictly larger than T�, which yields a contradiction.

Summarizing, if Tree∗ is Treeiso, then there cannot exist two different paths v�w, and if Tree∗ is Treehom, Treetop,
or Treeiso, there can exist two different paths v�w without common intermediate nodes, but then the only case that
does not yield a contradiction is when one of these paths is an arc. �

Let now T� be the graph obtained from Tpo by removing every arc that is subsumed by a path: that is, we remove
from Tpo each arc (v, w) for which there is another path v�w in Tpo. Note in particular that V (T�) = V (Tpo). We
shall call this graph the Tree∗-sum of T1 and T2 obtained through m1 and m2.

As a direct consequence of Lemma 21(i), we have that if Tree∗ = Treeiso, then T� = Tpo, because if (v, w) ∈ E(Tpo),
there does not exist any other path v�w, and therefore no arc is removed from Tpo in the construction of T�. In the
other three categories, still by Lemma 21(i) and its proof, if the arc ([a], [b]) induced by an arc, say, (a, b) ∈ E(T1) is
removed because of the existence of a second path [a]� [b], then a, b ∈ m1(T�), this second path is a Tree∗-path, and
all its intermediate nodes are equivalence classes of nodes in V (T2) − m2(V (T�)). In particular, since the arcs (v, w)

removed in the construction of T� are such that v, w ∈ �1(m1(V (T�))) = �2(m2(V (T�))) and the Tree∗-paths that
make these arcs to be removed have no intermediate node in this set, these paths are not modified in the construction
of T�, and the arcs can be removed in any order.
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Proposition 22. For every two trees T1 and T2, any Tree∗-sum of T1 and T2 is a common Tree∗-supertree of them.

Proof. Let T1 and T2 be two trees, let T� be a largest common Tree∗-subtree of them and let m1 : T� → T1 and
m2 : T� → T2 be any Tree∗-embeddings. Let T� be the Tree∗-sum of T1 and T2 obtained through m1 and m2, and
let �i : V (Ti) → V (T�) = (V (T1) 
 V (T2))/�, i = 1, 2, stand for the corresponding restrictions of the quotient
mappings.

Every arc removed from the join Tpo of T1 and T2 in the construction of T� is subsumed by a path in Tpo. This implies
that, for every x, y ∈ V (Tpo), there is a path x� y in Tpo if and only if there is a path x� y in T�. In particular, since
the only nodes in Tpo than can possibly have no parent are the images of the roots of T1 and T2, the same also happens
in T�.

Now, by Lemma 20(i), if r is the root of T� then m1(r) is the root r1 of T1 or m2(r) is the root r2 of T2. If
m1(r) = r1 and m2(r) = r2, then [r1] = [r2] is the only node in T� without parent, and every node v in Tpo
(as well as in T�, as we said) can be reached from this node through a path: if v = [a1], with a1 ∈ V (T1),
through the image of the path r1� a1 in T1, and if v = [a2], with a2 ∈ V (T2), through the image of the path
r2� a2 in T2. If, on the contrary, say, m1(r) = r1 but m2(r) �= r2, then [r2] is the only node in T� with no
parent and every node in T� can be reached from this node through a path: every node of the form [a2], with
a2 ∈ V (T2), through the image of the path r2� a2 in T2, and every node of the form [a1], with a1 ∈ V (T1),
through the path obtained by concatenating the image of the path r2�m2(r) in T2 and the image of the path
r1� a1 in T1.

Thus, T� has one, and only one, node without parent, and every other node in T� can be reached from it through a path.
Moreover, every node in T� has in-degree at most 1. Indeed, if a node w has in-degree 2 in Tpo, say (v1, w), (v2, w) ∈
E(Tpo), then there will exist some node v and paths v� v1 and v� v2 with no common intermediate node. But then,
by Lemma 21(ii), v will be one of the nodes v1 or v2, say v = v1, and then the arc (v1, w) ∈ E(Tpo) is subsumed by
the path v1�w through v2, and hence it is removed in the construction of T�, leaving only the arc (v2, w). So, every
node in T� has in-degree at most 1, and it can be reached through a path from the only node without a parent. This
proves that T� is a tree.

Now we have to prove that �1 : T1 → T� and �2 : T2 → T� are Tree∗-embeddings. We shall prove that �1 is a
Tree∗-embedding. Recall that the mapping �1 : V (T1) → V (Tpo) = V (T�) is injective, and note that, by Lemma
21, if (a, b) ∈ E(T1), then there is a Tree∗-path in T� from �1(a) = [a] to �1(b) = [b] that does not contain any
intermediate node in �1(V (T1)) ∩ �2(V (T2)): either the arc ([a], [b]) induced by the arc in T1 or the Tree∗-path
[a]� [b] that made this arc to be removed. This shows that �1 is a Tree∗-embedding when Tree∗ is Treeiso, Treehom
or Treemin.

In the case of Treetop, it remains to prove that if (a, b), (a, c) ∈ E(T1), then the paths [a]� [b] and [a]� [c] are
divergent. Up to symmetry, there are three possibilities to discuss:
• If the paths [a]� [b] and [a]� [c] are both arcs, then the injectivity of �1 implies that they are different and therefore

they define divergent paths.
• If the path [a]� [b] is an arc and the path [a]� [c] has intermediate nodes, and if they did not diverge, [b] would

be the first intermediate node of the path [a]� [c]. But this is impossible, because, since the arc ([a], [c]) ∈ E(Tpo)

has been removed in the construction of T�, all intermediate nodes of the path [a]� [c] are equivalence classes of
nodes in V (T2) − m2(V (T�)).

• If both paths [a]� [b] and [a]� [c] have intermediate nodes, then both arcs ([a], [b]), ([a], [c]) ∈ E(Tpo) have
been removed in the construction of T�, and therefore there are x, y, z ∈ V (T�) such that (x, y), (x, z) ∈ E(T�),
m1(x) = a, m1(y) = b, m1(z) = c, and the intermediate nodes of the paths [a]� [b] and [a]� [c] are the
equivalence classes of the intermediate nodes of the paths m2(x)�m2(y) and m2(x)�m2(z) in T2. Now, since m2
is a topological embedding, these paths m2(x)�m2(y) and m2(x)�m2(z) have no common intermediate node.
Since �2 is injective, no image of an intermediate node of the path m2(x)�m2(y) is equal to the image of an
intermediate node of the path m2(x)�m2(z), and thus the paths [a]� [b] and [a]� [c] are divergent.

Therefore, if Tree∗ = Treetop, �1 is a topological embedding. �

Theorem 24 below extends the last proposition in the algebraic direction, by showing that Tree∗-sums are not only
common Tree∗-subtrees, but pushouts. In its proof we shall use several times the following technical fact, which we
establish first as a lemma.
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Lemma 23. Let Tree∗ be Treehom, Treetop or Treemin. Let T1 and T2 be trees, let T� be a largest common Tree∗-
subtree of T1 and T2, let m1 : T� → T1 and m2 : T� → T2 be any Tree∗-embeddings, and let f1 : T1 → T and
f2 : T2 → T be any Tree∗-embeddings such that f1 ◦ m1 = f2 ◦ m2.

There do not exist x ∈ V (T�), p ∈ V (T1)−m1(V (T�)), and q ∈ V (T2)−m2(V (T�)) such that (m1(x), p) ∈ E(T1),
(m2(x), q) ∈ E(T2), and f1(p) and f2(q) are connected by a path.

Proof. Assume that there exist x ∈ V (T�), p ∈ V (T1) − m1(V (T�)), and q ∈ V (T2) − m2(V (T�)) such that
(m1(x), p) ∈ E(T1), (m2(x), q) ∈ E(T2), and there is, say, a path f2(q)� f1(p), in such a way that f2(q) is an
intermediate node in the path f1(m1(x))� f1(p). We shall look for a contradiction.

Under these assumptions, we can enlarge T� by adding a new node y, a new arc (x, y), and replacing by a new arc
(y, z) every arc (x, z) such that the path m1(x)�m1(z) in T1 contains p. It is clear that the graph ̂T� obtained in this
way is a tree, strictly larger than T�. We can extend m1 and m2 to ̂T� by defining m1(y) = p and m2(y) = q. If we

prove that the mappings m1 : V (̂T�) → V (T1) and m2 : V (̂T�) → V (T2) defined in this way are Tree∗-embeddings
m1 : ̂T� → T1 and m2 : ̂T� → T2, this will contradict the assumption that T� is a largest common Tree∗-subtree
of T1 and T2.

Now, on the one hand, the arc (x, y) is transformed under m1 and m2 into the arcs (m1(x), p) and (m1(x), q),
respectively. Assume now that ̂T� contains a new arc (y, z). This means that T� contained (x, z) and that p is the first
intermediate node of the Tree∗-path m1(x)�m1(z), which does not have any intermediate node in m1(V (T�)). This
implies that there exists in T1 a Tree∗-path without intermediate nodes in m1(V (̂T�)) from p = m1(y) to m1(z). As
far as m2 goes, note that the arc (x, z) in T� induces under f1 ◦ m1 a Tree∗-path from f1(m1(x)) = f2(m2(x)) to
f1(m1(z)) = f2(m2(z)) that contains f1(p). This path also contains f2(q), because this node is contained in the path
from f1(m1(x)) = f2(m2(x)) to f1(p). So, there exists a Tree∗-path f2(q)� f2(m2(z)), which entails the existence of
a Tree∗-path q�m2(z) in T2. And since this path is actually a piece of the path m2(x)�m2(z), it has no intermediate
node in m2(V (T�)).

This shows that m1 : ̂T� → T1 and m2 : ̂T� → T2 transform arcs into Tree∗-paths without any intermediate node
coming from ̂T�, and hence that they are Tree∗-morphisms when Tree∗ is Treehom or Treemin. When Tree∗ = Treetop,
it remains to check that m1 and m2 transform pairs of arcs with the same source node into divergent paths. To do
it, note first that in this case x has at most one child z such that the path m1(x)�m1(z) in T1 contains p, because
the paths in T1 from m1(x) to the images under m1 of the children of x diverge. Therefore, the new node y has

out-degree at most 1 in ̂T�. So, to prove that m1 and m2 are topological embeddings, it is enough to check that if
y1 is any child of x in ̂T� other than y, the paths mi(x)�mi(y) and mi(x)�mi(y1) in each Ti diverge. For i = 1
it is obvious, because the path m1(x)�m1(y) is simply the arc (m1(x), p) and, by assumption, p is not contained
in the path m1(x)�m1(y1). As far as the case i = 2 goes, the path m2(x)�m2(y) is simply the arc (m2(x), q),
and thus it is enough to check that q is not contained in the path m2(x)�m2(y1). But the paths from f1(m1(x)) =
f2(m2(x)) to f1(p) and to f1(m1(y1)) = f2(m2(y1)) diverge because f1 is a topological embedding, and therefore,
since f2(q) is contained in the fist one, it cannot be contained in the second one, which implies that q cannot be
contained in the path m2(x)�m2(y1). This finishes the proof that, when Tree∗ = Treetop, m1 and m2 are topological
embeddings. �

Theorem 24. Let T1 and T2 be trees, let T� be a largest common Tree∗-subtree of T1 and T2, and let m1 : T� → T1
and m2 : T� → T2 be any Tree∗-embeddings.

Then, the Tree∗-sum T� of T1 and T2 obtained through m1 and m2, together with the Tree∗-embeddings �1 : T1 → T�
and �2 : T2 → T�, is a pushout in Tree∗ of m1 and m2.

Proof. It is clear that �1 ◦ m1 = �2 ◦ m2. Therefore, it remains to prove that T�, together with the Tree∗-embeddings
�1 : T1 → T� and �2 : T2 → T�, satisfies the universal property of pushouts in Tree∗.

So, letf1 : T1 → T andf2 : T2 → T be anyTree∗-embeddings such thatf1◦m1 = f2◦m2. It is well-known that there
exists one, and only one, mapping f : (V (T1)
V (T2))/� → V (T ) such that f ◦�1 = f1 and f ◦�2 = f2: namely, the
one defined by f ([a]) = f1(a) if a ∈ V (T1) and f ([a]) = f2(a) if a ∈ V (T2). We must prove that this mapping f is a
Tree∗-embedding.
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Let us prove first that it is injective. Assume that there exist v, w ∈ V (T ), v �= w, such that f (v) = f (w).
Since f1 and f2 are injective, it is clear that they cannot be classes of nodes of the same tree Ti . Thus, there exist
a ∈ V (T1) − m1(V (T�)) and b ∈ V (T2) − m2(V (T�)) such that v = [a] and w = [b] and f1(a) = f2(b).

By Lemma 20(i), the image under some mi of the root of T� is the root of the corresponding Ti . This implies that there
exists a path from the image of a node in T� to one of these nodes a or b in the corresponding tree. Moreover, if there
exists, say, some x ∈ V (T�) such that there is a path m1(x)� a in T1, then there is a path from f1(m1(x)) = f2(m2(x))

to f1(a) = f2(b) in T, and hence a path m2(x)� b in T2. By symmetry, if there exists some x ∈ V (T�) such that there
is a path m2(x)� b in T2, then there is a path m1(x)� a in T1.

This shows that there exists a node x0 ∈ V (T�) such that there exist paths m1(x0)� a in T1 and m2(x0)� b in T2
without any intermediate node in m1(V (T�)) or m2(V (T�)), respectively. These paths induce, through f1 and f2, the
same path from f1(m1(x0)) = f2(m2(x0)) to f1(a) = f2(b) in T (because of the uniqueness of paths in trees). Let now
e be the child of m1(x0) contained in the path m1(x0)� a in T1, and d the child of m2(x0) in the path m2(x0)� b in
T2. Then f1(e) and f2(d) are contained in the path from f1(m1(x0)) = f2(m2(x0)) to f1(a) = f2(b) in T, and hence,
they are connected by a path.

When Tree∗ is Treehom, Treetop or Treemin, Lemma 23 says that this situation is impossible, and therefore f must be
injective. In the case when Tree∗ = Treeiso, since f1 and f2 transform arcs into arcs, it must happen that f1(e) = f2(d).
This allows us to enlarge T�, by adding a new node y0 and a new arc (x0, y0): it is clear that the graph ̂T� obtained in this
way is a tree. We extend m1 and m2 to ̂T� by defining m1(y0) = e and m2(y0) = d. The mappings m1 : V (̂T�) → V (T1)

and m2 : V (̂T�) → V (T2) defined in this way are isomorphic embeddings m1 : ̂T� → T1 and m2 : ̂T� → T2. Indeed,
they are injective because their restrictions to T� are injective and, by assumption, e /∈ m1(V (̂T�)) and d /∈ m2(V (̂T�)),
and they transform arcs into arcs because their restrictions to T� do so and (mi(x0), mi(y0)) ∈ E(Ti) for each i = 1, 2.
In this way we obtain a common isomorphic subtree of T1 and T2 that is strictly larger than T�, which yields a
contradiction. Therefore, f is also injective in this case.

So, f : V (T�) → V (T ) is always injective. Now, assume (v, w) ∈ T�. Then, for some i = 1, 2, there exist
a, b ∈ V (Ti) such that v = [a], w = [b], and (a, b) ∈ E(Ti): to fix ideas, assume that i = 1. This implies that there is
a Tree∗-path from f (v) = f1(a) to f (w) = f1(b) in T. If Tree∗ = Treeiso, this already proves that f is an isomorphic
embedding.

Thus, henceforth, we shall assume that Tree∗ �= Treeiso. In this case, we must check that no intermediate node of
this Tree∗-path f (v)� f (w) belongs to f (V (T�)) = f1(V (T1)) ∪ f2(V (T2)). Now, f1 being a Tree∗-embedding, we
already know that no intermediate node of this path belongs to f1(V (T1)), and therefore we only have to check that
no intermediate node belongs to f2(V (T2)), either. Before proceeding, note that we have already proved that f sends
arcs to Tree∗-paths, and hence that this mapping transforms paths in T� into paths in T.

Assume that there is some c ∈ V (T2) such that f2(c) is an intermediate node of the path f1(a)� f1(b) in T. This
prevents the existence of paths [c]� [a] or [b]� [c] in T�: the image of such a path under f would be a path in
T that would build up a circuit with the path from f1(a) = f ([a]) to f2(c) = f ([c]) or from f2(c) = f ([c]) to
f1(b) = f ([b]), respectively, that we already know to exist. Moreover, c /∈ m2(V (T�)), because if c ∈ m2(V (T�)),
then f2(c) ∈ f2(m2(V (T�))) = f1(m1(V (T�))) ⊆ f1(V (T1)).

After excluding these possibilities, we still must discuss several cases:
• a = m1(x) and b = m1(y) for some x, y ∈ V (T�). In this case, by Lemma 4, the existence of an arc from

�2(m2(x)) = �1(m1(x)) = [a] to �2(m2(y)) = �1(m1(y)) = [b] implies the existence of an arc from m2(x) to
m2(y) in T2. Since f2 is a Tree∗-embedding, the path from f2(m2(x)) = f1(a) to f2(m2(y)) = f1(b) does not
contain any intermediate node in f2(V (T2)), which contradicts the existence of c.

• a = m1(x) for some x ∈ V (T�), but b /∈ m1(V (T�)). In this case, since f2 is a Tree∗-embedding, the existence of a
Tree∗-path f2(m2(x)) = f1(a)� f2(c) in T implies, by Corollary 9, the existence of a Tree∗-path m2(x)� c in T2.
And this path cannot have any intermediate node in m2(V (T�)): any intermediate node in this set would become,
under f2, an intermediate node in f2(m2(V (T�))) = f1(m1(V (T�))) ⊆ f1(V (T1)) of the path f2(m2(x))� f2(c).
Let d be the child of m2(x) contained in this path m2(x)� c. The path f2(m2(x)) = f1(a)� f2(c) contains f2(d),
and therefore f2(d) is an intermediate node of the path f1(a)� f1(b). But then this situation is impossible by
Lemma 23.

• a /∈ m1(V (T�)). Since, by Lemma 20(i), the image under m1 or m2 of the root of T� is the root of T1 or T2, respectively,
we know that there exists some x ∈ V (T�) such that there is a path m1(x)� a in T1 or a path m2(x)� c in T2. It turns
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out that the existence of such a path m1(x)� a in T1 or m2(x)� c in T2 implies the existence of paths m1(x)� a and
m2(x)� c in T1 and T2, respectively. Indeed, if there exists a path m1(x)� a, then there is a path f1(m1(x))� f1(a)

in T, which, composed with the path f1(a)� f2(c), yields a path f2(m2(x)) = f1(m1(x))� f2(c), and this path,
on its turn, implies a path m2(x)� c in T2. Conversely, if there exists a path m2(x)� c, then there is a path from
f2(m2(x)) to f2(c) in T. Since there is also a path f1(a)� f2(c) and f2(m2(x)) = f1(m1(x)) cannot be an inter-
mediate node of the path f1(a)� f2(c) (because this path does not contain any intermediate node in f1(V (T1))),
it must happen that f1(a) is intermediate in the path f2(m2(x))� f2(c), that is, that there is a path f1(m1(x)) =
f2(m2(x))� f1(a) which, finally, implies a path m1(x)� a in T1.

So, we can take x ∈ V (T�) such that, on the one hand, there exist paths m1(x)� a and m2(x)� c in T1 and
T2 and, on the other hand, there do not exist paths m1(y)� a in T1 or m2(y)� c in T2 for any child y of it. Let
then e be the child of m1(x) contained in the path m1(x)� a in T1, and d the child of m2(x) contained in the path
m2(x)� c in T2. The uniqueness of paths in T implies that the path f2(m2(x))� f2(c), which contains f2(d), is the
concatenation of the path f1(m1(x))� f1(a), which contains f1(e), and the path f1(a)� f2(c). Therefore, f1(e)

and f2(d) are connected by a path. By Lemma 23, this situation cannot happen.
Therefore, f transforms arcs into Tree∗-paths without intermediate nodes in f (V (T�)), and thus it is a Tree∗-embedding
when Tree∗ is Treehom or Treemin. This proves the universal property of pushouts, and with it the statement, for these
categories. It remains to prove it in Treetop.

So far, we know that, if we are in Treetop, then f transforms arcs into paths without intermediate nodes in f (V (T�)).
Now we must prove that it transforms arcs with the same source node into divergent paths. So, assume there are arcs
(v, w) and (v, u) in T� with w �= u.

If these arcs are induced by arcs in the same tree, i.e., if there exist (a, b), (a, c) ∈ V (Ti), for some i = 1, 2, such that
v = [a], w = [b] and u = [c], then, since fi is a topological embedding, the paths from f (v) = fi(a) to f (w) = fi(b)

and to f (u) = fi(c) are divergent. Now consider the case when each one of these arcs is induced by an arc in a different
tree. In this case, there exist x ∈ V (T�), b ∈ V (T1) and c ∈ V (T2) such that, say, v = [m1(x)] = [m2(x)], w = [b]
and u = [c], and there are arcs (m1(x), b) ∈ E(T1) and (m2(x), c) ∈ E(T2).

If there exists y ∈ V (T�) such that m1(y) = b, then, by Lemma 4, (x, y) ∈ E(T�) and hence there exists a path
m1(x)�m2(y) in T2. But since there is an arc from [m2(x)] = [m1(x)] to [m2(y)] = [b] in T�, the path m2(x)�m2(y)

in T2 must also be an arc (otherwise, it would induce a path in Tpo that would have made the arc (v, w) to be removed
in the construction of T�). Therefore, the arc (v, w) is induced by the arc (m2(x), m2(y)) in T2, and thus both arcs
(v, w) and (v, u) are induced by arcs in T2 and the paths f (v)� f (w) and f (v)� f (u) are divergent, as we have
just seen. In a similar way, if there exists y ∈ V (T�) such that m2(y) = c, then both arcs (v, w) and (v, u) are induced
by arcs in T1 and the paths f (v)� f (w) and f (v)� f (u) are divergent.

Consider finally the case when neither b nor c have a preimage in T�. There are two possibilities to discuss:
• If there exists an arc (x, z) ∈ V (T�) such that b is the first intermediate node of the path m1(x)�m1(z), then

w = [b] is the first intermediate node of the path [m1(x)]� [m1(z)]. In particular, u = [c] does not appear in this
last path, which implies that the arc (m2(x), c) and the path m2(x)�m2(z) are divergent. Since f2 is a topological
embedding, the paths in T from f2(m2(x)) to f2(c) and from f2(m2(x)) = f1(m1(x)) to f2(m2(z)) = f1(m1(z)) are
also divergent. Since f1(b) is contained in this last path, we finally deduce that the paths from f (v) = f2(m2(x)) =
f1(m1(x)) to f (u) = f1(b) and to f (w) = f2(c) are divergent.

The case when there exists an arc (x, z) ∈ V (T�) such that c is the first intermediate node of the pathm2(x)�m2(z)

is solved in a similar way.
• If there is no arc (x, z) in T� such that b or c are intermediate nodes of the paths m1(x)�m1(z) or m2(x)�m2(z),

respectively, then we can enlarge T� by adding to it a new node y0 and an arc (x, y0), and we can extend m1 and
m2 to this new tree by defining m1(y0) = b and m2(y0) = c, and it is straightforward to prove that in this way we
obtain a topological subtree of T1 and T2 strictly larger than T�, which contradicts the assumption that T� is a largest
common topological subtree of T1 and T2. So, this possibility cannot happen.

This finishes the proof for Treetop. �

Remark 25. To frame the last result, it is interesting to note that no category Tree∗ considered in this paper has all
binary pushouts, essentially because the category of sets with injective mappings as morphisms does not have all binary
pushouts, either. As a matter of fact, the simplest counter-example does not involve arcs at all. Let S be the empty tree
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and, for every i = 1, 2, let Ti be the tree consisting of a single node {ai} and no arc, and let mi : V (S) → V (Ti) be the
empty mapping. It is clear that each mi is a Tree∗-embedding, for every category Tree∗. Now, assume that m1 : S → T1
and m2 : S → T2 have a pushout (P, g1 : T1 → P, g2 : T2 → P) in Tree∗.

Consider the tree P ′ consisting of two nodes a1, a2 and no arc and the mappings g′
1 : V (T1) → V (P ′) and

g′
2 : V (T2) → V (P ′) defined by g′

1(a1) = a1 and g′
2(a2) = a2. These mappings are Tree∗-embeddings, for every

category Tree∗. Since g′
1 ◦ m1 = g′

2 ◦ m2, by the universal property of pushouts there exists a Tree∗-embedding
g′ : P → P ′ such that g′ ◦ g1 = g′

1 and g′ ◦ g2 = g′
2: in particular, g′(g1(a1)) = a1 �= a2 = g′(g2(a2)), and therefore

g1(a1) �= g2(a2).
Consider now the tree P ′′ consisting of a single node a and no arc and the mappings g′′

1 : V (T1) → V (P ′′) and
g′′

2 : V (T2) → V (P ′′) defined by g′′
1 (a1) = g′′

2 (a2) = a. Again, these mappings are Tree∗-embeddings, for every
category Tree∗, and they satisfy that g′′

1 ◦ m1 = g′′
2 ◦ m2. Then, by the universal property of pushouts, there exists

a Tree∗-embedding g′′ : P → P ′′ such that g′′ ◦ g1 = g′′
1 and g′′ ◦ g2 = g′′

2 . But then g′′(g1(a1)) = g′′
1 (a1) =

a = g′′
2 (a2) = g′′(g2(a2)), and hence g′′ is not injective. Therefore, it cannot be a Tree∗-embedding, which yields a

contradiction.
This shows that m1 and m2 do not have a pushout in any category Tree∗. Of course, in this case S is not a least

common Tree∗-subtree of T1 and T2.

5. Largest common subtrees and smallest common supertrees

Let Tree∗ still denote any category Treeiso, Treehom, Treetop or Treemin. In this section, we show that the constructions
presented in the last two sections can be used to obtain largest common Tree∗-subtrees and smallest common Tree∗-
supertrees of pairs of trees. The key will be the following result.

Lemma 26. Let T1 and T2 be two trees, and let T� be a largest common Tree∗-subtree of them. For every common
Tree∗-supertree T of T1 and T2, we have that |V (T )|� |V (T1)| + |V (T2)| − |V (T�)|.

Proof. Propositions 13–16 show that, for every two Tree∗-embeddings f1 : T1 → T and f2 : T2 → T , there exists
a common Tree∗-subtree T0 of T1 and T2 with set of nodes containing f1(V (T1)) ∩ f2(V (T2)): after a relabeling of
the nodes (so that f1 and f2 are given by inclusions of the sets of nodes), it will be the intersection Tp of T1 and T2 in
Treeiso, Treehom, and Treetop, and its one-node extension ˜Tp in Treemin. Then,

|f1(V (T1)) ∩ f2(V (T2))|� |V (T0)|� |V (T�)|
and hence,

|V (T )| � |f1(V (T1)) ∪ f2(V (T2))|
= |f1(V (T1))| + |f2(V (T2))| − |f1(V (T1)) ∩ f2(V (T2))|
� |V (T1)| + |V (T2)| − |V (T0)|
� |V (T1)| + |V (T2)| − |V (T�)|,

as we claimed. �

Theorem 27. For every pair of trees T1 and T2, any Tree∗-sum of T1 and T2 is a smallest common Tree∗-supertree of
them.

Proof. By Proposition 22, any Tree∗-sum T� of T1 and T2 is a common Tree∗-supertree of them, and by construction

|V (T�)| = |V (T1)| + |V (T2)| − |V (T�)|,
for some largest common Tree∗-subtree T� of them. Thus, T� achieves the lower bound established in Lemma 26 for
common Tree∗-supertrees of T1 and T2, which implies that it is a smallest common Tree∗-supertree of them. �

Theorem 28. For every two trees T1 and T2, any intersection of T1 and T2 obtained through Tree∗-embeddings into
a smallest common Tree∗-supertree of them is a largest common Tree∗-subtree of T1 and T2.
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Proof. Let T1 and T2 be two trees, let T ′
� be a smallest common Tree∗-supertree of T1 and T2, let p1 : T1 → T ′

� and
p2 : T2 → T ′

� be any Tree∗-embeddings, and let T ′
p be any common Tree∗-subtree of T1 and T2 obtained by expanding

the intersection Tp of T1 and T2 obtained through p1 and p2, which exists by Propositions 13–16.
Now, by Theorem 27 we have that, for any largest common Tree∗-subtree T� of T1 and T2,

|V (T ′
�)| = |V (T1)| + |V (T2)| − |V (T�)|

and we know that

|p1(V (T1)) ∩ p2(V (T2))|� |V (T ′
p)|� |V (T�)|.

Then

|V (T1)| + |V (T2)| − |V (T�)| = |V (T ′
�)|� |p1(V (T1)) ∪ p2(V (T2))|

= |p1(V (T1))| + |p2(V (T2))| − |p1(V (T1)) ∩ p2(V (T2))|
� |V (T1)| + |V (T2)| − |V (T ′

p)|
� |V (T1)| + |V (T2)| − |V (T�)|.

This implies that |V (T ′
p)| = |V (T�)| = |p1(V (T1))∩p2(V (T2))|. From these equalities we deduce, on the one hand, that

T ′
p is also a largest common Tree∗-subtree of T1 and T2, and on the other hand, that V (T ′

p) = p1(V (T1)) ∩ p2(V (T2)),
i.e., that T ′

p = Tp, as we claimed. �

Thus, for every pair of trees T1 and T2, the pushout in Tree∗ of any Tree∗-embeddings from a largest common Tree∗-
subtree of them yields a smallest common Tree∗-supertree of them, and the pullback in Tree∗ of any Tree∗-embeddings
into a smallest common Tree∗-supertree of them yields a largest common Tree∗-subtree of them. Moreover, all smallest
common Tree∗-supertrees and all largest common Tree∗-subtrees are obtained in this way up to isomorphisms, as the
following corollaries show.

Corollary 29. Every smallest common Tree∗-supertree of a pair of trees T1 and T2 is, up to an isomorphism, the
Tree∗-sum of T1 and T2 obtained through the embeddings of a largest common Tree∗-subtree into them.

Proof. Let T1 and T2 be two trees, let T ′
� be a smallest common Tree∗-supertree of T1 and T2 and let p1 : T1 → T ′

�
and p2 : T2 → T ′

� be any Tree∗-embeddings. By Theorem 28, the intersection Tp of T1 and T2 obtained through p1
and p2, together with the corresponding inclusions �1 : Tp → T1 and �2 : Tp → T2, is a largest common Tree∗-subtree
of T1 and T2. Let now T�, together with m1 : T1 → T� and m2 : T2 → T�, be the sum of T1 and T2 obtained
through �1 and �2. By Theorem 27, T� is a smallest common Tree∗-supertree of T1 and T2, and by Theorem 24,
(T�, m1 : T1 → T�, m2 : T2 → T�) is a pushout of �1 : Tp → T1 and �2 : Tp → T2 in Tree∗. Since p1 ◦ �1 = p2 ◦ �2,
by the universal property of pushouts there exists a Tree∗-embedding p : T� → T ′

� such that p ◦ m1 = p1 and
p ◦ m2 = p2. Now, T� and T ′

� have the same size, because they are both smallest common Tree∗-supertrees of T1 and
T2. Therefore, p : T� → T ′

� is bijective, and thus an isomorphism by Lemma 6. �

A similar argument, which we leave to the reader, proves also the following result.

Corollary 30. Every largest common Tree∗-supertree of a pair of trees T1 and T2 is, up to an isomorphism, the
intersection of T1 and T2 obtained through their embeddings into a smallest common Tree∗-supertree.

Corollary 31. The problems of finding a largest common Tree∗-subtree and a smallest common Tree∗-supertree of
two trees, in each case together with a pair of witness Tree∗-embeddings, are reducible to each other in time linear in
the size of the trees.

Proof. Given two trees T1 and T2, if we know a largest common Tree∗-subtree T� of them, together with a pair of
witness Tree∗-embeddings m1 : T� → T1 and m2 : T� → T2, then the construction of the pushout

(T�, �1 : T1 → T�, �2 : T2 → T�)
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of m1 and m2 described in Theorem 24 gives a smallest common Tree∗-supertree of T1 and T2, and this construction
can be obtained in time linear in the size of T1 and T2, as follows.

First, make copies T ′
1 and T ′

2 of T1 and T2, with �1 : T1 → T ′
1 and �2 : T2 → T ′

2 identity mappings. Second, sum up
T ′

1 and T ′
2 into a graph T�. Third, for each a ∈ V (T�), merge nodes �1(m1(a)) and �2(m2(a)), and remove all parallel

arcs.
Next, remove from T� all arcs subsumed by paths, as follows. For each node y ∈ V (T�) of in-degree 2, let

x, x′ ∈ V (T�) be the source nodes of the two arcs coming into y. Now, perform a simultaneous traversal of the paths
of arcs coming into x and x′, until reaching node x′ along the first path or x along the second path. The simultaneous
traversal of incoming paths may stop along either path, but continue along the other one, because a node of in-degree
0 or in-degree 2 is reached. Finally, remove from T� either arc (x′, y), if node x′ was reached along the first path, or
arc (x, y), if node x was reached along the second path.

Conversely, if we know a smallest common Tree∗-supertree T of T1 and T2, together with a pair of witness Tree∗-
embeddings f1 : T1 → T and f2 : T2 → T , then, by Theorem 28, the pullback

(Tp, �1 : Tp → T1, �2 : Tp → T2)

of f1 and f2 described in Section 3 yields a largest common Tree∗-subtree of T1 and T2, and this construction can also
be obtained in time linear in the size of T1 and T2, as follows.

First, make a copy Tp of T, with g : T → Tp the identity mapping. Second, for each a ∈ V (T1), mark g(f1(a)) in
Tp. Third, for each a ∈ V (T2), if g(f2(a)) is already marked in Tp, double-mark it. Next, for each node of Tp which
is not double-marked, add a new arc from its parent (if any) to each of its children (if any) in Tp, and remove the node
not double-marked. Finally, set mappings �i : Tp → Ti for i = 1, 2, as follows: for each a ∈ V (Ti), if g(fi(a)) is
defined, set �i (g(fi(a))) = a. �

6. Conclusion

Subtree isomorphism and the related problems of largest common subtree and smallest common supertree belong
to the most widely used techniques for comparing tree-structured data, with practical applications in combinatorial
pattern matching, pattern recognition, chemical structure search, computational molecular biology, and other areas of
engineering and life sciences. Four different embedding relations are of interest in these application areas: isomorphic,
homeomorphic, topological, and minor embeddings.

The complexity of the largest common subtree problem and the smallest common supertree problem under these em-
bedding relations is already settled: they are polynomial-time solvable for isomorphic, homeomorphic, and topological
embeddings, and they are NP-complete for minor embeddings. Moreover, efficient algorithms are known for largest
common subtree under isomorphic, homeomorphic, and topological embeddings, and for smallest common supertree
under isomorphic and topological embeddings, and an exponential algorithm is known for largest common subtree
under minor embeddings.

In this paper, we have established the relationship between the largest common subtree and the smallest common
supertree of two trees by means of simple constructions, which allow one to obtain the largest common subtree from
the smallest common supertree, and vice versa. We have given these constructions for isomorphic, homeomorphic,
topological, and minor embeddings, and have shown their implementation in time linear in the size of the trees. In
doing so, we have filled the gap by providing a simple extension of previous largest common subtree algorithms for
solving the smallest common supertree problem, in particular under homeomorphic and minor embeddings for which
no algorithm has been known previously.

Beside the practical interest of these extensions to previous algorithms, we have provided a unified algebraic con-
struction showing the relation between largest common subtrees and smallest common supertrees for the four different
embedding problems studied in the literature: isomorphic, homeomorphic, topological, and minor embeddings. The
unified construction shows that smallest common supertrees are pushouts and largest common subtrees are pullbacks.
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