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Free radical formation and oxidative damage have been extensively investigated andvalidated as important contrib-
utors to the pathophysiology of acute central nervous system injury. The generation of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) is an early event following injury occurringwithinminutes ofmechanical
impact. A key component in this event is peroxynitrite-induced lipid peroxidation. As discussed in this review, per-
oxynitrite formation and lipid peroxidation irreversibly damages neuronal membrane lipids and protein function,
which results in subsequent disruptions in ion homeostasis, glutamate-mediated excitotoxicity, mitochondrial re-
spiratory failure andmicrovascular damage. Antioxidant approaches include the inhibition and/or scavenging of su-
peroxide, peroxynitrite, or carbonyl compounds, the inhibition of lipid peroxidation and the targeting of the
endogenous antioxidant defense system. This review covers the preclinical and clinical literature supporting the
role of ROS and RNS and their derived oxygen free radicals in the secondary injury response following acute trau-
matic brain injury (TBI) and spinal cord injury (SCI) and reviews the past and current trends in the development
of antioxidant therapeutic strategies. Combinatorial treatment with the suggested mechanistically complementary
antioxidantswill also be discussed as a promising neuroprotective approach in TBI and SCI therapeutic research. This
article is part of a Special Issue entitled: Antioxidants and antioxidant treatment in disease.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction and background

Hallmarks of the secondary injury response in TBI and SCI include the
loss of ionic homeostasis, glutamate excitotoxicity, mitochondrial dys-
function and microvascular disruption, which all occur immediately fol-
lowing the primary mechanical injury. These complex and integrated
secondary injury cascades feed into pathways that yield free radical for-
mation, which induces oxidative damage, another pathophysiological
hallmark of central nervous system (CNS) injury. Uncontrolled reactive
oxygen chain reactions triggered by secondary injury cascades can feed
back into the secondary injury response creating an endless pool of ROS
and the ultimate consequence ismassive neuronal death. This reviewdis-
cusses both the role of ROS in the propagation of CNS injury and past and
current therapeutic strategies used for the treatment of TBI and SCI.
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1.1. Reactive oxygen species

ROS are oxygen-derived radicals and include the highly reactive su-
peroxide (O2•

−), hydroxyl (•OH) and peroxyl (RO2•) as well as non-
radicals such as hydrogen peroxide (H2O2) and peroxynitrite
(ONOO−) (Table 1). The cascade of oxygen radical reactions begins
with the production of O2•

−, which occurs in response to rapid eleva-
tions in intracellular Ca2+ immediately following the primary mechan-
ical injury in TBI and SCI. A single electron reduction of oxygen results in
the formation of O2

•−, which then acts as either an oxidant or a reduc-
tant. Superoxide dismutase (SOD) rapidly catalyzes the dismutation of
O2•

− into H2O2 and oxygen and at low pH, O2•
− can dismutate sponta-

neously. The formation of highly reactive oxygen radicals, which have
unpaired electron(s) in their outer molecular orbitals and the propaga-
tion of chain reactions are fueled by non-radical ROS, which do not have
unpaired electron(s), but are chemically reactive. For example, •OH rad-
icals are generated in the iron-catalyzed Fenton reaction where ferrous
iron (Fe2+) is oxidized to form •OH in the presence of H2O2.

Fe2þ þ H2O2→Fe3þ þ �OHþ OH−

Superoxide acting as a reducing agent can donate electrons to ferric
iron (Fe3+), cycling it back to the ferrous state in the Haber–Weiss
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reaction, thus driving subsequent Fenton reactions and increased pro-
duction of •OH.

O2
•− þ Fe3þ→Fe2þ þ O2

Under physiological conditions, iron is tightly regulated by its
transport protein, transferrin and storage protein, ferritin, both of
which bind the ferric (Fe3+) form. This reversible bond of transferrin
and ferritin with iron decreases with declining pH (below pH7), as is
the case after CNS injury resulting in the release of iron and initiation
of oxygen radical production. A second source of iron comes from he-
moglobin upon its release after mechanical induced hemorrhage.

Although O2•
− itself is less reactive than •OH radical, its reaction

with nitric oxide (•NO) radical forms the highly reactive oxidizing
agent, peroxynitrite (PN: ONOO−) and hydroxyl radical as a bypro-
duct (Table 1).

O2
•− þ �NO→ONOO−

Subsequent PN decomposition results in the formation of addi-
tional highly reactive cytotoxic free radicals including nitrogen diox-
ide (•NO2) and carbonate radical (•CO3). •NO2 and •CO3 are formed
by either the protonation of PN to peroxynitrous acid (ONOOH) or
by PN reaction with carbon dioxide to form nitrosoperoxocarbonate
(ONOOCO2). ONOOH and ONOOCO2 are separately decomposed to
form highly reactive NO2 and •OH and •NO2 and •CO3, respectively.

ONOOH→ � NO2 þ �OH
ONOOCO2→ � NO2 þ �CO3

The PN-derived radicals induce oxidative damage to proteins, lipids
(cellular and mitochondrial membranes) and nucleic acids [1, 2]. For ex-
ample, PN-derived NO2 induces protein nitration resulting in posttransla-
tional modification of protein-bound tyrosine to 3-nitrotyrosine (3-NT).
Thus, 3-NT serves as a biological marker of ONOO- action [3, 4]. Addition-
ally, PN products can instigate lipid peroxidation (LP) further propagating
oxidative and irreversible cellular damage.

1.2. Lipid peroxidation

Lipid peroxidation defined as the oxidative degradation of lipids
occurs when oxygen radicals react with polyunsaturated fatty acids
such as arachidonic acid, linoleic acid, eicosapentaenoic (EPA) acid
and docosahexaenoic acid (DHA) resulting in disruptions in cellular
and membrane integrity. The process is a radical chain reaction char-
acterized by three distinct steps: initiation, propagation and termina-
tion [5]. Briefly, initiation begins with ROS-induced hydrogen atom
abstraction from polyunsaturated fatty acids, which yields a lipid rad-
ical (L•). In the second propagation step, the unstable L• reacts with
Table 1
Reactive oxygen species and their sources.

ROS Symbols Source

Superoxide
anion

O•−2 Arachidonic acid metabolism, xanthine oxidase activity,
mitochondrial leak

Hydrogen
peroxide

H2O2 Dismutation of superoxide catalyzed by SOD

Hydroxyl
radical

HO• Fenton reaction

Nitric oxide NO− Nitric oxide synthase (NOS) activity
Peroxynitrite OONO− The reaction of •NO with O2•

−

Lipid peroxyl LOO• The reaction of a radical (L•) with oxygen, lipid
hydroperoxide (LOOH) decomposition by Fe3+

Lipid alkoxyl LO• LOOH decomposition by Fe2+

ROS and their sources implicated in the secondary injury response following trauma-
induced injury.
oxygen to form a lipid peroxyl radical (LOO•). The LOO• in turn ab-
stracts a hydrogen atom from adjacent polyunsaturated fatty acids
yielding a lipid hydroperoxide (LOOH) and a second L•, which sets
off a series of chain reactions. These propagation reactions are termi-
nated in the third step when the substrate becomes depleted and a
lipid radical reacts with another radical or radical scavenger to yield
a stable non-radical end product. Two highly toxic products of LP
are 4-hyroxynonenal (4-HNE) and acrolein, both of which have
been well characterized in TBI and SCI experimental models. These al-
dehydic peroxidation end products covalently bind proteins and
amino acids altering their structure and functional properties.
Amino acids (lysine, histidine and arginine) are also targeted by oxy-
gen radicals resulting in the formation of protein carbonyl moieties.

Overproduction of the ROS described above overwhelms the anti-
oxidant response resulting in ROS interactions with proteins, lipids,
carbohydrates and nucleic acids. Oxidative modification of these bio-
molecules alters their functions ultimately leading to irreversible cel-
lular damage. This cascade of damage is collectively referred to as
“oxidative stress” or “oxidative damage”.

The impact of ROS production is heightened when oxygen radicals
feed back to secondary injury pathways creating a continuous cycle of
ion imbalance, Ca2+ buffering impairment, mitochondrial dysfunc-
tion, glutamate-induced excitotoxicity and microvascular disruption.
One example of ROS-induced ionic disruption arises from LP induced
damage to the plasma membrane Ca2+ pump and Na+/K+-ATPase,
which contributes to increases in intracellular Ca2+ concentrations,mito-
chondrial dysfunction and additional ROS production. Both Ca2+ pump
andNa+/K+-ATPase disruptions result in further increases in intracellular
Ca2+ and Na+ accumulation respectively, the latter causing reversal of
the Na+/Ca++ exchanger [6, 7]. PN formed from mitochondrial Ca2+

overload contribute to mitochondrial dysfunction. Nitric oxide, formed
from mitochondrial NOS, in turn reacts with O2•

− to produce the highly
toxic PN,which impairs respiratory andCa2+buffering capacity via its de-
rived free radicals [8]. Indeed increased PN-derived 3NT and 4HNE has
been detected during the time of mitochondrial dysfunction and corre-
lates with respiratory and Ca2+ buffering impairment [9]. Increased syn-
aptosomal 4-HNE content is associated with impaired synaptosomal
glutamate and amino acid uptake [10, 11]. Glutamate andNMDA induced
damage in neuronal cultures is attenuated with LP inhibition confirming
LP and oxidative damage as mediators of glutamate excitotoxicity [12].
The occurrence of LP-induced spinal microvascular damage was demon-
strated with treatment with LP inhibitors vitamin E and ascorbic acid,
which inhibited the reduction inwhitematter spinal cord bloodflow [13].

2. Oxidative damage in the pathophysiology of CNS injury

The current body of evidence of ROS-induced cellular damage in
CNS injury is vast. Furthermore, the time course of ROS production
and damage has been well characterized in established experimental
models of TBI and SCI. Highlights of some of the most significant find-
ings is presented here.

2.1. Evidence for oxidative damage in TBI

One of the first lines of evidence of oxygen radical formation in sec-
ondary injury came from cat fluid percussion TBI models demonstrating
an immediate post-injury increase in O2•

− that continued at least 1 h
post-injury [14, 15]. This was followed by studies in experimental rodent
TBImodels demonstrating a rapid transient increase in brain •OH levels as
early as 5 min post injury [16, 17]. The immediate post-traumatic burst of
•OH was followed by increases in the LP product, phosphatidylcholine
hydroperoxide (PCOOH) within 1 h post-injury [18].

Subsequent studies demonstrated PN formation in various estab-
lished rodent TBI models via indirect detection methods. Endothelial,
neuronal and inducible NOS, which can produce both precursors of
PN (•NO and O2•

−) are up-regulated within 24 h after TBI in rat
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controlled cortical impact (CCI) and weight drop models [19–21].
Mesenge and colleagues [22] demonstrated PN action by quantifying
increases in tyrosine nitration at 4 h and 24 h post-injury in a mouse
closed head injury model. In addition, PN induced oxidative damage is
evidenced by the increase in the PN biomarker 3-NT, which has been
detected within the first hour post-injury with elevations lasting for
several days [23, 24] (Fig. 1). Similar increases in the LP marker, 4HNE
have also been demonstrated early post-injury and coincidewith eleva-
tions in 3-NT [23]. Furthermore, a substantial amount of evidence
supporting oxidative damage in the pathophysiology of TBI comes
from studies demonstrating neuroprotection of post-traumatic
damaged tissue by treatment with antioxidant compounds [25–28].

2.2. Evidence for oxidative damage in SCI

Increases in O2•
− and •OH have been well documented in con-

tused spinal cord injuries. Specifically, Liu et al. [29] reported an im-
mediate increase in O2•

− production following rat spinal cord
impact injury, which remained elevated over 10 h [29]. Early in-
creases in •OH levels occur by 5 min extending through 3 h following
impact injury to the rat spinal cord [30, 31].

Initial studies demonstrating free radical production and oxidative
damage in CNS injury comes from experimentally injured cat spinal
cord. The LP product, malondialdehyde (MDA) measured by electron
resonance spectrometry was one of the first lines of evidence for free
radical production in SCI andwas increasedwithin 5 h following impact
SCI [32]. Hall et al. [33] detected a similar increase in MDA and increase
in free radical-induced cyclic guanosine minophosphate (cGMP) levels
by 1 h. Early MDA production in rat models of SCI has also been well
established to increase as early as 2 h following injury [34].

Alternative approaches used tomeasure and support LP include im-
munohistochemical analysis of LP-derived aldehydic breakdown prod-
ucts 4-HNE and acrolein and free-iron correlations with increased LP
products. Time courses in contused rat spinal cord revealed increases
in 3-NT and 4-HNE at 3 h post injury with peak levels for both at 24 h
[35]. While 3-NT levels returned to control conditions by 2 weeks, 4-
HNE levels remained elevated up to 2 weeks post injury [35]. Others
also report similar immunohistochemical and immunoblot increases
in the levels of 4-HNE [10, 36, 37] and acrolein [38, 39].

Evidence for PN-induced oxidative damage via 3-NT immunological
detection occurs as early as 1 h post rat contused spinal cord [35]. This
increase in 3-NT overlaps with the temporal and special time course
of 4-HNE, suggesting PN as the culprit of both forms of post-injury
Fig. 1. Time course of measured secondary injury events in the mouse CCI model of TBI. Mit
generation as measured by the respiratory control ratio and mitochondrial calcium-bufferin
in cytoplasmic Ca2+ and subsequent cell membrane damage as measured by calpain-media
TBI [135]. PN-induced oxidative damage as measured by immunohistochemical elevations in
days [23]. Post-traumatic time course of neurodegeneration as demonstrated by de olmos s
oxidative damage [35]. Further support for PN-induced damage in SCI
comes from studies that infused the PN-generating compound SIN-1
into non-injured spinal cord to mimic production of 3-NT and subse-
quent neuronal damage in contused spinal cord [40–43].

It should be noted that the reported time course of ROS generation
and oxidative stress varies across the different head injury models,
but this is not surprising considering each model represents a differ-
ent magnitude of injury: focal, multifocal and diffuse. Regardless of
the timing differences, it is evident from the cumulative literature
that oxidative stress plays an early role in the secondary sequelae un-
derlying human CNS injury and the observed variations translate to
the complexity of clinical CNS injury. Collectively these data demon-
strate the significant early contribution of oxidative damage in the
secondary injury response in TBI and SCI supporting the need for im-
proved antioxidant therapies in CNS injury.

3. Antioxidant therapy strategies

Based on the literature characterizing the oxidative secondary in-
jury response in CNS injury, potential antioxidant therapeutic inter-
ventions include: (1) compounds that either inhibit the formation
of or scavenge ROS and RNS prior to LP initiation or (2) compounds
that inhibit LP propagation reactions or scavenge lipid radicals
(LOO•) and alkoxyl radical (LO•) after LP is initiated. The major limi-
tation of the first approach is the narrow therapeutic window to
block the initial burst of post-traumatic radical species production
that is responsible for the free radical chain reactions of oxidative
damage. Thus, it may be argued that pharmacological inhibition of
this almost immediate free radical formation is impractical. The sec-
ond approach of inhibition of LP propagation reactions requires com-
pounds that target neural cell membranes to block LOO• and LO•
interaction with adjacent polyunsaturated fatty acids. This antioxi-
dant strategy has a more feasible therapeutic window and has proven
successful with administration of high doses of the glucocorticoid ste-
roid methyloprednisolone (MP). A more detailed discussion of gluco-
corticoid antioxidant mechanisms is described below.

4. Pharmacological antioxidants therapies for SCI

4.1. High-dose methylprednisolone therapy for SCI

The use of glucocorticoids in the treatment of CNS injury was not
novel as dexamethasone and MP were already routinely employed in
ochondrial oxidative damage and dysfunction precedes the onset (by 3 h) of neurode-
g capacity following CCI-TBI-induced injury [134]. Oxidative damage-induced increases
ted spectrin degradation begins by 6 h and continues through 48 h (peak at 24 h) post-
the oxidative markers, 3-NT and 4-HNE, occurs by 1 h and remains elevated for several
ilver staining begins at 12 h and reaches its peak by 72 h following injury [135].

image of Fig.�1
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the clinical treatment of SCI. However, their use in this regard as far
back as the 1960s was based on their ability to decrease cerebral
edema [44].

The idea of glucocorticoid antioxidant therapy in CNS trauma
grew attention in the early 1980s following studies characterizing
glucocorticoid effects on spinal cord function, motor neuron excitabil-
ity and synaptic transmission in cat spinal cord [45–47]. The idea that
glucocorticoid steroids could inhibit post-traumatic LP was based
upon their lipophilic nature allowing them to insert themselves with-
in the cell membrane and thus potentially inhibit LP propagation re-
actions in the phopholipid bilayer. A series of studies soon emerged
using high-dose MP treatment in the contused cat spinal cord exper-
imental model. These studies characterized MP as an effective inhibi-
tor of free-radical reactions and LP if administered in high doses
intraveneously [47, 48]. Subsequent studies described additional neu-
roprotective effects of MP including the ability to inhibit post-
traumatic spinal cord ischemia, support aerobic energy metabolism,
decrease intracellular calcium overload and reduce calpain-
mediated neurofilament loss [49–52]. However, the dose–response
of MP in relation to LP and these other multimodal effects was
found to follow a U-shape pattern [53]. The antioxidant efficacy of
certain glucocorticoids was also found to be independent of steroid
receptor activity and did not correlate with their anti-inflammatory
potency. Moreover the LP-inhibiting actions of MP required much
higher doses that exceed what is required for classic glucocorticoid
receptor-mediated actions [54]. It should be noted that lower doses
of MP are likely to produce anti-inflammatory effects, which is a
well-established function of glucocorticoids [55].

4.2. NASCIS trials I–III

During the rapid pre-clinical advances in the understanding of glu-
cocorticoid antioxidant mechanisms, clinical studies of MP had already
been initiated. In 1985 the first National Acute Spinal Cord Injury Study
(NASCIS I) using MP for the treatment of spinal cord injury was initiat-
ed, but the 10-day, low-dose therapy of MP failed to demonstrate any
significant efficacy [56, 57]. The significant evidence obtained from pre-
clinical experiments using high-doseMP treatment in cat spinal cord in-
jury described above prompted the secondNASCIS published in 1990. In
the NASCIS II trial, a 24 h intensive dosing with MP (30 mg/kg i.v. bolus
plus 23 h infusion as 5.4 mg/kg) was compared to placebo in acute SCI
[58]. Indeed when the 24 h dosing with MP was initiated within the
first 8 h, it resulted in significant improvements in both neurologically
complete (i.e., plegic) and incomplete (i.e., paretic) patients with sus-
tained recovery lasting through 1 yr follow-ups [59, 60]. The outcomes
of NASCIS were replicated and confirmed in subsequent trials in SCI pa-
tients [61, 62]. Unfortunately, when the 24 h dosing with MP was
delayed until after 8 h, it resulted in decreased neurological recovery,
thus limiting the therapeutic window towithin 8 h [60]. Additional pre-
dictable side effects related to steroid therapy were also described in-
cluding gastrointestinal bleeding, wound infections and delayed
healing all of which were not significantly more frequent than those
in placebo-treated patients [58].

The occurrence of the steroid therapy side effects prompted the
development of a steroid compound that retained the anti-LP effects
of MP without producing the typical glucocorticoid effects of the ste-
roid. Thus emerged the 21-aminosteroids or “lazaroids,” a novel
group of LP inhibitors designed to be devoid of glucocorticoid recep-
tor interactions, which limited the clinical use of high-dose MP. Of
these, tirilazad (U-74006F) was selected for further studies based on
positive results in animal SCI models [63–65].

With the development of tirilazad came the third NASCIS trial,
which compared three groups of patients: those that received (1) a
24 h intensive MP dosing (30 mg/kg i.v. bolus plus 23 h infusion at
5.4 mg/kg) described in NASCIS II, (2) a 48 h intensive MP dosing
(30 mg/kg i.v. bolus plus 47 h infusion at 5.4 mg/kg) and (3) a single
MP dose (30 mg/kg i.v. bolus) followed by 47 h administration of tir-
ilazad [66, 67]. The groups were also assessed for recovery within a
3 h window compared to a cohort that received delayed treatment
3–8 h post SCI. All three groups recovered comparably when treat-
ment was begun within the 3 h window. However differences in the
effectiveness emerged when the treatment was delayed 3–8 h post
SCI. In the 3–8 h cohort, the 48 h MP dosing group recovered signifi-
cantly better than the 24 h MP dosing group. Recovery in the tirilazad
3–8 h post SCI cohort was better then the 24 h MP group but not sig-
nificant, and poorer than the 48 h MP group. Collectively, these re-
sults demonstrated that initiation of high dose MP treatment is
optimal within 3 h, tirilazad is as effective as 24 h MP therapy and if
treatment is delayed after 3 h post SCI, MP therapy should be extend-
ed from 24 h to 48 h. However, prolonged dosing with MP resulted in
significantly more glucocorticoid related immunosuppression related
side effects including gastrointestinal bleeding, wound infections, and
delayed healing [67]. As expected the non-glucocorticoid, tirilazad
did not show evidence of steroid related side effects and would thus
be a safer compound for extended dosing studies.

Two important parameters of the NASCIS trials were the defined
antioxidant therapeutic window and treatment duration, both of
which prompted controversies and confusion surrounding the data
quality, statistical analysis and interpretation [68–72]. In addition,
the observed associated complications with steroid therapy (sepsis,
hyperglycemia, delayed wound healing) prompted questions regard-
ing the benefit-risk ratio of MP in the treatment of human SCI even
though high-dose MP therapy was not found to significantly increase
these side effects compared to placebo-treated patients. If initiated
soon after injury (within 8 h) and with continued treatment for 24
to 48 h, high-dose MP is beneficial in improving motor neurologic
function. If treatment is delayed until 3 to 8 h after injury, then a
48 h dosing regimen is required for improved neurologic outcome.
Recognizing these two important parameters (therapeutic window
and duration) as well as the narrow U-shaped dose response of MP
is crucial in commencing the appropriate therapy for SCI. Despite
the criticisms, MP steroid therapy is the only pharmacological therapy
to have shown efficacy in a phase III randomized trial and to date re-
mains the only available acute neuroprotective treatment for SCI.
However, normal neurological function is not achieved on average
with MP treatment demonstrating the need for more research and
randomized clinical trials on steroid therapy including the possibility
of combined neuroprotective treatment.

Despite the inability of the above-mentioned SCI therapies to
achieve robust neuroprotection and motor recovery the SCI clinical tri-
als to date have provided positive valuable information and paved the
way for the development of more effective therapeutics and clinical
evaluation. Indeed a number of recent publications have established
guidelines and recommendations for future SCI clinical trials [73–76].

5. Pharmacological antioxidants therapies for TBI

The antioxidant TBI trials thus so far, which include polyethylene
glycol-conjugated-SOD (PEG-SOD), tirilazad and dexanabinol, have
unfortunately failed in their efforts to provide neuroprotection in
moderately to severely injured TBI patients. A brief discussion of the
PEG-SOD and tirilazad trials and their inadequacies follows.

5.1. PEG-SOD

SOD was previously shown in experimental head injury models to
inhibit the post-traumatic microvascular dysfunction induced by
rapid up-regulation of O2•

− following injury. Soon after these studies
a small clinical trial was initiated using a more stable PEG-conjugated
SOD (PEG-SOD) in TBI patients, in which treatment was initiated
within 8 h post injury. Initial results indicated a trend towards im-
proved neurological outcomes [77], however a later multi-center
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phase III study did not amount to significant effects on increased sur-
vival or neurologic recovery [78]. PEG-SOD was limited in its thera-
peutic value based on it large size and rather narrow therapeutic
window to scavenge the short-lived primordial O2•

− radical. A target
further downstream in the post-traumatic free radical pathways
would seemingly be more feasible.

5.2. Tirilazad

The non-glucocorticoid LP inhibitor tirilazad, which inhibits LP
propagation reactions by membrane stabilization and scavenging
LOO• was tested as a TBI therapeutic in the early 1990s around the
time of its use in the NASCIS III study. After successfully passing a
small phase safety trial, tirilazad entered two (North America and Eu-
rope) phase III multi-center trials in moderately and severely injured
TBI patients. Tirilazad or placebo was initiated within 4 h following
injury at a dose of 2.5 mg/kg every 6 h for a duration of 5 days. Both
trials failed for different reasons. The data from the North American
study was stopped because of improper randomization and an initial
concern of mortality amongst the tirilazad-treated group. The Euro-
pean data was published in 1998 and the study failed to show any sig-
nificant benefit for tirilazad in the treatment of TBI in either the
moderate or severely injured patient groups [79]. A subsequent post
hoc analysis revealed significantly less mortality in moderately and
severely injured male patients that also had subarachnoid hemor-
rhage. Additional clinical trials of tirilazad in TBI have not since
been pursued. Factors contributing to the failure of the tirilazad
study were the apparent inability of the agent to cross the blood–
brain barrier in high enough concentrations in severely injured pa-
tients as well as gender differences in treatment outcomes and drug
metabolism [80, 81].

The disappointing results of the TBI clinical trials have prompted
an intense debate on the need for major improvements in the design
of future TBI clinical trials. Included is the need for in depth preclinical
testing of potential agents in multiple species and head injury models,
alternative strategies in randomization of patient populations, ade-
quate pharmacokinetic data and distinguishing subgroups of TBI pa-
tients prior to trial initiation [81, 82]. Another major challenge in
TBI clinical trials is the heterogeneous nature of head trauma. Keeping
this mind it is plausible that some of the aforementioned agents that
have failed may indeed be effective within subgroups of TBI popula-
tions. This has been shown in various post hoc analyses of specific pa-
tient subgroups that were found to benefit from the proposed
treatment compared to placebo. Thus, the need for improved clinical
trial design and analyses is imperative for the future of novel TBI
therapeutics.

6. Recent advances in antioxidant therapeutic strategies

A detailed summary of antioxidant approaches in SCI and TBI was
recently published [83, 84]. Here, an update on the current promising
neuroprotective mechanisms for CNS injury will be reviewed.

6.1. U-83836E

U-83836E is a second-generation lazaroid with a non-steroidal
structure characterized by a ring portion of alpha-tocopherol bonded
to various amine groups. Its structure enables the dual functionality of
LP inhibition and scavenging LOO•, therebymaking it muchmore effec-
tive than the endogenous scavenger vitamin E. U-83836E has been
shown to decrease post traumatic LP and protein nitration as well as
preserve mitochondrial respiratory function and calcium buffering ca-
pacity in the mouse CCI TBI model (Fig. 1) [85]. More recently U-
83836E has also been shown to inhibit calpain-mediated cytoskeletal
degradation in the samemodel (Fig. 1) signifying the intricate relation-
ship between post-traumatic LP, disruptions in neuronal Ca2+
homeostasis and calpain-mediated cytoskeletal damage [86]. In this re-
gard, U-83836E is able to inhibit an early event in a series of linked sec-
ondary injury pathways, thereby providing neuroprotection atmultiple
biochemical levels (See Fig. 2 for U-83836E molecular targets).

6.2. Melatonin

Melatonin (n-acetyl-5-mehoxytryptophan), a pleiotropic com-
pound that primarily functions in the regulation of circadian rhythms
and sleep also has known antioxidant and neuroprotective properties.
The antioxidant actions of melatonin include the direct scavenging of
free radicals as well as indirect regulation of endogenous antioxidant
enzyme expression [87]. The ability of melatonin to scavenge LOO•
and react with PN has been previously described [88–90]. There are ex-
tensive studies in models of experimental SCI demonstrating
melatonin-induced decrease in lipid peroxidation, preservation of neu-
ronal structure and increased functional recovery following injury
[91–94]. A more recent combination therapy of melatonin and dexa-
methasone demonstrated significant anti-inflammatory effects and tis-
sue and motor recovery in an experimental model of mouse SCI [95].
Melatonin administered in combination with exercise in the contused
rat SCImodel is associatedwith an increased number ofmotor neurons,
a decrease in iNOS mRNA levels and increased hind limb movement
compared to no treatment and exercise only controls [96]. In experi-
mental TBImodels, melatonin has been shown to increase brain antiox-
idant levels, decrease NF-kappaB activation and improve cognitive
function [97–99]. A recent combinational treatment of melatonin and
minocycline in a rat CCI model failed to demonstrate significant histo-
pathological or cognitive functional recovery alone or in combination
[100]. However, it was suggested that dosing, treatment initiation and
duration played a role in the negative outcome. Advantages of melato-
nin as a CNS injury therapeutic include its lipophilicity, brain penetrabil-
ity and potential for low side effects [94].

6.3. Carbonyl scavenging: penicillamine and phenelzine

As discussed earlier, the LP-derived breakdown products 4-HNE and
acrolein can bindprotein amino acid residues (histidine, lysine, arginine
and cysteine) resulting in the functional disruption of enzymatic pro-
teins [101]. Spinal cord and brainmitochondrial function are highly sen-
sitive to 4-HNE and acrolein with spinal cord mitochondria
demonstrating increased sensitivity to these LP-derived aldehydes
[102]. Compounds that covalently bind LP-derived aldehydes act as car-
bonyl scavengers and have demonstrated neuroprotective potential in
experimental traumamodels. For example, D-penicillamine irreversibly
binds primary aldehydes and has been shown to scavenge PN [103]. In
isolated rat brain mitochondria, application of D-penicillamine pro-
tected against PN-induced mitochondrial respiratory dysfunction and
also concomitantly decreased 4-HNE levels [104]. Moreover, acute pen-
icillamine was previously shown to improve neurological recovery in
the mouse concussive head injury model [105].

In addition to thiol-containing compounds, Hamann and colleagues
have demonstrated that chemical scavenging of 4-HNE and acrolein by
treatment with hydrazine (−NH-NH2)-containing compounds is
neuroprotective in SCI models [39, 106, 107]. Protection from 4-HNE-
induced cellular cytotoxicity by hydrazines can occur even after 4-
HNE has bound cellular proteins suggesting an advantageous therapeu-
tic window for treatment [108]. The hydrazine containing compound,
phenelzine, a well-characterized monoamine oxidase inhibitor antide-
pressant also has the ability to react with carbonyl moieties of 4-HNE
or acrolein preventing their interactions with targeted amino acids
and proteins [108]. Although phenelzine has yet to be investigated in
TBI and SCI models, recent studies from the author's laboratory demon-
strate neuroprotective effects of phenelzine on the preservation of mi-
tochondrial bioenergetics in an in vitro model of 4-HNE-induced
mitochondrial respiratory dysfunction (unpublished data).



Fig. 2. Strategy for combination antioxidant therapy for TBI and SCI. Injury triggers an increase in cytoplasmic Ca2+ via voltage dependent and glutamate receptor-operated chan-
nels, which initiates the depicted cascade of events. Mitochondria Ca2+ uptake causes O2•

− leakage from the electron transport chain and activation of mitochondrial nitric oxide
synthase (NOS). O2•

− and •NO combine to form the highly reactive nitrogen species PN (ONOO−) giving rise to nitrogen dioxide •NO2, hydroxyl •OH and •CO3. These PN-derived
radicals induce cell membrane and mitochondrial oxidative damage resulting in the inhibition of Ca2+ ATPase and a decrease in the mitochondrial ATP production and membrane
potential (ΔΨ), respectively. Mitochondrial dysfunction causes the dumping of mitochondrial Ca2+ into the cytoplasm where it exacerbates cytoplasmic calcium overload and cal-
pain activation. Calpain initiates the proteolysis of cytoskeletal proteins and other substrates ultimately contributing to neurodegeneration. The combination of the antioxidant pen-
icillamine or tempol, which catalytically reacts with PN-derived radicals with a chain-breaking LP inhibitor such as U-83836E or a carbonyl (CHO) scavenging compound
(Phenelzine) should produce a better neuroprotective effect than any of these compounds alone.
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6.4. Scavengers of PN and PN-derived free radicals: tempol

Nitroxide-containing antioxidants referred to as “spin trapping”
agents gained some attention for modulating oxidative injury. Of these
agents, tempol, a stable membrane permeable nitroxide, is the most po-
tent in its antioxidant effects and is involved in the metabolism of many
ROS and RNS including O2•

−, H2O2 and PN-derived •NO2 and •CO3 [109,
110] The neuroprotective effects of tempol have been described in both
models of TBI and SCI injury [111]. In the mouse CCI-TBI model, tempol
reduced post-traumatic LP and protein nitration-induced oxidative dam-
age, which resulted in preserved mitochondrial bioenergetics, reduced
calpain-mediated cytoskeletal damage and reduced neurodegeneration
(Fig. 1) [112]. Additionally, tempol decreased post-traumatic brain
edema and improved neurological recovery in the rat contusion head
injury model [113]. Similarly, in SCI models tempol protected against
post-traumatic PN-induced mitochondrial impairment, cytoskeletal
degradation [114], white matter loss and loss of locomotor function
[115]. Although, therapeutic window analyses experiments revealed a
short 1 h treatment window for tempol to achieve mitochondrial pro-
tective effects [114], others reported a therapeutic treatment-window
of several days for tempol-induced locomotor recovery [115]. Thus,
the observed recovery of function effects of tempol in SCI remains
promising and requires further investigation. In addition, tempol may
be an ideal candidate for combination therapy with other neuroprotec-
tive approaches (Fig. 2).

6.5. Resveratrol

The popularity of resveratrol, a polyphenolic compound enriched in
grapes and redwine, as an anti-oxidant neuroprotective agent emerged
in the early 2000s. The beneficial effects of resveratrol have been inves-
tigated in cancer as well as neurodegenerative models of neurotrauma,

image of Fig.�2
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stroke, Parkinson's, Huntington's and Alzheimer's disease [116]. In SCI
models, resveratrol has been reported to decrease oxidative stress
[117], improve post-injury edema, Na+, K+-ATPase activity [118] and
improve neurologic recovery [119]. A more recent study by Liu et al.
[120] demonstrated that the observed resveratrol-induced neurologic
and histopathologic improvements were mechanistically associated
with increased SOD activity and decreased expression of MDA, inflam-
matory cytokines and pro-apoptotic proteins. These effects translate
to TBI models as well with reported reductions in MDA, xanthine oxi-
dase and •NO and associated decreased tissue lesion volume [121] and
hippocampal functional recovery [122].

6.6. Small molecule Nrf2/ARE signaling activators

The body's endogenous antioxidant defense is regulated by nuclear
factor E2-related factor 2/antioxidant response element (Nrf2/ARE) sig-
naling at the transcriptional level [123, 124]. Nrf2 activation and the up-
regulation of antioxidant and anti-inflammatory genes represents a
valid neurotherapeutic intervention in CNS injury and has been previ-
ously described in various experimental models of stroke and neurode-
generative diseases [125].More recently, the role of Nrf2/ARE activation
in SCI has been explored as a targeted neuroprotective strategy. Indeed,
studies in Nrf2 (−/−) mice demonstrated increased spinal cord edema
and expression of inflammatory cytokines compared to wild-type Nrf2
mice following SCI [126, 127]. In mild rat thoracic SCI, Wang et al. [128]
reported an increase in Nrf2 levels as early as 30 min post-injury lasting
through 3 days. Application of sulforaphrane, a Nrf2/ARE signaling acti-
vator, significantly reduced contusion volume and increased coordina-
tion. These positive outcomes were a result of sulforaphrane-induced
increases in Nrf2, glutamine and decreases in inflammatory cytokines,
IL-1β and TBFα [128].

ThemRNA levels of Nrf2-regulated antioxidant enzymes, heme oxy-
genase (HO-1) and NAD(P)H:quinonereductase-1 (NQO1) are up-
regulated 24 h post TBI [129]. In addition, Nrf2-knockout mice are sus-
ceptible to increased oxidative stress and neurologic deficits following
TBI compared to their wild-type counterparts [130]. Administration of
sulforaphane is also neuroprotective in various animal models of TBI
specifically reducing cerebral edema, and oxidative stress and improv-
ing BBB function and cognitive deficits [131]. Studies by Chen et al.
[132] demonstrated increased expression of Nrf2 and HO-1 in the cor-
tex of the rat subarachnoid hemorrhage model. Treatment with sulfo-
raphane further increased the expression of Nrf2, HO-1, NQ01 and
glutathione S-transferase-α1 (GST-α1) resulting in the reduction of
brain edema, cortical neuronal death and motor deficits [132]. Tert-
butylhydroquinone, another activator of Nrf2 protects against TBI-
induced inflammation and damage via reduction in NF-KB activation
and TNFα and IL-1β production following injury in the mouse closed
head injury model [133]. Collectively these studies demonstrate a sig-
nificant neuroprotective role of Nrf2 signaling through the activation
of antioxidant enzymes and reduction of the inflammatory secondary
injury response following CNS injury. Thus, Nrf2 activation may be a
prime candidate for the attenuation of oxidative stress and subsequent
neurotoxicity in SCI and TBI via the development of small-molecule ac-
tivators of the Nrf2/ARE pathway.

7. Conclusions

Over the past several decades experimental research in TBI and SCI
models has validated the contribution of free radical-induced oxida-
tive damage in the multidimensional secondary injury response,
which occurs following acute CNS injury. From these studies, two
therapeutic agents that specifically targeted LP inhibition, MP and tir-
ilazad were further explored in multi-center phase III SCI clinical trials
where they were shown to improve neurological recovery. Unfortu-
nately, the steroid related side effects with prolonged treatment of
MP have resulted in the continued search for safer antioxidant agents
for the treatment of acute SCI. To date TBI clinical trials have failed to
reproduce the neuroprotective effects of several pharmacological
agents shown to be protective in preclinical experimental head injury
models suggesting a quandary in approaches in translational research
design. Nevertheless, the development of potent antioxidant com-
pounds remains an attractive and promising strategy for the treat-
ment of CNS injury. Focusing on events downstream of LP initiation
including the inhibition of LP propagation and scavenging of LP-
derived aldehydes is ideal because these signaling events extend sev-
eral days following injury and thus widen the treatment therapeutic
window range. The vast majority of preclinical studies have focused
on targeting a specific free radical producing pathway in the oxidative
component of the secondary injury response. It is well established that
the secondary injury response is a highly integrated and complex cas-
cade of biochemical events. It is likely that targetingmultiple points of
the free radical signaling pathways would produce a greater neuro-
protective effect. Such combinational approaches would require a sig-
nificant amount of preclinical research to answer critical questions
including appropriate dosing based on detailed pharmacokinetic stud-
ies as well as treatment initiation and duration times that would aid in
the translation to clinical testing. This multi-mechanistic antioxidant
therapy strategy is depicted in Fig. 2. Such improvements will open
up a new avenue and spectrum of possibilities for the treatment of
CNS injury.
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