
Linear Algebra and its Applications 369 (2003) 217–233
www.elsevier.com/locate/laa

Weak majorization inequalities and convex
functions

Jaspal Singh Aujla a,∗, Fernando C. Silva b

aDepartment of Applied Mathematics, National Institute of Technology, Jalandhar 144011, Punjab, India
bCenter for Linear Structures and Combinatorics, University of Lisbon, Av. Prof. Gama Pinto 2,

1649-003 Lisboa, Portugal

Received 30 September 2002; accepted 10 December 2002

Submitted by R. Bhatia

Abstract

Let f be a convex function defined on an interval I , 0 � α � 1 and A, B n × n complex
Hermitian matrices with spectrum in I. We prove that the eigenvalues of f (αA + (1 − α)B)

are weakly majorized by the eigenvalues of αf (A) + (1 − α)f (B). Further if f is log convex
we prove that the eigenvalues of f (αA + (1 − α)B) are weakly majorized by the eigenvalues
of f (A)αf (B)1−α. As applications we obtain generalizations of the famous Golden–Thom-
son trace inequality, a representation theorem and a harmonic–geometric mean inequality.
Some related inequalities are discussed.
© 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

Throughout Mn denotes the set of n × n complex matrices and Hn denotes the
set of all Hermitian matrices in Mn. We denote by Sn, the set of all positive semi-
definite matrices in Mn. The set of all positive definite matrices in Mn is denoted by
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Pn. Let I be an interval in R. We denote by Hn(I ), the set of all Hermitian matrices
in Mn whose spectrum is contained in I.

Let f be a real valued function defined on I. The function f is called convex if

f (αs + (1 − α)t) � αf (s) + (1 − α)f (t)

for all 0 � α � 1 and s, t ∈ I. Likewise f is called concave if −f is convex. Further
if f is positive then f is called log convex if

f (αs + (1 − α)t) � f (s)αf (t)1−α

and is called log concave if

f (s)αf (t)1−α � f (αs + (1 − α)t).

If I = (0, ∞) and f is positive then f is called multiplicativily convex if

f (sαt1−α) � f (s)αf (t)1−α

for all 0 � α � 1 and s, t ∈ I.

The reader is referred to [11] for general properties of convex and log convex
functions. If f is multiplicativily convex then the function t → f (et ) is log convex
on (−∞, ∞). The functions exp, sinh, cosh are multiplicativily convex. For more
examples and properties of multiplicativily convex functions the reader is referred to
[10].

A norm ||| · ||| on Mn is called unitarily invariant or symmetric if

|||UAV ||| = |||A|||
for all A ∈ Mn and for all unitaries U, V ∈ Mn. The most basic unitarily invariant
norms are the Ky Fan norms ‖ · ‖(k), (k = 1, 2, . . . , n), defined as

‖A‖(k) =
k∑

j=1

sj (A) (k = 1, 2, . . . , n)

and the Schatten p-norms defined as

‖A‖p =

 n∑

j=1

(sj (A))p




1/p

1 � p < ∞,

where s1(A) � s2(A) � · · · � sn(A) are the singular values of A, that is, the eigen-
values of |A| = (A∗A)1/2. It is customary to assume a normalization condition that
|||diag(1, 0, . . . , 0)||| = 1. The spectral norm (or operator norm) is given by ‖A‖ =
s1(A). An A ∈ Mn is called a contraction if ‖A‖ � 1.

Throughout ||| · ||| denotes an arbitrary unitarily invariant norm on Mn. For (col-
umn) vectors x, y ∈ Cn their inner product is denoted by 〈x, y〉 = y∗x. For an A ∈
Hn, λj (A), 1 � j � n denote the eigenvalues of A arranged in the decreasing order.
We use the notation λ(A) to denote the row vector (λ1(A), λ2(A), . . . , λn(A)). We
then define
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λ(A) ◦ λ(B) = (λ1(A)λ1(B), λ2(A)λ2(B), . . . , λn(A)λn(B)).

Let A ∈ Hn(I ) have spectral decomposition

A = U∗diag(λ1, λ2, . . . , λn)U,

where U is a unitary and λ1, λ2, . . . , λn are the eigenvalues of A. Let f be a real
valued function defined on I. Then f (A) is defined by

f (A) = U∗ diag(f (λ1), f (λ2), . . . , f (λn))U.

For A, B ∈ Hn we consider three kinds of ordering:

(i) B � A (or A � B)
def⇐⇒ A − B positive semidefinite,

(ii) (eigenvalue inequalities)

λ(B) � λ(A)
def⇐⇒ λj (B) � λj (A) (j = 1, 2, . . . , n),

(iii) (weak majorization)

λ(B) ≺w λ(A)
def⇐⇒

k∑
j=1

λj (B) �
k∑

j=1

λj (A) (k = 1, 2, . . . , n).

We can see

B � A �⇒ λ(B) � λ(A) �⇒ λ(B) ≺w λ(A).

For f increasing on I, A, B ∈ Hn(I ), λ(B) � λ(A) �⇒ λ(f (B)) � λ(f (A)).

For f increasing and convex on I, A, B ∈ Hn(I ), λ(B) ≺w λ(A) �⇒
λ(f (B)) ≺w λ(f (A)).

A function f on I is called operator convex if

f (αA + (1 − α)B) � αf (A) + (1 − α)f (B)

for all A, B ∈ Hn(I ) and 0 � α � 1. Thus if the function f is operator convex we
have the inequalities at the strongest level (i).

The purpose of this paper is to show that if we replace operator convexity by
mere convexity we get weak majorization inequalities of kind (iii). If in addition the
function f is also increasing (or decreasing) we get eigenvalue inequalities of kind
(ii). Similar inequalities are proved for log convex functions. These include a number
of known inequalities.

2. Convex functions

The following lemmas will be used to prove the main results in this section. The
reader may refer to [4] for their proofs.

Lemma 2.1 [4, p. 281]. Let A ∈ Hn(I ) and let f be a convex function on I. Then
for every unit vector x ∈ Cn,

f (〈Ax, x〉) � 〈f (A)x, x〉.
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Lemma 2.2 [4, p. 35]. Let A ∈ Hn. Then

k∑
j=1

λj (A) = max
k∑

j=1

〈Auj , uj 〉 (k = 1, 2, . . . , n),

where the maximum is taken over all choices of orthonormal vectors u1, u2, . . . , uk.

Theorem 2.3. Let f be a convex function on I. Then

λ(f (αA + (1 − α)B)) ≺w λ(αf (A) + (1 − α)f (B))

for all A, B ∈ Hn(I ) and 0 � α � 1. If further 0 ∈ I and f (0) � 0 then

λ(f (X∗AX)) ≺w λ(X∗f (A)X)

for all A ∈ Hn(I ) and contractions X ∈ Mn.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of αA + (1 − α)B and let u1, u2, . . . ,

un be the corresponding orthonormal eigenvectors arranged such that f (λ1) �
f (λ2) � · · · � f (λn). Let k = 1, 2, . . . , n. Then

k∑
j=1

λj (f (αA + (1 − α)B)) =
k∑

j=1

f (〈(αA + (1 − α)B)uj , uj 〉)

=
k∑

j=1

f (α〈Auj , uj 〉 + (1 − α)〈Buj , uj 〉)

�
k∑

j=1

[αf (〈Auj , uj 〉) + (1 − α)f (〈Buj , uj 〉)]

�
k∑

j=1

[α〈f (A)uj , uj 〉 + (1 − α)〈f (B)uj , uj 〉]

=
k∑

j=1

〈(αf (A) + (1 − α)f (B))uj , uj 〉

�
k∑

j=1

λj (αf (A) + (1 − α)f (B)),

using convexity of f , Lemmas 2.1 and Lemma 2.2 respectively. This proves the
first assertion. To prove the second assertion, let λ1, λ2, . . . , λn be the eigenvalues
of X∗AX and let u1, u2, . . . , un be the corresponding orthonormal eigenvectors ar-
ranged such that f (λ1) � f (λ2) � · · · � f (λn). Since f (0) � 0, to prove the de-
sired inequality we can assume that ‖Xuj‖ /= 0, j = 1, 2, . . . , n. Then
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k∑
j=1

λj (f (X∗AX)) =
k∑

j=1

f (〈X∗AXuj , uj 〉)

=
k∑

j=1

f

(
‖Xuj‖2

〈
A

Xuj

‖Xuj‖ ,
Xuj

‖Xuj‖
〉

+ (1 − ‖Xuj‖2) · 0

)

�
k∑

j=1

(
‖Xuj‖2f

(〈
A

Xuj

‖Xuj‖ ,
Xuj

‖Xuj‖
〉)

+ (1 − ‖Xuj‖2)f (0)

)

�
k∑

j=1

(
‖Xuj‖2

〈
f (A)

Xuj

‖Xuj‖ ,
Xuj

‖Xuj‖
〉)

=
k∑

j=1

〈X∗f (A)Xuj , uj 〉

�
k∑

j=1

λj (X
∗f (A)X),

using convexity of f, the condition f (0) � 0, Lemmas 2.1 and 2.2 respectively. This
completes the proof. �

The following result is proved in [3]. This follows from Theorem 2.3 taking
f (t) = t r , r � 0 and I = (0, ∞).

Corollary 2.4. Let A, B ∈ Pn. Then

λ(21−r (A + B)r) ≺w λ(Ar + Br)

for all r � 0.

Every nonnegative decreasing function f on [0, ∞) satisfies f (2t) � 2f (t), t ∈
[0, ∞). The next corollary gives an inequality similar to the inequalities proved in
[2] for operator monotone functions.

Corollary 2.5. Let f be a convex function on [0, ∞) such that f (2t) � 2f (t) for
all t ∈ [0, ∞). Then

λ(f (A + B)) ≺w λ(f (A) + f (B))

for all A, B ∈ Sn.
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Proof. By Theorem 2.3, we have

λ

(
f

(
A + B

2

))
≺w λ

(
f (A) + f (B)

2

)
.

Now on replacing A by 2A and B by 2B in the above inequality, we get

λ(f (A + B)) ≺w λ

(
f (2A) + f (2B)

2

)
. (1)

The condition f (2t) � 2f (t) implies f (2A) � 2f (A) and f (2B) � 2f (B).

Therefore

λ

(
f (2A) + f (2B)

2

)
≺w λ(f (A) + f (B)). (2)

Now (1) and (2) give the desired result. �

The following corollary follows on using the Fan Dominance Theorem [4, p. 93].

Corollary 2.6. Let f be a nonnegative convex function on I. Then

|||f (αA + (1 − α)B)||| � |||αf (A) + (1 − α)f (B)|||
for all A, B ∈ Hn(I ) and 0 � α � 1. If further 0 ∈ I and f (0) = 0 then

|||f (X∗AX)||| � |||X∗f (A)X|||
for all A ∈ Hn(I ) and contractions X ∈ Mn.

Remark 2.7. Corollary 2.6 may not be true if f is not nonnegative. To see this one
may take f (t) = − log t.

Remark 2.8. For A, B ∈ Hn, the inequality (see [4, p. 294])

|||(A − B)2m+1||| � 22m|||A2m+1 − B2m+1|||
is equivalent to

|||(A + B)2m+1||| � 22m|||A2m+1 + B2m+1|||, m = 1, 2, . . .

Choosing the nonnegative convex function f (t) = |t |r , r � 1, on (−∞, ∞). Corol-
lary 2.6 provides an analogue of the above inequality,

||| |A + B|r ||| � 2r−1||| |A|r + |B|r |||, r � 1.

Another particular case of Corollary 2.6 when f (t) = t r , r � 1 is Theorem 1 in [7].
If in addition, in Theorem 2.3 we assume that f is increasing (or decreasing) we

have the following stronger result.

Theorem 2.9. Let f be an increasing (or decreasing) convex function on I. Then

λ(f (αA + (1 − α)B)) � λ(αf (A) + (1 − α)f (B))
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for all A, B ∈ Hn(I ) and 0 � α � 1. If, in addition, 0 ∈ I and f (0) � 0, then

λ(f (X∗AX)) � λ(X∗f (A)X)

for all A ∈ Hn(I ) and contractions X ∈ Mn.

Proof. Since f is increasing, for any H ∈ Hn(I )

λj (f (H)) = f (λj (H)) (j = 1, 2, . . . , n).

It is known [4, p. 58] that the eigenvalue λj (H) admits the following max–min char-
acterization:

λj (H) = max
dimM=j

min{〈Hx, x〉; ‖x‖ = 1, x ∈ M} (3)

where M is a subspace of Cn. Then since f is increasing

λj (f (H)) = f (λj (H)) = f

(
max

dimM=j
min{〈Hx, x〉; ‖x‖ = 1, x ∈ M}

)
= max

dimM=j
min{f (〈Hx, x〉); ‖x‖ = 1, x ∈ M}.

Applying this to H = αA + (1 − α)B we have

λj (f (αA + (1 − α)B)) = max
dimM=j

min{f (〈(αA + (1 − α)B)x, x〉);
‖x‖ = 1, x ∈ M}.

By convexity of f and Lemma 2.1, we get

f (〈(αA + (1 − α)B)x, x〉) = f (α〈Ax, x〉 + (1 − α)〈Bx, x〉)
� αf (〈Ax, x〉) + (1 − α)f (〈Bx, x〉)
� 〈(αf (A) + (1 − α)f (B))x, x〉, (‖x‖ = 1).

Now using formula (3), we have

λj (f (αA + (1 − α)B)) � λj (αf (A) + (1 − α)f (B)) .

This completes the proof of the first assertion. The proof of the second assertion is
similar. �

Remark 2.10. Theorem 2.9 may not be true if f is not increasing (or decreasing).
To see this one may take f (t) = |t |, t ∈ (−∞, ∞),

A =
(−1 1

1 −1

)
and B =

(
2 0
0 0

)
.

Remark 2.11. Ando and Zhan [2] proved that

λ(Ar + Br) ≺w λ((A + B)r), r � 1, (4)
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λ((A + B)r) ≺w λ(Ar + Br), 0 � r � 1, (5)

for A, B ∈ Sn. Taking the convex function f (t) = t r , r � 1 in Theorem 2.9, we get

λ((A + B)r) � λ(2r−1(Ar + Br)),

which in turn gives a sharp upper bound for inequality (4). Now let 0 � r � 1. Ap-
plying Theorem 2.9 to the decreasing convex function g(t) = −t r , we get

λ(2r−1(Ar + Br)) � λ((A + B)r).

This provides a sharp lower bound for inequality (5). Taking the decreasing convex
function f (t) = t r , r � 0 in Theorem 2.9, we get

λ(21−r (A + B)r) � λ(Ar + Br),

which gives a stronger result than Corollary 2.4.

Theorem 2.12. Let f be a nonnegative continuous function on [0, ∞). Then f is
increasing and convex with f (0) = 0 if and only if

21/p−1‖f (A) + f (B)‖p � ‖f (A + B)‖p

for all A, B ∈ Sn and p � 1.

Proof. First suppose f is increasing and convex with f (0) = 0. Then by [4, Theo-
rem IV.2.13] and the Fan Dominance Theorem we see that

1

2

∣∣∣∣
∣∣∣∣
∣∣∣∣
(

f (A) + f (B) O

O f (A) + f (B)

)∣∣∣∣
∣∣∣∣
∣∣∣∣ �

∣∣∣∣
∣∣∣∣
∣∣∣∣
(

f (A + B) O

O O

)∣∣∣∣
∣∣∣∣
∣∣∣∣ .

This implies

21/p−1


 n∑

j=1

(
λj (f (A) + f (B))

)p




1/p

�


 n∑

j=1

(
λj (f (A + B))

)p




1/p

.

Thus

21/p−1‖f (A) + f (B)‖p � ‖f (A + B)‖p.

The converse follows (using the given inequality for p = 1) as in [3]. This completes
the proof. �

Remark 2.13. Since a nonnegative decreasing function f satisfies f (2t) � 2f (t)

by Corollary 2.5, we have

λ(f (A + B)) ≺w λ(f (A) + f (B)),

if f is also convex. Thus one might conjecture that for any nonnegative increasing
convex function f on [0, ∞) with f (0) = 0,

λ(f (A) + f (B)) ≺w λ(f (A + B)). (6)
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The inequality (4) supports this when f (t) = t r , r � 1. Our next theorem for which
we need the following lemmas further strengthens this belief.

Lemma 2.14 [4, p. 54]. Let A, B, C ∈ Sn. Then

λ(A) ≺w λ(B)

implies

λ(A) ◦ λ(C) ≺w λ(B) ◦ λ(C).

Lemma 2.15. Let A, B, C ∈ Sn be such that(
A C

C B

)
� O.

Then

λ(C2) ≺w λ(A) ◦ λ(B).

Proof. The positive semidefiniteness of the given matrix implies that there exists a
contraction K ∈ Mn (see [1, p. 13]) such that

C = A1/2KB1/2.

Then using a standard argument with antisymmetric tensor products as in [4, p. 94],
we get the desired inequality. �

Theorem 2.16. Let f, g be nonnegative (continuous) functions on [0, ∞) which
satisfy inequality (6). Then the functions f + g, f ◦ g and fg satisfy inequality (6).

Proof. By Theorem 2.12 f, g are increasing and convex. Let k = 1, 2, . . . , n. Then

k∑
j=1

λj ((f + g)(A) + (f + g)(B)) �
k∑

j=1

λj (f (A) + f (B))

+
k∑

j=1

λj (g(A) + g(B))

�
k∑

j=1

λj (f (A + B)) +
k∑

j=1

λj (g(A + B))

=
k∑

j=1

[
λj (f (A + B) + g(A + B))

]
,

using the fact that f and g are increasing. This proves the result for f + g. To prove
the result for f ◦ g, note that
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λ(f ◦ g(A) + f ◦ g(B)) ≺w λ(f (g(A) + g(B))).

Since f is increasing and convex, the inequality

λ(g(A) + g(B)) ≺w λ(g(A + B))

implies

λ(f (g(A) + g(B))) ≺w λ(f ◦ g(A + B))

and hence

λ(f ◦ g(A) + f ◦ g(B)) ≺w λ(f ◦ g(A + B)).

This completes a proof of the second assertion. Next note that the inequality

λ(f (A) + f (B)) ≺w λ(f (A + B))

and Lemma 2.14 imply

λ(f (A) + f (B)) ◦ λ(g(A + B)) ≺w λ(f (A + B)) ◦ λ(g(A + B))

= λ(f (A + B)g(A + B)). (7)

Again we have

λ(f (A) + f (B)) ◦ λ(g(A) + g(B)) ≺w λ(f (A) + f (B)) ◦ λ(g(A + B)).

(8)

Therefore inequalities (7) and (8) give

λ(f (A) + f (B)) ◦ λ(g(A) + g(B)) ≺w λ(f (A + B)g(A + B)). (9)

Now observe that the matrices(
f (A) (f (A)g(A))1/2

(f (A)g(A))1/2 g(A)

)
and (

f (B) (f (B)g(B))1/2

(f (B)g(B))1/2 g(B)

)

are positive semidefinite. Hence the matrix(
f (A) + f (B) (f (A)g(A))1/2 + (f (B)g(B))1/2

(f (A)g(A))1/2 + (f (B)g(B))1/2 g(A) + g(B)

)

is positive semidefinite. Therefore by Lemma 2.15

λ

([
(f (A)g(A))1/2 + (f (B)g(B))1/2

]2
)

≺w λ(f (A) + f (B)) ◦ λ(g(A) + g(B)). (10)
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Thus from (9) and (10), we get

λ

([
(f (A)g(A))1/2 + (f (B)g(B))1/2

]2
)

≺w λ(f (A + B)g(A + B)).

Then inequality (4) for r = 2 and the above inequality imply

λ(f (A)g(A) + f (B)g(B)) ≺w λ(f (A + B)g(A + B)).

This completes the proof. �

Corollary 2.17. Let p(t) be a polynomial (or a power series) in t ∈ [0, ∞) with
nonnegative coefficients and p(0) = 0. Then

λ(p(A) + p(B)) ≺w λ(p(A + B))

for all A, B ∈ Sn.

Proof. Applying Theorem 2.16 with suitable f, g repeatedly, the inequality

λ(A + B) ≺w λ(A + B)

implies

λ(Am + Bm) ≺w λ((A + B)m), m = 1, 2, . . .

Hence the result follows on applying Theorem 2.16 again repeatedly. �

Remark 2.18. The weak majorization

λ(Am + Bm) ≺w λ((A + B)m), m = 1, 2, . . . ,

has been proved in [5]. This inequality is a special case of inequality (4). From Cor-
ollary 2.17 we also see that

λ(eA + eB − 2I ) ≺w λ(eA+B − I ).

This has been proved in [2]. We further remark that if the inequality (6) holds for the
nonnegative functions hλ(t), λ, t � 0, then it holds for all functions f (t) given by

f (t) =
∫ ∞

0
hλ(t) dµ(λ),

where µ is a positive measure on [0, ∞). The same is true for a function f on [0, ∞)

with f (0) = 0 if it is the limit of polynomials pk(t), k = 1, 2, . . . with nonnegative
coefficients and pk(0) = 0.

Thus we make the following conjecture.

Conjecture 2.19. If f is a nonnegative increasing convex function on [0, ∞) with
f (0) = 0, then

λ(f (A) + f (B)) ≺w λ(f (A + B))

for all A, B ∈ Sn.
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3. Log convex functions

We begin this section with some lemmas. For a proof of the following two lemmas
the reader is referred to [1].

Lemma 3.1 [1, p. 56]. Let A, B ∈ Pn and 0 < r < 1. Then

λ

(
1

r
log(Ar/2BrAr/2)

)
≺w λ(log(A1/2BA1/2)).

The following lemma is known as Trotter’s formula.

Lemma 3.2 [1, p. 57]. Let A, B ∈ Pn. Then

lim
r→0+

[
1

r
log(Ar/2BrAr/2)

]
= log A + log B.

The next lemma follows from Lemmas 3.1 and 3.2.

Lemma 3.3. Let A, B ∈ Pn. Then

λ(log A + log B) ≺w λ(log(A1/2BA1/2)).

Theorem 3.4. Let f be a log convex function on I. Then

λ(f (αA + (1 − α)B)) ≺w λ(f (A)αf (B)1−α)

for all A, B ∈ Hn(I ) and 0 � α � 1.

Proof. The function log f (t) is a convex function on I. Therefore by Theorem 2.3
and Lemma 3.3, we get

λ(log f (αA + (1 − α)B)) ≺w λ(α log f (A) + (1 − α) log f (B))

= λ(log f (A)α + log f (B)1−α)

≺w λ(log[f (A)α/2f (B)1−αf (A)α/2]).
Since the function t → et is increasing and convex, we get

λ(f (αA + (1 − α)B)) ≺w λ(f (A)α/2f (B)1−αf (A)α/2)

= λ(f (A)αf (B)1−α).

This completes the proof. �

Since for any X ∈ Mn, we have |λ(X)| ≺w λ(|X|) (see [4, p. 42]) by the Fan
Dominance Theorem we get a proof of the following corollary.

Corollary 3.5. Let f be a log convex function on I. Then

|||f (αA + (1 − α)B)||| � |||f (A)αf (B)1−α|||
for all A, B ∈ Hn(I ) and 0 � α � 1.



J.S. Aujla, F.C. Silva / Linear Algebra and its Applications 369 (2003) 217–233 229

Corollary 3.6. Let a > 1 and A, B ∈ Hn. Then

λ(aA+B) ≺w λ(aAaB).

Proof. Let p = max{‖A‖, ‖B‖}. Then −pI � A, B � pI. The function f (t) = at

is log convex on [−p, p]. Therefore by Theorem 3.4, we get

λ(aαA+(1−α)B) ≺w λ(aαAa(1−α)B)

for 0 � α � 1. Now by taking α = 1/2 and then replacing A by 2A and B by 2B in
the above inequality, we get the desired result. �

Remark 3.7. As a special case of Corollary 3.6 when a = e we obtain the famous
Golden–Thompson inequality:

tr(eA+B) � tr(eAeB)

for A, B ∈ Hn. Here for X ∈ Mn, tr(X) denotes the trace of X. The following
corollary may be considered as another generalization of the Golden–Thompson in-
equality.

Corollary 3.8 [8, p. 513–514]. Let f be a multiplicatively convex function on (0, ∞).

Then

λ(f (eαA+(1−α)B)) ≺w λ(f (eA)αf (eB)1−α)

for all 0 � α � 1 and A, B ∈ Hn.

As another application of Theorem 3.4, we obtain a generalized harmonic–geo-
metric mean (Young’s) inequality.

Corollary 3.9. Let A, B ∈ Pn and 0 � α � 1. Then

λ([αA−1 + (1 − α)B−1]−r ) ≺w λ(AαrB(1−α)r )

for all r � 0.

Proof. Let p = max{‖A‖, ‖A−1‖, ‖B‖, ‖B−1‖}. Then −pI � A, A−1, B, B−1 �
pI and the function t → t−r is log convex on (0, p]. Therefore by Theorem 3.4

λ([αA + (1 − α)B]−r ) ≺w λ(A−αrB−(1−α)r ).

Now on replacing A by A−1 and B by B−1 in the above inequality, we get

λ([αA−1 + (1 − α)B−1]−r ) ≺w λ(AαrB(1−α)r ).

This completes the proof. �

Remark 3.10. For an increasing log convex function f

λ(f (αA + (1 − α)B)) � λ(f (A)αf (B)1−α)
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does not hold. In fact, let A, B ∈ Hn and f (t) = et . It is known (see [4, p. 260])
that

k∏
j=1

λj [exp (αA + (1 − α)B)] �
k∏

j=1

λj [exp(αA) exp((1 − α)B)]

(k = 1, 2, . . . , n).

But

n∏
j=1

λj [exp(αA + (1 − α)B)] = det[exp(αA + (1 − α)B)]

= det[exp(αA) exp((1 − α)B)]

=
n∏

j=1

λj [exp(αA) exp((1 − α)B)].

Thus it follows that we can find A, B ∈ Hn and an i, 1 � i � n such that

λi(exp(αA + (1 − α)B)) � λi(exp(αA) exp((1 − α)B)).

Remark 3.11. Note that Theorem 2.3 with ≺w replaced by ≺w (see [4, p. 30]) and
Theorem 2.9 with inequalities in the reverse order hold when “convex function” is
replaced by appropriate “concave function”. Then for a log concave function f on I

one might conjecture that

λ(f (αA + (1 − α)B)) ≺w λ(f (A)αf (B)1−α)

for all A, B ∈ Hn(I ) and 0 � α � 1. However this fails. To see this one may take
f (t) = t6, I = (0, ∞), α = 1/2,

A =
(

4 −5
−5 7

)
and B =

(
9 −1

−1 1

)
.

Lemma 3.12 [4, p. 267]. Let A, B ∈ Pn and 0 � α � 1. Then

|||AαB1−α||| � |||A|||α|||B|||1−α.

Theorem 3.13. Let Aj ∈ Pn, j = 1, 2, . . . , m and let f be a positive increasing
function on (0, ∞). Let

g(t) =
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣f


 m∑

j=1

At
j




∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ .

If f is convex on (0, ∞) then the function g is convex on (−∞, ∞). If f is log
convex on (0, ∞) then the function g is log convex on (−∞, ∞).
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Proof. Let s, t ∈ (−∞, ∞). Note that the matrices(
As

j A
(s+t)/2
j

A
(s+t)/2
j At

j

)
and

(
At

j A
(s+t)/2
j

A
(s+t)/2
j As

j

)

are positive semidefinite and hence so is the matrix(
As

j + At
j 2A

(s+t)/2
j

2A
(s+t)/2
j As

j + At
j

)
.

This implies that the map t → At
j is mid-point convex and hence by continuity it

is convex. Since the sum of convex maps is convex it follows that the map t →∑m
j=1 At

j is convex. Let 0 � α � 1. Therefore, we have

O �
m∑

j=1

A
αs+(1−α)t
j � α

m∑
j=1

As
j + (1 − α)

m∑
j=1

At
j .

Since a unitarily invariant norm is monotone in the sence that O � X � Y implies
|||X||| � |||Y |||, the above inequality gives∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
j=1

A
αs+(1−α)t
j

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ �

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣α

m∑
j=1

As
j + (1 − α)

m∑
j=1

At
j

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ . (11)

Now if f is increasing and convex then inequality (11) together with the Fan Domi-
nance Theorem and Corollary 2.6 imply∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣f


 m∑

j=1

A
αs+(1−α)t
j




∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ �

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣αf


 m∑

j=1

As
j


 + (1 − α)f


 m∑

j=1

At
j




∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ .

Then use of the triangle inequality for norms gives the convexity of g. If f is increas-
ing and log convex then inequality (11) together with the Fan Dominance Theorem,
Corollary 3.5 and Lemma 3.12, imply∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣f


 m∑

j=1

A
αs+(1−α)t
j




∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ �

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣f


α

m∑
j=1

As
j + (1 − α)

m∑
j=1

At
j




∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

�

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

f


 m∑

j=1

As
j







α 
f


 m∑

j=1

At
j







1−α
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

�

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣f


 m∑

j=1

As
j




∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
α ∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣f


 m∑

j=1

At
j




∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
1−α

.

This proves the log convexity of g. �
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Remark 3.14. The special case of Theorem 3.13 when f (t) = t r , r � 1 is Theorem
4 in [6].

Let A = (aij ) and B = (bij ) be in Mn. Then their Hadamard product denoted
by A ◦ B is the n × n matrix whose (i, j) entry is (aij bij ). We have the following
theorem whose proof is exactly similar to the proof of Theorem 3.13 and is therefore
not included.

Theorem 3.15. Let Aj , Bj ∈ Pn, j = 1, 2, . . . , m and let f be a positive increas-
ing function on (0, ∞). Let

g(t) =
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣f


 m∑

j=1

(At
j ◦ Bt

j )




∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ .

If f is convex on (0, ∞) then the function g is convex on (−∞, ∞). If f is log convex
on (0, ∞) then the function g is log convex on (−∞, ∞).

Next we prove a representation theorem.

Theorem 3.16. Let p, q > 1 be such that (1/p) + (1/q) = 1 and A ∈ Pn. Then

max
X∈�

|||AX||| = |||Ap|||1/p

where � = {X ∈ Pn : |||Xq ||| = 1}.

Proof. By Lemma 3.12, we have

|||A1/pX1/q ||| � |||A|||1/p|||X|||1/q .

Now replace A by Ap and X by Xq to get

|||AX||| � |||Ap|||1/p

using that |||Xq ||| = 1 if X ∈ �. Equality occurs in the above inequality if we take
Xq = Ap/|||Ap|||. This completes the proof. �

For the monotonicity and limit properties of the function f (p) = |||Ap|||1/p see
[6, Corollary 9].

The following corollary is the well known Minkowski’s inequality (see [4, p. 88])
for unitarily invariant norms.

Corollary 3.17. Let A, B ∈ Pn and p > 1. Then

|||(A + B)p|||1/p � |||Ap|||1/p + |||Bp|||1/p.

Proof. Let q = p/(p − 1). Then (1/p) + (1/q) = 1. Therefore by Theorem 3.16,
we have



J.S. Aujla, F.C. Silva / Linear Algebra and its Applications 369 (2003) 217–233 233

|||(A + B)p|||1/p = max
X∈�

|||(A + B)X|||
� max

X∈�
|||AX||| + max

X∈�
|||BX|||

= |||Ap|||1/p + |||Bp|||1/p.

This is the desired inequality. �

Remark 3.18. Theorem 3.16 when norm is replaced by trace is the main result in
[9].
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