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1. Main results

Let (H,{-,-)y) be a real separable Hilbert space and identified with its dual space H* by the
Riesz isomorphism. Let V be a real reflexive Banach space such that it is continuously and densely
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embedded into H. Then we have the following Gelfand triple
VCH=H*"CV*

If {-,-)y denotes the dualization between V and its dual space V*, then it is easy to show that

(u,v)y =(u,v)y, ueH,velV.

Now we consider the general nonlinear evolution equation

u't)=A(t,ut)), 0<t<T, u()=ugeH, (1.1)

where T > 0, u’ is the generalized derivative of u on (0,T) and A:[0,T] x V — V* is restrictedly
measurable, i.e. for each dt-version of u € L1([0, T]; V), t — A(t, u(t)) is V*-measurable on [0, T].

A classical result says that (1.1) has a unique solution if A satisfies the monotonicity and coer-
civity conditions (see e.g. [1,8,30,49,53] for more detailed exposition and references). The proof is
mainly based on the Galerkin approximation and the Minty (monotonicity) trick. In [32], the exis-
tence and uniqueness result was established by replacing the monotonicity condition with a local
version (see (H2) below). The result was applied to many new fundamental equations within this
variational framework such as Burgers type equations, 2D Navier-Stokes equation and the 3D Leray-o
model. One of the main steps in the proof in [32] was to show that any operator satisfying local
monotonicity is pseudo-monotone. One should remark that the notion of a pseudo-monotone oper-
ator is one of the most important extensions of the notion of a monotone operator and it was first
introduced by Brézis in [7]. The prototype of a pseudo-monotone operator is the sum of a monotone
operator and a strongly continuous operator (i.e. an operator maps a weakly convergent sequence
into a strongly convergent sequence). Hence the theory of pseudo-monotone operators unifies both
monotonicity arguments and compactness arguments (cf. [49,53]).

Also for stochastic partial differential equations (SPDE), the above approach, also called the vari-
ational approach, has been used extensively by many authors. The existence and uniqueness of
solutions for SPDE was first investigated by Pardoux [40], Krylov and Rozovskii [28]. We refer to
e.g. [25,44,54] for some further generalizations. In particular, the local monotonicity condition has
been used to establish well-posedness for SPDE in [33,12]. For further references on various types of
properties established for SPDE within the variational framework, we refer to [15,24,33,54].

In this work we establish existence, uniqueness and continuous dependence on initial conditions
of solutions to (1.1) by using the local monotonicity condition (see (H2) below) and the generalized
coercivity condition (H3) defined below. An analogous result for stochastic PDE with general additive
noise is also obtained. The standard growth condition on A (cf. [1,28,30,53]) is also replaced by a
much weaker condition such that the main result can be applied to a larger class of examples. This
result seems new even in the finite dimensional case. The main result can be applied to establish the
local/global existence and uniqueness of solutions for a large class of classical (stochastic) nonlinear
evolution equations such as the stochastic 2D and 3D Navier-Stokes equations, the tamed 3D Navier-
Stokes equation and the Cahn-Hilliard equation. Through our generalized framework we give new and
significantly simpler proofs for all these well known results. Moreover, the main result is also applied
to stochastic surface growth PDE and stochastic power law fluids to obtain some new existence and
uniqueness results for these models (see Section 3 for more details). We emphasize that by applying
the main result we obtain both the known local existence and uniqueness of strong solutions to the
stochastic 3D Navier-Stokes equation and new local existence and uniqueness results for stochastic
surface growth PDE. Here the meaning of strong solution is in the sense of both PDE and stochastic
analysis.

In particular, the (stochastic) 2D and 3D Navier-Stokes equations are now included in this extended
variational framework using the local monotonicity and generalized coercivity condition. The study of
stochastic Navier-Stokes equations dates back to the work of Bensoussan and Temam [2]. Although
we have quite satisfactory results for 2D stochastic Navier-Stokes equations such as well-posedness,
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small noise asymptotics and ergodicity (cf. [33,15,26] and the references therein), the results for the
three dimensional case are still quite incomplete due to the lack of uniqueness (cf. [13,14,17,18,21,
22,35,36]). Concerning the existence of solutions, in [21] Flandoli and Gatarek proved the existence of
martingale solutions and stationary solutions for any dimensional stochastic Navier-Stokes equations
in a bounded domain. Subsequently, Mikulevicius and Rozovskii in [36] showed the existence of mar-
tingale solutions to stochastic Navier-Stokes equations in R? (d > 2) under weaker assumptions on
the coefficients.

Replacing the standard coercivity assumption (i.e. g(x) = Cx in (H3) below) by a more general
version is motivated by many reasons. One motivation is trying to investigate the 3D Navier-Stokes
equation by applying our new result since we know that the local monotonicity hold for both the 2D
and 3D Navier-Stokes equation. However, as pointed out in [32,33], the growth condition (see (H4)
below and Remark 3.3) fails to hold for the 3D Navier-Stokes equation. On the other hand, inspired
by a series of works on the stochastic tamed 3D Navier-Stokes equation [46-48], we realized that,
instead of working on the usual Gelfand triple H!' € H® € H~! (see Section 3 for details), one may
use the following Gelfand triple

H>c H' c HO.

On this triple one can verify the growth condition and also the local monotonicity for 3D Navier-
Stokes equation, but the usual coercivity condition does not hold anymore. Therefore, we introduce
the generalized coercivity condition (H3) in order to overcome this difficulty. However, under this
general form of coercivity one is only able to get the local existence and uniqueness of solutions. We
should remark that our main result can also be applied to the tamed 3D Navier-Stokes equation to
get the global existence and uniqueness of solutions (see Section 3 for more examples).

Another reason of using this generalized coercivity condition is coming from the proof of existence
and uniqueness results for stochastic evolution equations with general additive type noise. It is well
known that stochastic equations (see (1.4) below) can be reduced to deterministic evolution equations
with a random parameter by a standard transformation (substitution). Then one can apply the result
that we have already established for deterministic equations (cf. [32]). However, (H3) with the form
of g(x) = Cx fails to hold in some examples due to the more general growth condition (H4) (see
the proof of Theorem 1.3). But in such cases one will see that (H3) still holds with a certain non-
decreasing continuous function g (e.g. g(x) = Cx¥ for some C, y > 0). We refer to Section 3 for many
examples only satisfying this generalized coercivity condition.

Now let us formulate the precise conditions on the coefficients in (1.1).

Suppose for fixed o > 1, B > 0 there exist constants § > 0, C and a positive function f €
LY([0, T]; R) such that the following conditions hold for all t € [0, T] and v, vq, vy € V.

(H1) (Hemicontinuity) The map s+ (A(t, v1 +sv3), v)y is continuous on R.
(H2) (Local monotonicity)

(At v1) = At v2). vi = v2), < (FO + p(v1) + n(v2))llvi — valiF,

where p,n:V — [0, +00) are measurable and locally bounded functions on V.
(H3) (Generalized coercivity)

2(A, v, v), < =8IvIg +g(Ivlig) + F@.

where g : [0, c0) — [0, o0) is a non-decreasing continuous function.
(H4) (Growth)

|AE V). <FOT +CIVIE) A+ IVIE).
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Remark 1.1. (1) If p =79 =0, g(x) =Cx and B =0, then (H1)-(H4) are the classical monotonicity
and coercivity conditions in [53, Theorem 30.A] (see also [1,28,30,41]). It can be applied to many
quasilinear PDE such as porous medium equations and the p-Laplace equation (cf. [53,41]).

(2)If f(t)=C in (H2) and g(x) = Cx in (H3), existence and uniqueness is obtained in [32] and the
result is applied to many examples such as Burgers type equations, the 2D Navier-Stokes equation,
the 3D Leray-o model and the p-Laplace equation with non-monotone perturbations. For readers
interested in stochastic partial differential equations we refer to [33,12] where the existence and
uniqueness of strong solutions is established under another form of local monotonicity condition
(namely p =0).

(3) We remark that (H2) also covers other non-Lipschitz conditions used in the literature (cf. e.g.
[20]). Moreover, with small modifications to the proof, (H3) can be replaced by the following slightly
modified condition:

2(At. v).v), < =8|IvI§ +h©g(IvIg) + F©).
where h: [0, T] — [0, c0) is an integrable function.

Now we can state the main result, which gives a more general framework to analyze various
classes of nonlinear evolution equations.

Theorem 1.1. Suppose that V C H is compact and (H1)-(H4) hold.
(i) For any ug € H, there exists a constant Tg € (0, T] such that (1.1) has a solution on [0, Tg], i.e.
uel¥([0, Tol; V) NC(0, Tol; H),  u’ € L& ([0, Tol; V*)

and
t
(u@, v)H = (ug, V)y —|—/(A(s,u(s)), v)v ds, te[0,Tg], veV.
0

Moreover, if there exist nonnegative constants C and y such that

P +n(w) <COA+VIL)A+IvIL), veV, (12)

then the solution of (1.1) is unique on [0, Tg].
(ii) If (H3) holds with g(x) = Cx for some constant C, then all assertions in (i) hold on [0, T] (i.e. To = T).

Remark 1.2. (1) In the proof one can see that Ty is a constant depending on ug, f and g. More
precisely, one can take any constant Ty which satisfies the following property:

To
0<To<T and Tp< sup G(x)—G(lluolli,+/f(s)ds),
0

x€(0,00)
where G(x) := [y ﬁ ds for some xg > 0.
In particular, if g(x) =cox? (y > 1), then one can take any Ty € (0, T] satisfying

TO < o T .
(¥ = Dluol + fo° f(s)ds)r
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(2) If p=0 or n =0 in (H2), then the compactness assumption of V € H can be removed by
using a different proof (cf. [33]). Therefore, the result can also be applied to many nonlinear evolution
equations with unbounded underlying domains.

The next result shows the continuous dependence of solution of (1.1) on the initial condition ug.

Theorem 1.2. Suppose that V C H is compact and (H1)-(H4) hold, and u; are solutions of (1.1) on [0, To] for
initial conditions u; o € H, i = 1, 2 respectively and satisfying

To

/(p(ul(s)) +1(u2(9)) ds < co.

Then there exists a constant C such that
t
2 2
[ur(®) —ua (O]} < lluro —uzolfexp| [ (£()+p(u1(s)) +n(ua(s)))ds|. te[0,Tol. (1.3)
0

Now we formulate the analogous result for SPDE in Hilbert space with additive type noise. Suppose
that U is a Hilbert space and W (t) is a U-valued cylindrical Wiener process defined on a filtered prob-
ability space (£2, F, F:, P). We consider the following type of stochastic evolution equations on H,

dX(t) = [A1(t, X(©) + A2(t, X(®))]dt + BOAW (), 0<t<T,  X(@O0)=Xo, (14)

where A1,A2:[0,T] x V — V* and B:[0,T] — Lo(U; H) (here (L,(U; H), | - |l2) denotes the space
of all Hilbert-Schmidt operators from U to H) are measurable.

Now we give the definition of a local solution to (1.4). We use T to denote a stopping time in the
filtered probability space (£2, F, Ft, P).

Definition 1.1. (i) An H-valued F;-adapted process {X(t)}tc[o,7r] is called a local solution of (1.4) if
X(-, ) € L1([0, T(w)]; V) N L%([0, T (@)]; H) and P-ass. w € £2,

t t
X(t)=Xo+/ [A1(s, X(9)) + Aa(s, X(s))]ds+/B(s)dW(s), 0<t<t(w),
0 0

where 7 is a stopping time satisfying T(w) > 0, P-a.e. w € £2 and Xg € L*(2 — H; Fo; P).
(ii) Local solution is called unique if for any two local solutions {X1(t)}tef0,7;] and {X2(t)}te[0,1,]
we have

Plw: X1() =Xa(t), te[0, 11 AT2]} =

Theorem 1.3. Suppose that V C H is compact, A1 satisfies (H1)-(H4) with p =0, 8 =0 and g(x) = Cx,
Aj; satisfies (H1)-(H4), B € L*([0, T1; Ly(U; H)), and there exist nonnegative constants C and y such that
pu+v)<Clpw) +pv), u,veV;
nu+v) <C(nw) +nv)), u,vev;
P+ () SC(T+IVIF)(T+IvIR)., veV.



730 W. Liu, M. Rockner / J. Differential Equations 254 (2013) 725-755
Then for any Xg € L*(2 — H; Fy; P), there exists a unique local solution {X()}teq0,77 to (1.4) satisfying

X()el*([0,7]; V)NC([0,T]; H), P-as.
Moreover, if g(x) = Cx in (H3) and o8 < 2, then all assertions above hold for t = T.

Remark 1.3. (1) The main idea of the proof is to use a transformation to reduce SPDE (1.4) to a
deterministic evolution equation (with some random parameter) which Theorem 1.1 can be applied
to. More precisely, we consider the process Y which solves the following SPDE:

dY(t) = A;(t,Y(t))dt + BO)dW(t), 0<t<T, Y(0)=0. (1.5)

Since A satisfies (H1)-(H4) with p =0 and g(x) = Cx, then the existence and uniqueness of Y (t)
follows from Theorem 1.1 in [33]. Let u(t) = X(t) — Y (t), then it is easy to show that u(t) satisfies a
deterministic evolution equation of type (1.1) for each fixed w € 2.

(2) Unlike in [24], here we do not need to assume the noise to take values in V (i.e. B € Ly(U; V)).
The reason is that here we use the auxiliary process Y instead of subtracting the noise part directly
as in [24] and that A; # 0 because it satisfies (H3).

(3) One can replace the Wiener process W (t) in (1.4) by a Lévy type noise L(t). Then the existence
and uniqueness of solutions to (1.5) can be obtained from the main result in [12], and the rest of the
proof can be carried out similarly.

More generally, one might replace W (t) in (1.4) by a U-valued adapted stochastic process N(t)
with cadlag paths. N(t) can be various types of noises here. For instance, one can take N(t) as cylin-
drical Wiener process, fractional Brownian motion or Lévy process (cf. [24]). This subject and some
further applications will be investigated in future work.

(4) Comparing with the result obtained in [33,12], the theorem above can be applied to SPDE with
more general drifts (see Section 3 for many examples) provided the noise is of additive type. On the
other hand, the result in [33,12] is applicable to SPDE with general multiplicative Wiener noise or
Lévy noise if p =0 in (H2) and g(x) = Cx in (H3).

The rest of the paper is organized as follows. The proofs of the main results are given in the
next section. In Section 3 we apply the main results to several concrete (stochastic) semilinear and
quasilinear evolution equations in Banach space. Throughout the paper, we use C to denote some
generic constant which might change from line to line.

2. Proofs of the main theorems
2.1. Proof of Theorem 1.1

We will first consider the Galerkin approximation to (1.1). However, even in the finite dimensional
case, the existence and uniqueness of solutions to (1.1) seems not obvious because of the local mono-
tonicity (H2) and the generalized coercivity condition (H3). Here we prove it by using a classical
existence theorem of Carathéodory for ordinary differential equations. Another difference is that we
cannot apply Gronwall’s lemma directly for this general form of coercivity condition (H3). Instead, we
will use Bihari’s inequality, which is a generalized version of Gronwall’s lemma (cf. [3,43]).

Lemma 2.1 (Bihari’s inequality). Let g : (0, o0) — (0, 00) be a non-decreasing continuous function. If p, q are
two positive functions on R™ and K > 0 is a constant such that

t

pt) < I<+/q(5)g(p(5)) ds, t>0,
0
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(i) Then we have

t

pt) <G (G(K) +/q(s)ds>, 0<t<To, (2.1)

0

where G(x) := fx); ﬁ ds is well defined for some xo > 0, G~ is the inverse function and Tq € (0, c0) is

a constant such that G(K) + fOTO q(s)ds belongs to the domain of G~ 1.
(ii) If K = 0 and there exists some &€ > 0 such that

&

1
/@ds:m

0
then p(t) = 0.

Remark 2.1. It is obvious that the interval [G(K), Supye(o,o0) G(¥)) is contained in the domain of G 1,
hence (2.1) holds for t € [0, Tg], where Tq satisfies

To
/q(s) ds < sup G(x) — G(K).
0 x€(0,00)

In particular, if g=1 and g(x) = Cox" for some constants Co > 0 and y > 1, then

1
Co 1-y 1— 1 -y Y—1\T7
G(x) = — YY), G = - .
(x) Y 1(xo X ) (x) X %o X

Hence (2.1) holds on [0, To] for any Ty € [O, %KFV) (in particular, for any Ty € [0, 00) if y =1).

Another difficulty is due to the local monotonicity. It is well known that the hemicontinuity and
(global) monotonicity implies demicontinuity (cf. [41,53]), which implies continuity in the finite di-
mensional case. This is crucially used in the proof of existence of solutions for the finite dimensional
equations of the Galerkin approximation. In order to show the demicontinuity of locally monotone
operators, we need to use the techniques of pseudo-monotone operators. We first recall the definition
of a pseudo-monotone operator, which is a very useful generalization of a monotone operator and was
first introduced by Brézis in [7]. We use the notation “—” for weak convergence in Banach spaces.

Definition 2.1. The operator A:V — V* is called pseudo-monotone if v, — v in V as n — oo and

l%rg%}lgf(A(vn), Vp—V), =0

implies for all u e V

(A(v). v —u), =limsup(A(vp), vy —u)

n—oo

v



732 W. Liu, M. Rockner / J. Differential Equations 254 (2013) 725-755

Remark 2.2. Browder introduced a slightly different definition of a pseudo-monotone operator in [11]:
An operator A:V — V* is called pseudo-monotone if v, =~ v in V as n — oo and

v >0

liminflA(vy), vq — V)
n—-oo
implies

A(va) =~ A(v) and  lim {A(vp), Vn),, =(A(V), V), .

In particular, under assumption (H4), these two definitions are equivalent (cf. [32]).

Lemma 2.2. If the embedding V C H is compact, then (H1) and (H2) imply that A(t, -) is pseudo-monotone
forany t € [0, T].

Proof. For the proof we refer to [32, Lemma 2.5]. O
The proof of Theorem 1.1 is split into a few lemmas. We first consider the Galerkin approximation
to (1.1).
Let {e1,e3,...} C V be an orthonormal basis in H and let H, := span{eq,...,ey} such that
span{ey, ey, ...} is dense in V. Let P, : V* — H, be defined by
n
Pry:=Y (y.eivei, yeV*.

i=1

Obviously, Py|g is just the orthogonal projection onto H, in H and we have
(PrA(t, u), V>v = (PpA(t, u), v)H =(A(t, u), v)v, ueV, veH,.
For each finite n € N we consider the following evolution equation on Hj:

up(t) = PhA(t,up(t)), 0<t<T, 1y (0) = Pyug € Hy. (2.2)

From now on, we fix T as a positive constant satisfying

To
0<To<T and Tg< sup G(x)—G<||u0||i,+/f(s)ds),
0

xe(0,00)

where the functions f and G are as in (H3) and Lemma 2.1 respectively.
In particular, if g(x) = Cox” (y > 1), then one can take any Tg € (0, T] satisfying

To < CO T .
v — D(lluoll + fo° f(s)ds)r 1

Lemma 2.3. Suppose that V C H is compact and (H1)-(H4) hold, then (2.2) has a solution on [0, Tg]. More-
over, the solution is unique on [0, To] if additionally (1.2) holds.
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Proof. For any t € [0, T], it is easy to show that A(t,-) is demicontinuous by (H1) and (H2) (cf. [41,
Remark 4.1.1] or [53, Proposition 26.4]), i.e.

up — u (strongly)in V asn — oo

implies that

A(t,up) — A(t,u) in V*asn — oo.

In fact, one can first show that A is locally bounded by using similar arguments as in [41]. This
implies that {A(t, u,)} is bounded in V*. Hence there exist a subsequence (ng)key and w € V* such
that A(t, uy,) = w in V* as k — oo.

Since up, — u strongly in V as k — oo, we have

lim <A(t7 unk)7 unk)v = <W, u>V~
k—o0

By Lemma 2.2 we know that A(t,-) is a pseudo-monotone operator. Then by Remark 2.2 we can
conclude that A(u) = w. Since for all such subsequences their weak limit is A(u), we have

A(t,up) — A(t,u) in V*asn — oo.

In particular, the demicontinuity implies that P,A(t,-) : H, — Hp is continuous and hence the
functions

(t.u) = (PhA(tu).ej),. j=1,2,....n,
satisfy the Carathéodory condition on [0, T] x Hy, i.e. for all j=1,2,...,n
t— (PnA(t, u), ei)v is measurable on [0, T] for all u € Hy;
u— (PpA(t, u), ej), is continuous on Hy for almost all t € [0, T].

By (H3) and Lemma 2.1 we get the following a priori estimate for (2.2) (see Lemma 2.4):
There exist positive constants To and c such that if u : Io — H, is a solution of (2.2) on an arbitrary
subinterval Iy of [0, Tg], then

Ju®|, <c forallt e lo.

Therefore, according to the classical existence theorem of Carathéodory for ordinary differential
equations in R" (cf. [53, pp. 799-800]), there exists a unique solution u, to (2.2) on [0, To] such that

up € L%([0, Tol; Ha) N C([0, T); Ha),  ul € L&1([0, Tol; Hy). O

Remark 2.3. From the proof it is clear that the constant To comes from the application of Bihari’s
inequality. It only depends on ug, g, f and is independent of n.
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For the constant Ty € (0, T], let X := L¥([0, Tg]; V), then X* = LaaTl([O, Tol; V*). We denote by
WL(0, To; V, H) the Banach space

Wy (0,To; V. H)={ueX: u' e X*},

where v’ is the weak derivative of

t—u()eVCHCV*

and on W(}l (0, Tp; V, H) the norm is defined by
a—1

To % To =
fulhy = ||u||x+||u/||x*=(f||u(t)||oédt) +</||u’<t>|37dr) |
0 0

It’s well known that W(}[ (0, To; V, H) is a reflexive Banach space and it is continuously embedded
into C([0, Tol; H) (cf. [53]). Moreover, we also have the following integration by parts formula

t

t
(u@®, vn), — (), v0), = /(u’(s), v(s)), ds + /(v’(s), u(s)), ds,
0

0
t €0, Tol, u,ve WL, To; V, H).

Lemma 2.4. Suppose that V C H is compact and (H1)-(H4) hold, we have for any solution uy, to (2.2)

t To
||u,1(t)}|f,+5f||u,1(s)||‘§jds<c—l <c<||u0||i,+ff(s)ds)+t>, t € [0, Tol, (2.3)
0 0

where G(x) := fx’; ﬁ dr is well defined for some xg > 0.

In particular, there exists a constant K > 0 such that

lunllix + sup [ua@® |+ [AC un) |y <K, n>1. (2.4)
te[0,To]

Proof. By the integration by parts formula and (H3) we have

t

Jun @ [ = @y =2 [ 114690 uac9), ¢
0

t
=2 /(PnA(s, Un(s)), un(s)),, ds
0

t
= 2/(A(s, Un(s)). Un(s)), ds
0
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t
< /(—8 [un(®]}, + & (||un(s) Hi,) + f(s)) ds. (2.5)
0

Hence we have for t € [0, To],

t

t To
wﬂmﬁ+§/MAMWﬁ<mm@+/f®w+/éww6Mbw~
0 0

0

Then by Lemma 2.1 and Remark 2.1 we know that (2.3) holds.
Therefore, there exists a constant C, such that

lunllx + sup [un(®)], <C2, n>1.
te[0,Typ]

Then by (H4) there exists a constant C3 such that

JAC un)| e <C3. m>1.
Hence the proof is complete. O

Note that X, X* and H are reflexive spaces. Then by Lemma 2.4 there exists a subsequence, again
denoted by ujy, such that as n — oo
up —u inXand W10, To; V, H);
A(,up) = w in X"
un(To) =z inH.

Recall that u,(0) = P,ug — ug in H as n — oo.

Lemma 2.5. Suppose that V C H is compact and (H1)-(H4) hold, then the limit elements u, w and z satisfy
ue Wk, To; V, H) and

u'@)=w(), 0<t<To, u(0) = ug, u(To) =z.
Proof. See [32, Lemma 2.3]. O

The next crucial step in the proof of Theorem 1.1 is to verify w = A(u). In the case of monotone
operators, this is the well known Minty’s lemma (or monotonicity trick) (cf. [37,38,9,10]). In the case
of locally monotone operators, we use the following integrated version of Minty’s lemma which holds
due to pseudo-monotonicity. The following lemma has first been proved in [32, Lemma 2.6]. We
include the proof here for the reader’s convenience.

Lemma 2.6. Suppose that V C H is compact and (H1)-(H4) hold, and assuming that

To To

liminf / (A(t. un(®), un (D)), dt > f (w®),u), dt, (2.6)

n— 00
0 0
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we have forany v € X

To To
/(A(t, u(t)), u(t) — v(t)), dt > lim sup/(A(t, un(1)), un(t) — v(t)), dt. (2.7)
0

In particular, we have A(t, u(t)) = w(t), a.e. t € [0, To].

Proof. Since W(}((O, To; V,H) C C([0, Tg]; H) is a continuous embedding, we have that u,(t) con-
verges to u(t) weakly in H for all t € [0, To].

Claim 1. For all t € [0, To] we have

limsup(A(t, un(t)), un(t) — u(t)), <O0. (2.8)

n—oo

Suppose there exists a tg € [0, Tg] such that

lim sup(A (to. un(to)). un(to) — u(to)), > 0.

n—oo

Then we can take a subsequence such that
lim (A(to, tn, (f0)), un, (to) — u(to)), > 0.
1—00

By (H3) and (H4) there exists a constant K such that

5 o
2(A(to, tn (t0)). i, (t0) — u(to)), < =3 Jun, ()| + K (F©) + g(Jun o) | )
+ K(1+ un, o) |3 [uto) -

Hence we know that {uy, (tg)} is bounded in V (w.r.t. |- ||v), so there exists a subsequence of {up, (to)}
that converges to some limit weakly in V.

Note that up, (fo) converges to u(tp) weakly in H, it is easy to show that upy, (to) converges to u(top)
weakly in V.

Since A(to, -) is pseudo-monotone, we have

(A(to. u(to)). u(to) — v),, = limsup(A(to, un, (to)). tn, (to) — v),,. V€ V.

i—o0

In particular, we have

lim sup(A(to, un; (t0)). n, (to) — u(to)),, <0,

i—o00
which is a contradiction to the definition of the subsequence {uy, (to)}.

Hence (2.8) holds.
Similarly, by (H3) and (H4) there exists a constant K such that

5 «
2(A(t un(®), un® = v©)y < =3 [un @ [y + K(f© + g([Jun(®) %)

+K(1+ |un® ) v S, vex.
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Then by Lemma 2.4, Fatou’s lemma, (2.6) and (2.8) we have

To
0< liminf/<A(t, Un (1)), un(t) — u(t)), dt
A 0
To
<limsup f(A(t, Un(t)), un(t) — u(t)),, dt

To

< / limsup(A(t, un(t)), un(t) — u(t)), dt <O0.

n—oo

0

Hence

To

nll“c?o (A(t. un(®)), un(t) — u(t)),, dt =0.

0

Claim 2. There exists a subsequence {uy,} such that

lim (A(t, up, (1)), up; (t) — u(t)), =0 forae.t € [0, Tol.

1—00

Define g (t) := (A(t, uy(t)), uy(t) — u(t))y, t € [0, T]. Then

To
lim /gn(t) dt =0, limsup g,(t) <0, te[0,Tol.
n— o0 n—00

0

Then by Lebesgue’s dominated convergence theorem we have
To
lim /g,j(t)drzo,
n—oo
0

where g (t) := max{gn(t), 0}.
Note that |gn(t)| = 2g; (t) — gn(t), hence we have

To
lim / |gn ()| dt =0.
n—oo

0

Therefore, we can take a subsequence {gy, (t)} such that
lim gy, (t) =0 forae.tel0, Tol,
1—00

i.e. (2.10) holds.

(2.9)

(2.10)
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Therefore, for any v € X, we can choose a subsequence {uy,;} such that

To To
lim [ (A(t, un, (1)), tn, (£) — v(1)),, dt =limsup / (A(t, un (), un(t) — v(D)),, dt;
000 n—-oo o
lim (A(t, up, (1)), un; (t) — u(t)), =0 forae.t € [0, To].

1—00

Since A is pseudo-monotone, we have

(A(t, u@®), ut) = v()), > limsup(A(t, up, (1)), un, () = v(t)),,, tel0, Tol.

By Fatou’s lemma we obtain
To To
/ (A(t.u®), ut) — v(), dt > / limsup(A(t, un, (£)), t, () — v(©)),, dt
0 1— 00
To
> lim sup/(A(t, Un; (1)), Un () — v(8)),, dt
To
=lim sup/(A(t, un (1)), un(t) — v(t)),, dt. (2.11)
n—oo o
In particular, we have for any v € X,
To To
/(A(t, u(t)), u(t) — v(t)), dt > limsup /(A(t, un (1)), un(t) — v(t)), dt
0 n—-oo 4
To
> liminf / (At un(®)), un(t) — v(©)),, dt
0
To To
> /(w(t), u(t)), dt — /(w(t), v(t)), dt
0 0
To
= /(w(t), u(t) — v(b)), dt.
0

Since v € X is arbitrary, we have A(-,u) = w as elements in X*.
Hence the proof is complete. O

Now we can give the complete proof of Theorem 1.1.
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Proof of Theorem 1.1. (i) Existence: The integration by parts formula implies that

To
JunCTo) 5 = Jun@) [} =2 (A un). (o), s
0
To
Jutol; ~ Juo) ]}, =2 [{we. uo), d.
0

Since u,(Tg) — z in H, by the lower semicontinuity of || - |y we have
liminf || u.(To) ||, > 1213 = |u(To)|?
=00 n 0 H~ H — 0 H*

Hence we have

To
1
iimint [ {A(t, 1 (©). 1), de > 3 (JucTo)} ~ Juo)|7)
0
To
= /(w(t), u(t)), dt.
0

By Lemma 2.6 we know that u is a solution to (1.1).
(ii) Uniqueness: Suppose u(-, ug), v(-, vo) are the solutions to (1.1) with starting points ug, vo re-
spectively, then by the integration by parts formula we have for t € [0, Tq],

t

Ju@®) — v Hi, = [lup — vol% +2/(A(s, u(s)) — A(s, v(s)), u(s) — v(s)), ds
0
t

< lluo — voll% +2/(f(s)+p(u(s)) +0(v()) Jus) = v(s) |, ds.

0
By (1.2) we know that

To

/(f(s) + p(u(s)) +n(v(s)))ds < oo.
0

Then by Gronwall’s lemma we obtain

t

[u@® —v(t) ||§, < |lug — voll% exp |:2/(f(s) + p(u(s)) + n(v(s)))ds:|, te[0,Tol. (212)
0

In particular, if ug = vg, this implies the uniqueness of the solution to (1.1). O
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2.2. Proof of Theorem 1.2
The proof is similar to the arguments in the proof of Theorem 1.1(ii). O
2.3. Proof of Theorem 1.3

We first consider the process Y which solves the following SPDE:

dY(©) = A1(t, Y(©)dt + BOAW (), 0<t<T,  Y(0)=0.

By [33, Theorem 1.1] we know that there exists a unique solution Y to the above equation and it
satisfies

Y() €L¥([0,T]; V) NC([0, T]: H); P-as.

Let u(t) = X(t) — Y(t). Then it is easy to see that u(t) satisfies the following equation:

() =A(tu®), 0<t<T, u(0) = uo, (213)

where (for fixed @w which we omit in the notation for simplicity)
At v)=A1(Lv+Y©®) —A(t, YD) + Ax(t, v +Y (), veV.

It is easy to show that A is a well defined operator from [0, T] x V to V* since Y(-) € L¥([0, T]; V).

To obtain the existence and uniqueness of solutions to (2.13) we only need to show that A satisfies
all the assumptions of Theorem 1.1.

Since Y(t) is measurable, A(t, v) is B([0, T]) ® B(V)-measurable. It is also easy to show that Ais
hemicontinuous since (H1) holds for both A1 and A,.

For u, v € V we have

(A, u) =A@, v),u—v), =(A(Lu+Y@®) = A(t,v+