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Resting state fMRI (rfMRI) is gaining in popularity, being easy to acquire andwith promising clinical applications.
However, rfMRI studies, especially those involving clinical groups, still lack reproducibility, largely due to the
different analysis settings. This is particularly important for the development of imaging biomarkers. The aim
of this work was to evaluate the reproducibility of our recent study regarding the functional connectivity of the
basal ganglia network in early Parkinson's disease (PD) (Szewczyk-Krolikowski et al., 2014). In particular,we sys-
tematically analysed the influence of two rfMRI analysis steps on the results: the individual cleaning (artefact re-
moval) of fMRI data and the choice of the set of independent components (template) used for dual regression.
Our experience suggests that the use of a cleaning approach based on single-subject independent component
analysis, which removes non neural-related sources of inter-individual variability, can help to increase the repro-
ducibility of clinicalfindings. A template generated using an independent set of healthy controls is recommended
for studies where the aim is to detect differences from a “healthy” brain, rather than an “average” template, de-
rived from an equal number of patients and controls. While, exploratory analyses (e.g. testing multiple resting
state networks) should be used to formulate new hypotheses, careful validation is necessary before promising
findings can be translated into useful biomarkers.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Resting state functional MRI (rfMRI) has been shown to be a prom-
ising tool for exploring brain functions and assessing their alteration
in neurodegenerative conditions (Barkhof et al., 2014). Over the last de-
cade, several resting state networks (RSNs) have been identified
(Beckmann and Smith, 2004; Smith et al., 2009) and associated with
specific brain functions through the comparison with results obtained
from task-based fMRI experiments (Smith et al., 2009; Zamboni et al.,
2013). Moreover, rfMRI has been shown to be stable across subjects
(Smith et al., 2009; Zuo and Xing, 2014), easy to acquire, and as it is
not dependent on task performance, functional connectivity (FC) of
the RSNs can be evaluated in impaired subjects. Therefore, rfMRI has be-
come a common technique in clinical research studies. With observed
alterations of RSNs now reported in subjects with clinical symptoms
and increased at-risk of developing pathology (Barkhof et al., 2014;
niversity of Oxford Warneford

ckay).

. This is an open access article under
Filippini et al., 2009; Sole-Padulles et al., 2013), rfMRI may have a vital
role in the development of novel imaging biomarkers.

Despite the importance of obtaining reliable and stable results that
may be later used as biomarkers, rfMRI studies, especially those involv-
ing clinical groups, still lack reproducibility. In fact, even when repro-
ducibility tests are performed, they are usually performed on healthy
controls, and issues may only become apparent when dealing with pa-
tient groups. For example, logistical difficulties may arise from subject-
ing patients to long or multiple scanning sessions. Moreover, in clinical
studies, images are typically acquired using clinical scanners. This may
result in poorer data quality, leading to suboptimal processing steps,
such as registration and artefact removal. Importantly, the most repro-
ducible networks (default, control and attention networks—see Zuo
and Xing, 2014) may not necessarily be the ones that are of the greatest
clinical importance. For example, although only recently described
(Robinson et al., 2009) and, therefore, not studied in great detail, the
basal ganglia network (BGN) has recently been shown to be affected
in early PD (Szewczyk-Krolikowski et al., 2014).

In addition to the paucity ofwithin-group test–retest reliability (Zuo
and Xing, 2014), the lack of reproducibility between studiesmay be due
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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to the different analysis settings, with a major contributor being the
many permutations in analysis pipelines. In a fast moving field of
rfMRI, there is continual development and refinement of methodology.
Several studies evaluated the impact of analysis methods on the repro-
ducibility and reliability of RSNs (Franco et al., 2013; Zuo et al., 2010;
Zuo and Xing, 2014). Specifically, it has been demonstrated that
independent component analysis (ICA), and in particular group-ICA
followed bydual regression, rather than single-subject ICA and template
matching (Zuo et al., 2010), is more stable than seed-based analysis
(Zuo and Xing, 2014). However, even within these guidelines, there
are several analytical details that can influence the results and make
comparisons difficult.

In light of these observations, we endeavoured to evaluate the repro-
ducibility of our recent study of functional connectivity within the BGN
of patients with early PD (Szewczyk-Krolikowski et al., 2014). The
difference observed in the BGNconnectivitywas substantial in bothmag-
nitude and extent and therefore provides a good test-bed. In particular,
we systematically analysed the influence of two rfMRI analysis steps:
the individual cleaning (artefact removal) of fMRI data and the choice
of a RSNs template (a set of independent components)within the frame-
work of dual-regression ICA. The aim of this work was to establish how
strongly the settings of these steps affected the observed results. We
hoped to aid interpretations and comparisons across studies and contrib-
ute to the translational pipeline for reliable imaging clinical biomarkers.

Materials and methods

Participants

Fifty-nine patients with PD (mean age = 63.2 ± 10.9 years, F:M =
25:34) and thirty age- and gender-matched healthy controls (HC)
(mean age= 62.8 ± 7.2, F:M= 14:16) were recruited from the Oxford
Parkinson's Disease Centre (OPDC) cohort (Rolinski et al., 2014). This
sample includes the cohort described in Szewczyk-Krolikowski et al.
(2014). Patients included in the PD group met the UK PD Society Brain
Bank Criteria for clinically probable idiopathic PD (Hughes et al.,
1992), having predominantly akinetic-rigid parkinsonismwithminimal
tremor. Patients taking dopaminergic medications were scanned in
a clinically defined “off-state,” a minimum of 12 hours after the
withdrawal of their relevant medications. Subjects included in the HC
group had no family history of parkinsonism andwere recruited largely
from the spouses and friends of the PD participants. All participants
underwent a detailed clinical assessment (Szewczyk-Krolikowski
et al., 2014). Both groups only included subjects classified as cognitively
healthy, as defined by a Mini-Mental State Examination (MMSE) N26
(Folstein et al., 1975) and no subjective complaint ofmemory problems.

Each subject gave written consent to participate in the study, which
was conductedwith the approval of the local NHS ethics committee and
in compliance with national legislation and the Declaration of Helsinki.

Neuroimaging data acquisition and preprocessing

Scanning was performed at the Oxford Centre for Clinical Magnetic
Resonance Research (OCMR) using a 3 T Trio Siemens MRI scanner
(Erlangen, Germany) equipped with a 12-channel head coil. The
protocol included 1) high-resolution T1-weighted images (MPRAGE,
resolution 1 × 1 × 1 mm3, TE/TR = 4.7 ms/2040 ms, 192 axial slices, 6
minutes); 2) rfMRI images (EPI, resolution 3 × 3 × 3.5 mm3, TE/TR =
28 ms/2000 ms, 34 axial slices per volume, covering both hemispheres
with incomplete coverage of the cerebellum, 180 volumes in 6minutes,
eyes open); 3) field map images, to account for distortions caused by
field inhomogeneities (GRE, resolution 3 × 3 × 3.5 mm3, TR =
488 ms, TE = 5.19 ms and 7.65 ms).

The analysis of resting state fMRI datawas performed using FSL soft-
ware package (Jenkinson et al., 2012). Firstly, images were motion
corrected with MCFLIRT; from this operation, the six rigid-body
parameter time series were extracted for each subject (to be used for
subsequent cleaning) and themean relative displacementwas calculat-
ed to ensure that the two groups were matched in terms of average
amount of head motion (HC: 0.14 ± 0.09 mm; PD: 0.12 ± 0.05 mm,
p = 0.23). Following preprocessing steps included brain extraction,
unwarping using fieldmap data, spatial smoothing using a Gaussian
kernel of FWHM of 6 mm, and high-pass temporal filtering of 150 s.
Single-subject probabilistic independent component analysis (ICA)
was then performed with MELODIC tool (Beckmann and Smith, 2004)
with automated dimensionality estimation to be used for ICA-based
artefact removal.

T1-weighted images were brain-extracted and used as anatomical
references for fMRI. Tissue segmentation was also performed with
FAST (Zhang et al., 2001) and the grey matter (GM) images were regis-
tered to the MNI 152 standard space using non-linear registration with
FNIRT and used to generate voxel-wise confound regressors for fMRI
statistical analyses.

Reproducibility analyses of resting state fMRI data

Analyses overview
In thiswork,we aimed to systematically analyse the influence of two

rfMRI analysis steps: (1) the individual cleaning (artefact removal) of
fMRI data and (2) the choice of the set of independent components
used as input for dual regression (from now on referred as template).

The impact of artefact removal was tested on a subsample of 19 HC
and 19 PD (matched for age, sex, and head motion) of our cohort,
specifically the same subjects used in Szewczyk-Krolikowski et al.
(2014), comparing six cleaning options (see Section 2.3.2. for details).
The rationale for using this subsample for this first analysis is that we
judged it to be sufficiently large to test differences among the different
approaches, while limiting the manual intervention (in terms of both
expertise and time) required for hand-labelling the single-subject com-
ponents (used as gold standard cleaningmethod). Firstly, we tested the
effect of cleaning on the temporal signal-to-noise ratio, which should be
higherwith better cleaning. Subsequently, we calculated spatial correla-
tions between the subject-specific BGNmaps (derivedwith dual regres-
sion) obtained after each cleaning approach with respect to a gold
standard (the BGN maps obtained with manual cleaning, see Section
Influence of artefact removal). A higher spatial correlation corresponds
to a better cleaning approach. In order to compare the effect of cleaning
on between-group discriminability, we performed a regions-of-interest
(ROI) analysis and a voxel-wise analysis of the BGN. We then repeated
the comparison, among the automatedmethods only, on the full sample
(30 HC and 59 PD, which included the subsample described above) to
verify that the results obtained in the subsample were consistent and
reproducible with respect to sample size.

Secondly, the impact of the template used for dual regression was
tested on thewhole cohort of 30HC and 59 PD, comparing six templates
(see Section Influence of template for dual regression for details). Similar-
ly to the analyses carried out to compare the effect of the cleaning
approaches, we evaluated the impact of the template choice on
between-group discriminability by performing an ROI analysis and a
voxel-wise analysis of the BGN, also quantifying the level of similarity/
overlap among the results of the voxel-wise analyses.

Additionally, to ensure that our results were not influenced by the
sample composition, we randomly split the full sample 100 times into
two group pairs of PD patients and HC, repeated the analyses with dif-
ferent cleaning methods and the templates, and calculated the repro-
ducibility across groups' composition. The detailed methods and
results relative to this analysis are described in the supplementary
material.

Influence of artefact removal
To remove the effect ofmotion, non-neural physiology, scanner arte-

facts, and other confounds, we applied a number of different cleaning
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options, each requiring different levels of manual intervention and
expertise for the classification of signal and artefactual components. Sub-
sequently, we tested the reproducibility of our previous findingswith re-
spect to these preprocessing step in the subsample of subjects described
in Szewczyk-Krolikowski et al. (2014), including 19 HC and 19 PD.

In total, six datasets were obtained with the following cleaning
approaches:

1) Uncleaned data: basic preprocessing only, as described in Neuroim-
aging data acquisition and preprocessing Section. No manual inter-
vention or expertise required.

2) Motion regression: regression of 24 motion parameters
(Satterthwaite et al., 2013) (six rigid-body parameter time series,
their backward-looking temporal derivatives, and the squares of
the twelve resulting regressors). No manual intervention or exper-
tise required.

3) FIX standard 20: regression of 24 motion parameters, plus cleaning
using the FIX tool (Salimi-Khorshidi et al., 2014). FIX automatically
classified the components obtained after single-subject ICA (average
number of components estimated per subject = 43.89 ± 7.19) into
signal or noise using a standard training dataset provided with the
tool (and default threshold) and removed the contribution of the
artefactual components (average number of components removed
per subject = 21.66 ± 7.12, corresponding to 48.67 ± 11.22 % of
the total variance) regressing out from the data only the unique
variance related to the artefacts (Griffanti et al., 2014). No manual
intervention or expertise required.

4) FIX OPDC 5: regression of 24motion parameters, plus cleaning using
the FIX tool (Salimi-Khorshidi et al., 2014), trained on a study-
specific sample of 50 subjects belonging to the OPDC cohort includ-
ing both HC and PD patients and a threshold of 5 to balance between
noise removal and signal loss, which gave an accuracy of 98.2% true-
positive ratio (TPR) and 65.8% true-negative ratio (TNR) at leave-
one-out test. With this training dataset, 21.79 ± 7.66 components
per subject were removed (48.72 ± 10.33% of the total variance).
Manual intervention and expertise required only for the generation
of the training dataset.

5) FIX OPDC 10: regression of 24 motion parameters, plus cleaning
using the FIX tool (Salimi-Khorshidi et al., 2014), trained on the
study-specific sample of 50 subjects belonging to the OPDC cohort
and a threshold of 10 (accuracy of 96.9% TPR and 72% TNR at
leave-one-out test). With this training dataset, 23.84 ± 7.98
components per subject were removed (52.39 ± 9.97% of the total
variance). Manual intervention and expertise required only for the
generation of the training dataset.

6) Manual cleaning: regression of 24 motion parameters, plus removal
of the contribution of the artefactual components manually identi-
fied after single-subject ICA (29.76 ± 7.54 components removed
per subject, corresponding to 63.98 ± 9.29% of the total variance).
Manual intervention and expertise required for each subject (aver-
age time for manual classification of independent components of
one subject for a trained operator = 20 minutes).

For each cleaning approach, we first calculated a global measure of
temporal signal-to-noise ratio (tSNR). A raw tSNR image was formed
by dividing the mean image across time by the standard deviation
image over time. The tSNR image was then eroded to exclude brain-
edge effects, and the median tSNR value was calculated. A paired
t-test was used to compare the median tSNR achieved using different
cleaning approaches.

Cleaned data were then linearly registered to the corresponding
structural image using FLIRT (Jenkinson et al., 2002), optimised using
Boundary-Based Registration (Greve and Fischl, 2009), and registered
to the MNI space using non-linear registration. The dual regression ap-
proach (Filippini et al., 2009) was used to identify individual temporal
dynamics and the associated spatial maps of the BGN. In order to
allow direct comparison across the different cleaning options, we used
the same template used in (Szewczyk-Krolikowski et al., 2014). To
generate this template, group-ICA (with dimensionality d = 50) was
performed temporally concatenating data from 80 healthy elderly sub-
jects (including 19 from the OPDC cohort and 61 healthy control scans
from previously published studies (Filippini et al., 2011, 2012;
Zamboni et al., 2013). All data were acquired on the same scanner
using an identical acquisition protocol. A subset of components includ-
ing the basal ganglia network (BGN) and 21 components identified as
artefactual was then used as template for dual regression.

Subsequently, we calculated spatial correlation between the subject-
specific BGN maps (output of stage 2 of dual regression) obtained after
each cleaning approach with respect to the ones obtained with manual
cleaning (defined as the gold standard approach).

Then, in order to compare the effect of cleaning on between-group
discriminability, we performed a regions-of-interest (ROI) analysis
and a voxel-wise whole-brain analysis of the BGN. Mean parameter es-
timates (P.E.) were extracted from the subject-specific BGN spatial
maps within ROIs corresponding to the caudate, pallidum, and puta-
men, bilaterally, and the obtained values were then compared between
the two groups with a two-sample independent t-test, with Bonferroni
correction for multiple comparison across structures.

Finally, voxel-wise differences in the BGN maps were tested using a
non-parametric permutation test, covarying for age and voxel-wise GM.
Results were considered significant for p b 0.05 after correction for
multiple comparisons with TFCE approach.

Additionally, to test the reproducibility of our findings with respect
to sample size, we repeated the ROI and voxel-based analyses in the
full sample, comparing the automated methods only.

Influence of template for dual regression
Data from the whole sample of 30 HC and 59 PDwere used to assess

the variability of FC analyses performed with dual regression when
changing the template used to derive subject-specific time series and
spatial maps. In particular, we tested the influence of using a different
number and/or type of subjects to create the template, comparing the
main approaches used in literature (Schultz et al., 2014): the use of
out-of-sample, a priori templates of healthy controls (Szewczyk-
Krolikowski et al., 2014), or an equal number of patients and controls
from the specific study (Filippini et al., 2011, 2012; Zamboni et al.,
2013). We also tested whether to include only the RSN of interest
(plus the artefactual components) or to perform a more exploratory
analysis including the full set of components as spatial regressors.

To this aim, group-ICA with temporal concatenation and a fixed
number of 50 components (dimensionality empirically determined to
be able to clearly identify the BGN as a separate component) was per-
formed on the following datasets:

1) 80 HC: same template used in Szewczyk-Krolikowski et al. (2014),
using 80 elderly healthy controls (19 from the OPDC cohort and 61
healthy control scans from previously published studies (Filippini
et al., 2011, 2012; Zamboni et al., 2013) that used the same scanner
and acquisition protocol).

2) 45 HC: generated with data from 45 elderly healthy controls only
from previously published studies (Filippini et al., 2011, 2012;
Zamboni et al., 2013), age- and sex-matched to both HC and PD.
The two Filippini studies (Filippini et al., 2011, 2012) selected
participants on the basis of APOE genotype, and the information
about APOE genotype was available for the participants in the
study performed by Zamboni and colleagues (Zamboni et al.,
2013), so we subsampled these individuals such that the proportion
of ε4-allele carriers was in line with the prevalence in the average
population (Menzel et al., 1983).

3) 30HC30PD (study-specific template): generated from 30HCs and 30
randomly selected age- and sex-matched PDs from our study.

The whole output of each group-ICA constituted a template for dual
regression. Moreover, three additional templates were created by only
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including the BGN and the artefactual components identified in each
group-ICA output. In this way, we obtained and compared the following
six templates: a) 80HC-BGN (i.e. BGN plus artefactual components),
b) 80HC-ALL (i.e. keeping all 50 components), c) 45HC-BGN, d) 45HC-
ALL, e) 30HC30PD-BGN, and f) 30HC30PD-ALL.

Once the best cleaning approach was identified in the previous
analysis, all data were cleaned, coregistered to MNI space, and subject-
specific BGN spatial maps were obtained for each of the templates
described above.

Similarly to the analyses carried out to compare the effect of the
cleaning approaches, we compared the mean P.E. extracted from the
subcortical ROIs and performed a voxel-wise non-parametric permuta-
tion test, covarying for age and voxel-wise GM and masking for an
average GM mask across subjects.

We also quantified the level of similarity among the results of voxel-
wise analysis by calculating the spatial correlation among the statistical
maps (t-maps) obtained with each template and, after generating
binary images of the significant clusters obtained with each template
(t-maps thresholded at p = 0.05 corrected for multiple comparisons
with TFCE approach), we calculated the Dice index between each pair
of images as 2*(number of overlapping voxels)/(sum of voxels in each
image).

Finally, we performed an exploratory analysis on 80HC-ALL, 45HC-
ALL, and 30HC30PD-ALL templates to investigate if and how the tem-
plate used for dual regression would affect also the results from other
RSNs (see supplementary material for details).
Results

Influence of artefact removal

The temporal SNR was significantly higher (p b 0.01) after cleaning,
with smaller differences among the three different FIX options
(Uncleaned b Motion regression b Standard 20 = OPDC 5 b OPDC
10 b Manual; see Fig. 1, panel A). SNR was not statistically different be-
tween the HC and PD groups with any of the approaches.

Spatial correlation analysis of subject-specific BGN maps with
respect to the ones obtained withmanual cleaning showed a significant
increase with cleaning, especially when using ICA-based approaches
Fig. 1. A) Temporal SNR of data obtained with different cleaning options. B) Spatial correlati
Szewczyk-Krolikowski et al. (2014), obtained using data cleaned with different options and the
bution of manually selected artefactual components after single-subject ICA).
(Uncl bMotion regression b Standard 20=OPDC5 bOPDC 10, Standard
20 b OPDC 10) (Fig. 1, panel B).

The results of the ROI analysis in the basal ganglia are shown in Fig. 2
and Table 1. The average P.E. within the putamen was significantly
lower in the PD group bilaterally after minimal cleaning. We obtained
similar results with manual cleaning and the study-specific training
dataset (i.e. significantly lower FC in PD compared to controls only in
the bilateral putamen), while using the standard training dataset, we
also observed between-group differences in FC (HC N PD) also within
the right caudate and the left pallidum. The comparison across (auto-
mated) cleanings on the full sample showed very similar results (see
supplementary Fig. S1 and Table S1).

Regarding voxel-wise results on the whole-brain BGN maps, the
only significant results, corrected for multiple comparisons, were
obtained with the Standard 20 option (Szewczyk-Krolikowski et al.,
2014), although a similar pattern of between-group difference in FC
was observed for the other ICA-based dataset at uncorrected threshold.
The comparison across (automated) cleanings on the full sample
confirmed this trend (see Fig. 3), showing no significant differences on
uncleaned data, significant FC decrease in PDpatients only in the left pu-
tamen after motion correction, and bilateral FC decrease in PD after FIX
cleaning, using any of the options tested, with strongest results using
the Standard 20 option.

Based on these results, the dataset cleanedwith FIX, using the study-
specific training dataset and a threshold of 10 (FIX OPDC 10), was
chosen for subsequent analyses.

Influence of template for dual regression

The results of the ROI analysis in the basal ganglia (Fig. 4 and Table 2)
are in line with the results obtained in the subsample, with the main
between-group difference localised in the putamen. Notably, no differ-
ence was found using the 30HC30PD-ALL template.

Fig. 5 illustrates the results of the voxel-wise analysis: significant dif-
ferences in the BGN (PD bHC, p b 0.05 TFCE corrected)were found using
all templates, with the clusters mainly localised in the bilateral puta-
men. No significant differences were found using the opposite contrast
(PD N HC).

The spatial correlation coefficients and the Dice indices reported in
Fig. 6 measure the similarity among the different statistical maps (t-
on between single-subject BGN maps, using the same template for dual regression as in
corresponding map obtained using manually cleaned data (i.e. after removing the contri-



Fig. 2. Average P.E. in the basal ganglia ROIs extracted from single-subject BGNmaps obtained from data cleaned with different options. *Significant between-group differences surviving
Bonferroni correction across structures.
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maps) and the overlap of the significant clusters, respectively. It can be
observed that the highest similarity is obtainedwhen changing the sub-
jects used to generate the template (A and C), but, between these two
options, the overlap of the significant clusters is much higher when
using a subset of components including the BGN and the artefacts (A).
Changing from using a subset of components to using all the compo-
nents with the same subjects (B) decreases the spatial correlation
(with respect to A and C), but on average, the overlap of the significant
clusters is comparable to option C. The lowest similarity and overlap is
obtained changing both the subjects and the set of components (D).

The results of the exploratory analysis on other RSNs are reported in
Supplemental Table S2.When using different templates, we did not ob-
serve the same between-group differences in the same RSNs (except for
the BGN); however, the results show some similarities, for example, a
reduced FC in the PD patients in the right insula (see supplementary
results for details).

Discussion

The need to prove the reliability and reproducibility of scientific
findings has been recently highlighted in the scientific community
(Russell, 2013). This is certainly a big challenge in neuroimaging studies
and, especially, in clinical studies, where the aim is to translate scientific
findings in the clinical setting. Only when sufficient reproducibility is
possible we will be able to produce reliable predictive, diagnostic, and
prognostic biomarkers.

Typically, the analysis pipeline is one of themain contributors to re-
sult variability. Therefore, in order to allow comparison and replication,



Table 1
ROI analysis for different cleaning approaches. Group comparison of average P.E. in the basal ganglia ROIs extracted from single-subject BGN maps.

Average P.E. in the BGN Group comparison HC
vs PD

Average P.E. in the BGN Group comparison HC
vs PD

HC
(mean ± stdev)

PD
(mean ± stdev)

t-value p-value⁎ HC
(mean ± stdev)

PD
(mean ± stdev)

t-value p-value⁎

Left putamen Right putamen
Uncleaned 23.38 ± 9.06 16.05 ± 7.36 2.739 0.01 22.61 ± 8.65 17.08 ± 7.02 2.162 0.037
Motion 19.06 ± 7.79 11.61 ± 5.29 3.444 0.001⁎ 17.92 ± 6.94 12.61 ± 5.06 2.695 0.011
Standard 20 16.65 ± 6.20 10.00 ± 4.03 3.92 b0.001⁎ 16.01 ± 6.25 10.14 ± 3.82 3.493 0.002⁎

OPDC 5 15.27 ± 5.57 10.15 ± 3.33 3.441 0.002⁎ 15.18 ± 6.29 10.15 ± 3.42 3.062 0.005⁎

OPDC 10 14.53 ± 5.44 9.62 ± 3.28 3.366 0.002⁎ 14.19 ± 5.53 9.65 ± 3.40 3.046 0.005⁎

Manual 11.73 ± 5.10 7.54 ± 2.88 3.116 0.004⁎ 11.36 ± 4.71 7.69 ± 2.26 3.06 0.005⁎

Left caudate Right caudate
Uncleaned 20.82 ± 7.85 17.81 ± 6.92 1.252 0.219 19.68 ± 10.07 15.88 ± 8.51 1.258 0.216
Motion 16.73 ± 7.22 11.96 ± 5.18 2.341 0.025 15.73 ± 8.48 10.31 ± 5.98 2.277 0.029
Standard 20 14.70 ± 6.86 9.56 ± 4.22 2.782 0.009 14.43 ± 7.61 7.60 ± 4.46 3.371 0.002⁎

OPDC 5 13.90 ± 6.68 10.25 ± 3.91 2.052 0.049 13.35 ± 6.96 8.17 ± 4.33 2.755 0.009
OPDC 10 13.27 ± 6.65 9.74 ± 3.54 2.041 0.051 12.58 ± 7.18 7.85 ± 3.98 2.513 0.017
Manual 10.87 ± 5.37 7.82 ± 2.57 2.229 0.035 10.30 ± 5.47 6.46 ± 3.30 2.625 0.013

Left pallidum Right pallidum
Uncleaned 13.10 ± 7.27 7.48 ± 5.73 2.646 0.012 12.75 ± 8.76 8.47 ± 4.64 1.882 0.068
Motion 10.49 ± 5.54 5.42 ± 4.85 3.001 0.005⁎ 10.51 ± 6.81 6.05 ± 3.78 2.494 0.017
Standard 20 8.68 ± 4.55 4.79 ± 2.76 3.192 0.003⁎ 8.67 ± 6.41 4.66 ± 2.96 2.478 0.02
OPDC 5 7.37 ± 5.04 5.01 ± 2.73 1.798 0.081 7.86 ± 6.29 4.67 ± 2.88 2.008 0.052
OPDC 10 7.18 ± 5.56 4.63 ± 2.81 1.783 0.083 7.28 ± 4.93 4.20 ± 2.85 2.358 0.024
Manual 5.35 ± 4.70 3.74 ± 2.60 1.301 0.201 5.07 ± 3.46 3.34 ± 2.21 1.831 0.075

⁎ Significant after correction for multiple comparisons across 6 structures.
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the complete disclosure of analysis parameters is crucial (Lin et al.,
2012; Ridgway et al., 2008). Moreover, validation studies, such as
those seen in structural MRI, are necessary whenever a new technique
is introduced (Duan et al., 2015; Franco et al., 2013; Lawrenz et al.,
2015; Zuo et al., 2010; Zuo and Xing, 2014), or the settings of an existing
method are modified (Goto et al., 2015; Landman et al., 2007; Radua
et al., 2014).
Fig. 3. Voxel-wise between-group differences in the BGN (PD b HC) using different automat
corrected for multiple comparisons using the TFCE approach. No significant differences were fo
Among the different MRI modalities, functional MRI analysis tech-
niques, and especially resting state fMRI, are the newest and most
under development, as they are showing promising results in several
pathologies (Barkhof et al., 2014). Due to the continuous development
of new analysis methods, standard analysis pipelines or set guidelines
are not currently available, preventing good reproducibility of clinical
findings.
ed cleaning approaches on the full sample (30HC vs 59 PD). Each map is independently
und using the opposite contrast (PD N HC).



Fig. 4. Average P.E. in the basal ganglia ROIs extracted from single-subject BGN maps obtained using different templates for dual regression. *Significant between-group differences sur-
viving Bonferroni correction across structures.
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In this context, our work described the influence on the reproduc-
ibility of clinical studies of two processing steps (artefact removal and
dual regression template selection) that are becoming commonly used
in rfMRI analysis pipelines, but in our opinion not systematically or suf-
ficiently analysed yet. In this way, we wanted to show the possible var-
iability associatedwith these settings and to provide some guidelines to
choose the right option for a clinical study and report the analysis details
in scientific publications to make a study truly comparable and
replicable.

To this aim, we tested the reproducibility of our recent findings re-
garding the functional connectivity of the basal ganglia network
(BGN) in early PD patients (Szewczyk-Krolikowski et al., 2014), being
particularly interested in the effect of the analysis settings in a transla-
tional neuroimaging perspective.

On the first subsample of subjects, the same used in our previous
study, we tested the influence of different cleaning approaches (motion
regression and different options of ICA-based cleaning) on the detection
of the functional connectivity alteration in PD within the BGN. The
strong between-group difference within the putamen obtained with
the ROI analysis was not influenced by the cleaning approach, while
small differences found in the caudate and the pallidumwere enhanced
or weakened depending on the approach used. Conversely, voxel-wise



Table 2
ROI analysis for different templates for dual regression. Group comparison of average P.E. in the basal ganglia ROIs extracted from single-subject BGN maps.

Average P.E. in the BGN Group comparison HC
vs PD

Average P.E. in the BGN Group comparison HC
vs PD

HC
(mean ± stdev)

PD
(mean ± stdev)

t-value p-value⁎ HC
(mean ± stdev)

PD
(mean ± stdev)

t-value p-value⁎

Left putamen Right putamen
80 HC BGN 14.62 ± 5.38 10.79 ± 4.35 3.374 0.001⁎ 13.38 ± 5.29 10.09 ± 4.24 3.18 0.002⁎

45 HC BGN 16.64 ± 5.99 12.76 ± 4.50 3.131 0.003⁎ 15.66 ± 6.32 12.65 ± 4.39 2.335 0.024
30HC30PD BGN 17.77 ± 6.53 12.85 ± 5.65 3.681 b0.001⁎ 17.45 ± 7.76 12.73 ± 5.50 2.973 0.005⁎

80 HC allIC 17.15 ± 6.93 13.07 ± 4.89 2.876 0.006⁎ 15.66 ± 6.00 12.32 ± 4.13 2.74 0.009
45 HC allIC 16.64 ± 5.40 12.89 ± 4.28 3.565 0.001⁎ 15.72 ± 4.96 12.67 ± 3.96 3.144 0.002⁎

30HC30PD allIC 19.11 ± 7.69 14.93 ± 6.91 2.597 0.011 18.29 ± 7.46 14.44 ± 5.95 2.649 0.01

Left caudate Right caudate
80 HC BGN 13.36 ± 6.03 10.77 ± 3.88 2.138 0.038 12.89 ± 6.14 9.92 ± 3.75 2.429 0.02
45 HC BGN 12.36 ± 5.94 10.61 ± 4.30 1.433 0.159 11.81 ± 6.17 9.94 ± 3.99 1.726 0.088
30HC30PD BGN 11.00 ± 6.29 8.34 ± 4.41 2.071 0.044 9.47 ± 5.59 7.51 ± 4.27 1.831 0.071
80 HC allIC 15.90 ± 6.66 13.89 ± 5.62 1.496 0.138 14.87 ± 7.59 12.67 ± 5.05 1.628 0.107
45 HC allIC 11.57 ± 5.04 10.39 ± 4.59 1.106 0.272 11.40 ± 4.71 9.72 ± 4.27 1.692 0.094
30HC30PD allIC 11.91 ± 5.42 10.83 ± 5.12 0.925 0.357 11.37 ± 5.42 9.61 ± 4.94 1.532 0.129

Left pallidum Right pallidum
80 HC BGN 7.57 ± 5.49 5.44 ± 3.73 1.912 0.062 7.05 ± 4.65 4.65 ± 4.15 2.476 0.015
45 HC BGN 9.85 ± 5.12 7.61 ± 4.43 2.144 0.035 8.87 ± 5.89 7.11 ± 4.51 1.563 0.122
30HC30PD BGN 10.61 ± 4.63 7.26 ± 4.74 3.179 0.002⁎ 9.62 ± 6.25 7.24 ± 4.30 2.105 0.038
80 HC allIC 7.78 ± 5.26 5.81 ± 3.46 1.862 0.07 6.62 ± 6.88 5.25 ± 3.74 1.015 0.316
45 HC allIC 9.10 ± 4.93 7.49 ± 3.45 1.792 0.077 7.66 ± 5.54 7.23 ± 3.75 0.433 0.666
30HC30PD allIC 11.27 ± 6.06 9.00 ± 4.97 1.892 0.062 11.47 ± 7.74 9.11 ± 4.92 1.747 0.084

⁎ Significant after correction for multiple comparisons across 6 structures.
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results were more influenced by small changes in the preprocessing
than the ROI analyses. This wasmainly due to the relatively low sample
size, as the pattern of both uncorrected maps in the small sample and
corrected maps in the full sample were similar to our previous results.
The removal of more degrees of freedomwhen applying amore aggres-
sive cleaning method can cause loss of statistical power, but the higher
Fig. 5.Voxel-wise between-group differences in the BGN (PD bHC) using different templates fo
TFCE approach. No significant differences were found using the opposite contrast (PD N HC).
temporal SNR, higher correlation with the manually cleaned data and
the results obtained on a bigger sample suggest that the use of ICA-
based cleaning can help to increase the reproducibility of clinical find-
ings, as it removes non neural-related sources of inter-individual
difference. FIX was always run using the “soft” option, i.e. removing
only the unique variance related to the artefacts (see Griffanti et al.,
r dual regression. Eachmap is independently corrected formultiple comparisons using the



Fig. 6. Similarity (spatial correlation of t-maps) and overlap (Dice index on thresholded t-maps) among voxel-wise analyses in the BGN using different templates for dual regressionwhen
A) changing subjects, using a subset of components including BGN and noise (Fig. 4. a–c, a–e, c–e); B) changing the set of components (subset vs all), but using the same subjects to gen-
erate the template (Fig. 4. a–b, c–d, e–f); C) changing subjects, using all components (Fig. 4. b–d, b–f, d–f); D) changing subjects and set of components (Fig. 4. other pairs).
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2014, for details). The “aggressive” option available with the tool was
also tested, but given that we obtained very similar results, we did not
included them in this paper, to limit the total number of approaches
compared.

Interestingly, the strongest results were obtained with FIX trained
with the standard training dataset instead of the study-specific one
(OPDC). From Fig. 2 and Table 1, it can be observed that cleaning re-
duces within-group variance in both patients and controls; however,
the amount of variance removed (decrease in standard deviation) is
higher in HC than PD. This suggests that cleaning is removing more
non-neuronal fluctuation in the HC group. The fact that the amount of
head motion was higher (although not significantly) in the HC than in
the PD (which are predominantly patients with akinetic-rigid
parkinsonism with minimal tremor) raises the possibility that the
group-dependent non-neuronal fluctuation is due to motion. However,
the removal of motion parameters did not improve the detection of the
BGN alteration in PD as much as the ICA-based options, which remove
multiple sources of noise. Re-running the voxel-wise analyses on the
full sample including the average relative head motion as an additional
covariate produced very similar results (results not shown). Therefore,
we suggest that i) we have provided additional evidence in line with
current literature (Murphy et al., 2013) thatmotion regression is impor-
tant, but not sufficient to effectively remove noise when performing
rfMRI analyses; ii) the difference observed between PD and HC is not
driven by differences in head motion (although we cannot exclude
that residual motion could contribute to the FC differences).

We also observed that both before and after cleaning, the variability
of the FC in the BGN is lower in the PD than the HC. We speculate that
this could be due to the fact that a diseased population ismore homoge-
neous than a healthy population, especially in a brain region known to
be affected by the pathology. In the healthy subjects instead, many
more factors can influence the FC, both biological and artefact related.
Of the options tested, we selected an ICA-based cleaning (FIX) trained
on study-specific data and with a threshold of 10, which showed good
results both in terms of training dataset accuracy (TPR/TNR) and simi-
larity with the results obtained using manual cleaning, our gold stan-
dard method. We speculate that the difference between this method
and the one that gave the most significant results (Standard 20) could
be due to the fact that the study-specific training dataset better reduced
the noise-related variability, especially in the HC, while preserving the
biologically meaningful variance, which remains higher in HC than in
the PD group after cleaning, but allows to detect the pathological alter-
ation in the PD group.
Our second aim was to test the influence of the use of 6 different
templates for dual regression, generated by changing the number and
type of subjects included and/or the number of components used in
the set of spatial regressors. The results of the ROI analysis are fairly con-
sistent across templates and in line with the results obtained in the
smaller sample, so also stable when increasing the sample size.
From the voxel-wise analysis of the BGN, we obtained similar results
across templates showing a reduced FC in the PD patients in the bi-
lateral putamen, in concordance the ROI analysis. Interestingly, the
weakest results were obtained with the 30HC30PD template. Al-
though the use of a balanced number of patients and controls to
run group-ICA and obtain a study-specific template is a common
practice, as it avoids the template being biassed toward one group,
this might not be the most suitable option for a clinical study includ-
ing patients and controls. In fact, the aim of such a study is to detect
differences relative to a healthy brain, rather than differences be-
tween any of the two groups and an “average brain”, without being
influenced by the characteristics of the experimental population
(Schultz et al., 2014). Therefore, the use of an out-of-sample set of
HC (i.e. not including the ones used to test the between-group differ-
ences) to build the template used for dual regression is recommend-
ed for such clinical studies.

The differences among the other templates can be explained by
looking at the results of the similarity and overlap across the
thresholded statisticalmaps.When using only the BGN (plus artefactual
components) in the dual regression, the results were much less influ-
enced by the number/type of subjects used to generate the template.
This is because the BGNmap is similar across templates (spatial correla-
tion coefficient between the BGN component of the template: 80HC–
45HC = 0.83; 80HC–30HC30PD = 0.78; 45HC–30HC30PD = 0.76),
and the artefactual components include similar sources of structured
noise (WM, CSF, blood vessels, residual motion). Either changing only
the subjects when using all the components or changing only the ap-
proachwhen using the same subjects seems to have the same influence
on the overlap among significant clusters (Fig. 5 B vs C, Dice index).
However, the spatial correlation among the t-maps is higher when
changing the subjects but not the approach. In both cases, newor differ-
ent components are introduced and the variance of the data is distribut-
ed in a different way across the regressors, but changing the subset of
components introduces more variability in the results than changing
the subjects included in the template while generating the template
with the same approach. As expected, changing both options induces
the highest variability in the results.
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We chose to test the reproducibility of the difference in BG connec-
tivity between PD andHCbecause, in our previous study, we observed it
to be substantial in both magnitude and extent and thus provided a
good test-bed. The results becomemuchmore variable when consider-
ing a higher number of components i.e. when performing more explor-
atory analyses. As described in the supplementary material, when we
tested between-group differences in other RSNs, there was not com-
plete agreement on the results obtained with the three templates
(80HC-ALL, 45HC-ALL, and 30HC30PD-ALL), except for the BGN, al-
though a few similarities were observed. For example, an alteration of
the insula, which has been suggested to play a role in the non-motor
symptoms of Parkinson's disease (Christopher et al., 2014), was identi-
fied with two templates, although in different components. This sug-
gests that exploratory analyses (e.g. testing multiple RSNs) should be
used to formulate new hypotheses, but careful validation is necessary
before biomarkers can be widely applied. In our case, the differences
found in the insula can be subject of future studies to explore in more
detail the involvement of this brain region in the pathology.

Conclusion

To conclude, our study systematically delineates the influence of ar-
tefact removal and the choice of the template for dual regression on the
reproducibility of clinical findings with rfMRI, providing some guide-
lines to obtain more reliable results. Being aware of the differences in-
troduced by analysis choices can help to compare different studies and
to decide the most suitable approach for a particular research question,
being conscious of the possible variability/bias introduced or avoided. A
detailed description of the analysis details in scientific publications is
also needed so that studies can be compared and reproduced, toward
the definition of reliable imaging clinical biomarkers.
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