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Abstract

We present a symbolic decision procedure for time-sensitive cryptographic protocols. We con-
sider protocols described in a process algebra-like notation that includes clocks, time-stamps and
time variables. While the values of all clocks increase with rate one when time passes, time variables
are simply variables that range over the time domain and can be used to remember time-stamps, i.e.
time values. Our symbolic decision procedure deals with secrecy, authentication and any property
that can be described as a safety property. Our approach is based on a logic representation of sets of
configurations that combines a decidable logic with time constraints.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Verification; Cryptographic protocols; Security; Timed models

1. Introduction

Some cryptographic protocols rely upon timestamps that recipients use to verify time-
liness of the message and recognize and reject replays of messages communicated in the
past. Timestamps are also used in conjunction with short term keys. The presence of time-
stamps makes the specification and verification of cryptographic protocols a challenging
problem. Indeed, most of the existing verification methods and decidability results for cryp-
tographic protocols consider time-independent protocols [3,5,12,13,17,23,26,29]. Because
of the subtleties and complexity of the verification of time-dependent protocols, theorem
provers have been used to verify such protocols.

In this paper, we present a model for time-dependent cryptographic protocols and a
corresponding decidability result. Although, the model we present only deals with bounded
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protocols, that is, when a fixed number of sessions are considered, our model clearly iden-
tifies the main ingredients to be included in a general model. It is well-known that the veri-
fication problem of unbounded cryptographic protocols is undecidable in the untimed case,
and hence, it is so for the timed case. Besides general models for distributed systems that
can be used to model security protocols such as Timed CSP and MSR (multiset rewriting
over first-order atomic formulae), we do not know about a model for timed cryptographic
protocols.

To model timed cryptographic protocols, we include in our model clocks, time variables
and timestamps. Clocks are variables that range over the time domain and advance with
the same rate as time. Each agent has its own set of clocks that he can reset. That is clocks
can be used to measure the time that elapses between two events, for instance, sending a
message and receiving the corresponding response. Also, we allow a global clock that is
never reset and that can be read and tested by all participants. Time variables correspond to
timestamps in received messages. Such values can be stored and used together with clocks
to put conditions on the acceptance of a message.

A second contribution of this paper is a complete and sound symbolic verification algo-
rithm for timed cryptographic protocols. We consider a rich class of reachability proper-
ties that allow to specify confidentiality and authentication. In fact, we introduce a logic
that allows to describe secrecy, equalities between terms and control points. Then, given
a bounded protocol � and two formulae in this logic � and �, the reachability problem
we consider is whether there is a run of � that starts in a configuration that satisfies � and
reaches a configuration that satisfies �.

We devise a symbolic algorithm that given a property described by a formula � in this
logic and given a bounded protocol computes the set of configurations that reaches �. This
algorithm uses symbolic constraints (logic formulae) to describe sets of configurations.
The logic we introduce combines constraints on the knowledge of the intruder with time
constraints on clock values and time variables. To show effectiveness of our verification
method we show:

(1) that for each action of our model we can express the predecessor configurations of a
set of configurations as a formula. We consider input, output and time actions.

(2) Then, we show decidability of the satisfiability problem for our logic.

Related work. Our model is clearly inspired by timed automata and our verification method
influenced by the work on symbolic verification of timed automata and temporal logics for
real-time systems (e.g. [1,2,6,19]).

The results of this paper provide an algorithm for checking security properties (confi-
dentiality and authentication) of timed cryptographic protocols. It has several interesting
aspects:

(1) it covers other properties than confidentiality (secrecy); indeed while other methods
rely on an ad hoc reduction of authentication properties to secrecy, our method is
directly applicable.

(2) as initial configuration are described by formulae of the introduced logic, it can deal
with infinite non-regular sets of messages initially known by the intruder.

(3) we believe that our method is more easily amenable to extended intruder models.
Handling time constraints, unbounded message size symbolically and automatically is

the distinguishing feature of our verification method. Most of the work on timed crypto-
graphic protocols uses theorem-provers or finite-state model-checking [4,10,16,21]. While
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the first needs human help, the second relies on typing assumptions and assumption on the
time window to bound the search space.

2. Preliminaries

Let X be a countable set of variables and let F i be a countable set of function sym-
bols of arity i, for every i ∈ N. Let F = ⋃

i∈N F i . The set of terms over X and F ,
is denoted by T (X,F ). We denote by ≤ the subterm relation on T (X,F ). As usual,
function symbols of arity 0 are called constant symbols. Ground terms are terms with no
variables. We denote by T (F ) the set of ground terms over F . For any t1, t2 ∈ T (X,F ),
we denote with µ(t1, t2) the most general unifier (shortly mgu) of t1 and t2, if it exists. More
precisely, by µ(t1, t2) we denote the representation of the mgu of t1 and t2 as a conjunction
of equalities of the form x = t , if it exists. If it does not exist then µ(t1, t2) should be the
constant false (falsum). We write t1 ∼ t2, if t1, t2 can be unified. Also, for any substitution
σ : X → T (X,F ), and term t ∈ T (X,F ), we denote by dom(σ ) the domain of σ and
by tσ the application to t of the homomorphic extension of σ to terms. Given a set x̃ of
variables, we denote by �(x̃) the set consisting of ground substitutions with domain x̃. We
also write �(x) instead of �({x}). Given two substitutions σ and ρ with disjoint domains,
σ ⊕ ρ is the substitution equal to σ on dom(σ ), equal to ρ on dom(ρ), and undefined
elsewhere.

A tree tr is a function from a non-empty finite subset dom(tr) of ω∗ to X ∪ F such that
tr(u) ∈ F n iff u · j ∈ dom(tr), for every j ∈ {1, . . . , n} and u · j �∈ dom(tr) for every
j > n, also tr(u) ∈ X implies u · j �∈ dom(tr) for every j ∈ N.

Henceforth, we tacitly identify the term t with Tr(t). The elements of dom(t) are called
positions in t . The set of positions is denoted by P os. We use ≺ to denote the prefix relation
on ω∗. We write t (p) to denote the symbol at position p in t and t|p to denote the subterm
of t at position p, which corresponds to the tree t|p(x) = t (p · x) with x ∈ dom(t|p) iff
p · x ∈ dom(t). Given a term t and positions p and q, we say that t|p dominates t|q if
p ≺ q.

If w1, w2 ∈ �∗ are words over an alphabet � and w2 is a prefix of w1, then we denote
by w−1

2 w1 the word obtained from w1 after removing the prefix w2.

3. The protocol and intruder model

We describe in this section the model of cryptographic protocols adopted in this paper.
We assume Dolev–Yao’s intruder model except that, since we are dealing with timed pro-
tocols, we add rules that:

(1) allow the derivation of any time stamp and
(2) allow the derivation of any short-term key k after some delay �k since derivation of

any message encrypted with k.
In addition to the usual terms considered in Dolev–Yao model, we add:

(1) Clocks, i.e. variables that range over the underlying time model. We denote the set
of clocks by C.

(2) Timestamps, that is values in the time domain.
(3) Time variables, that is variables that range over the time domain. We denote by Y

the set of time variables.
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It is important to understand the difference between these three disjoint sets of variables: a
time stamp is just a constant; clocks and time variables are variables. The difference is that
the value of a clock advances with rate one with time while the value of a time variable
does not. A time variable is simply a variable that ranges over the time domain.We fix the
time domain to be the set of non-negative real numbers. Our results, however, hold also
when we consider the natural numbers instead.

We consider two disjoint non-empty sets of keys: KS the set of short keys and K
the set of any other keys. Moreover, we have the following sets of constant symbols: P
for principal names and N for nonces. Let X denote the set of variables that range over
terms. Let A = P ∪ N ∪ KS ∪ K ∪ R≥0 and F = A ∪ {encr, pair}. We consider terms
build from constant symbols in A, clocks in C and time variables in Y using the func-
tion symbols in F . As usual, we write (m1, m2) for pair(m1, m2) and {m}k instead of
encr(m, k). A Clock-free term is a term in which no clock appears; time variables and
time stamps may appear in a clock-free term. We denote the set of clock-free terms by
T (X ∪ Y,F ). Messages are ground terms in T (X ∪ Y,F ), we denote by M = T (F )

the set of messages. For conciseness, we write T instead of T (X ∪ Y,F ) and Tc instead
of T (X ∪ Y ∪ C,F ).

For the time being, we will use the usual model of Dolev and Yao [15] augmented with
the axiom:

(Time stamp) If r ∈ R≥0 then E � r.

The axiom (Time stamp) represents the fact that the intruder can guess every possible
time-stamp, i.e. time value.

For self-containedness, we briefly recall the derivation rules of the Dolev–Yao model:

m∈E
E�m (axiom) E�(m1,m2)

E�mi
, i = 1, 2 E�{m}k, E�k−1

E�m (decomposition rules)
E�m1,E�m2
E�(m1,m2)

E�m,E�k
E�{m}k (composition rules)

As usual, we write E � m, when m is derivable from E using the augmented Dolev–
Yao model. A derivation of a message that does not use decomposition rules is denoted by
E �c m. For a term t , we use the notation E � t to denote that there exists a substitution
σ : X → M such that E � tσ . For a set of messages M , we use the notation E � M to
denote E � m for each m in M and E �� M to denote E �� m for each m in M .

Given a term t , a position p in t is called non-critical, if there is a position q such that
p = q · 2 and t (q) = encr; otherwise it is called critical. That is, encryption key positions
are non-critical.

3.1. Process model

Timed cryptographic protocols are build from timed actions. Here, we consider two
types of actions: message input and message output. A time constraint is associated to an
action and describes when the action is possible.

Definition 1 (Time constraints). Time constraints are defined by

g ::= � |
n∑

i=1

aici +
m∑

j=1

bjTj �� d | g1 ∧ g2 | g1 ∨ g2

where m, n ∈ N, ci ∈ C are clocks, Tj ∈ Y are time variables, ai, bj ∈ Z, d ∈ Z, and
��∈ {<,≤}. The set of time constraints is denoted by T C.
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A time constraint is interpreted with respect to a valuation ν defined over a finite set of
clocks {c1, . . . , cn} that associates values in the time domain to clocks, and a substitution
σ that assigns ground clock-free terms to variables. The interpretation of a time constraint
is given by:
• [[�]]ν,σ = 1, for any ν and σ ;

• [[
n∑

i=1
aici +

m∑
j=1

bjTj �� d]]ν,σ = 1 iff
n∑

i=1
aiν(ci) +

m∑
j=1

bjσ (Tj ) �� d;
• [[g1 ∧ g2]]ν,σ = 1 iff [[g1]]ν,σ = [[g2]]ν,σ = 1;
• [[g1 ∨ g2]]ν,σ = 1 iff [[g1]]ν,σ = 1 or [[g2]]ν,σ = 1

Then (ν, σ ) is said to be a model for a time constraint g, if [[g]]ν,σ = 1.
Given a time constraint g and a set R of clocks,we denote by g[R] the time constraint

obtained by substituting 0 for all clocks in R. We also use the notation g + d to denote the
time constraint obtained from g by substituting each clock c in g by c + d .

Definition 2 (Actions and protocols). We consider input and output actions:

• An input action is of the form l
g,R,?t (x̃)−→ l′, where

· g ∈ T C is a time constraint called the guard.
· t ∈ T is a clock free term and x̃ ⊆ X ∪ Y is the set of variables instantiated by the

input action.
· R ⊆ C is a subset of clocks.
· l, l′ are labels.

• An output action is of the form l
g,R,!tc−→ l′ where g, l, l′ and R are as above and tc ∈ Tc

is a clock dependent term.
The set of actions is denoted by Act .

A protocol is represented by a set of sequences of actions. More precisely, a proto-

col � is given by � = ∑n
i=1 α

i
1 · · ·αi

ni
, where αi

j = )ij

βi
j→ )ij+1 for some βi

j with j ∈
{1, . . . , ni}. Here, the labels ) represent control points and

∑
is the usual non-determin-

istic choice. This corresponds to the interleavings of a fixed set of sessions put in parallel
� = ∑n

i=1 )
i
0β

i
0 · · · )ini βi

ni
)ini+1, where l

j
i are obtained combining the labels of each ses-

sion into a single label and the variables of the protocol actions are indexed by the session
identifier in order to distinct the same variable in different sessions.

For simplicity, we assume that each variable x occurs exactly once bind in an input
action, that is in x̃ in action ?t (x̃), and moreover, this occurrence precedes any other occur-
rence of x in any action. It is not difficult to see that this restriction can be easily handled.

Let R ⊆ C be a subset of clocks, δ ∈ R≥0 a constant, ν : C −→ R≥0 a valuation for
clocks, and let tc ∈ Tc be a clock dependent term. We denote by ν[R] the valuation ob-
tained from ν by resetting all clocks in R, i.e. ν[R](c) = 0 for any c ∈ R and ν[R](c) =
ν(c) for any c �∈ R; ν + δ denotes the valuation which advances all clocks by the same
delay δ, i.e. (ν + δ)(c) = ν(c) + δ; and tc[ν] is the term obtained from tc by replacing all
occurrences of c by the value of ν(c).

Definition 3 (Operational semantics). A configuration of a protocol run is given by a tuple
(σ, E, ν, )) consisting of a substitution σ , a set of messages E, a valuation of clocks ν and
a control point ). The operational semantics is defined as a labelled transitional system
over the set of configurations Conf. The transition relation
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(σ, E, ν, ))
α−→ (σ ′, E′, ν′, )′)

is defined as follows:

• output: α = )
g,R,!t−→ )′. Then, we have

(σ, E, ν, ))
α−→ (σ, E′, ν′, )′)

if [[g]]ν,σ = 1, E′ = E ∪ {t (σ ⊕ ν[R])} and ν′ = ν[R].
That is, sending the message t (provided that guard g is satisfied by the actual configura-
tion) amounts to reset clocks in R and adding t evaluated with respect to the substitution
σ and the valuation of clocks ν[R], to the knowledge of the intruder

• input: α = )
g,R,?t (x̃)−→ )′.

Then, we have

(σ, E, ν, ))
α−→ (σ ′, E, ν′, )′)

if there is ρ ∈ �(x̃) with E � t (σ ⊕ ρ), [[g]]ν,σ⊕ρ = 1, σ ′ = σ ⊕ ρ, and ν′ = ν[R].
That is, ?t corresponds to receiving any message, known to the intruder, that matches
with ?tσ by a substitution ρ, such that g is satisfied by the pair ν, σ ⊕ ρ; in addition,
this action resets clocks in R.

• time passing: (σ, E, ν, ))
δ−→ (σ, E, ν + δ, )), for any δ ∈ R≥0. This action represents

the passage of δ time units; passage of an arbitrary time is denoted by
τ−→= ⋃

δ∈R≥0

δ−→ .

The initial configuration is given by a substitution σ0, a set of terms E0 such that the
variables in E0 do not appear in the protocol description, a valuation ν0 and a control point
)0 ∈ {)1

0, . . . , )
n
ni

}.

Example 4. The Denning-Sacco shared key protocol [9], a protocol for distribution of
a shared symmetric key by a trusted server and mutual authentication. Here, the time-
stamps are used to ensure the freshness of the shared key. Using the usual notation for
cryptographic protocols, the protocol is described as follows:

A → S : A,B

S → A : {B,Kab, T , {Kab, A, T }Kbs}Kas
A → B : {Kab, A, T }Kbs

The keys Kas and Kbs are shared keys between the participant A respectively B and the
server S. The goal of the Denning-Sacco shared key protocol is to allow two principals A
and B to obtain a secret symmetric key from a trusted server S.

The next table shows how we describe the protocol. The constant parameters δ1, δ2
represent network delays for A respectively B. We use a special clock now which is a global
clock that is never reset and has an arbitrary initial value. For convenience of notation, we
write ) α )′ instead of )

α−→ )′ and we omit the guard when it is the constant � and the
set of clocks to be reset when it is empty.

A : S :
0 !(A,B) 1
1 now − T1 < δ1,

?{B, x, T1, y}smk(A,S) 2
2 !y 3

0 ?(z, v) 1
1 !{v,K, now, {K, z, now}smk(v,S)}smk(z,S) 2

B :
0 now − T2 < δ2, ?{u, p, T2}smk(B,S), 1
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Each participant of the protocol may be seen as a sequential process. First, the partic-
ipant A sends his identity A and the identity of B to the server. Then, A receives back
the message {B, x, T1, y}smk(A,S). If T1, is “timely”, i.e. the difference between the current
time and the value of T1 is less than the constant parameter δ1 then A accepts x as session
key and forwards the message y to B. On the other side, B, when receives the message
{u, p, T2}smk(B,S), it checks if T2 is “timely” and, if so, it accepts p as session key. The
server S, every time when it receives a pair of two participants (z, v) it generates a new
session key K and sends it together with its current time now in a message of the form
{v,K, now, {K, z, now}smk(v,S)}smk(z,S) to the first participant of the pair z.

3.2. Short term keys

Intuitively, to each short term key k ∈ KS we associate a constant �k and a clock c(k)

that can be activated when the intruder deduces a message of the form {x}k . Then, when
the value of the clock c(k) reaches �k , the key k becomes deducible by the intruder. That
is, a short term key k is “cracked” �k time units after a message {x}k becomes known.

To take into account short term keys, instead of directly extending the intruder’s model,
we consider parallel composition of the protocol to be verified with the following process⊕

k∈KS

αk
0;αk

1,

where αk
0 ≡ )0

{c(k)},?{x}k−→ )1 and αk
1 ≡ )1

c(k)≥�k,!k−→ )2, where
⊕

is used to denote parallel
composition. That is, the action αk

0 resets the clock c(k), when it is possible to perform the
input ?{x}k , i.e., when the intruder can deduce a message of the form {x}k , and the action
αk

1 reveals the key k when the value of c(k) exceeds �k .

4. The TSPL logic

In this section, we introduce the constraints/formulae we use to describe security prop-
erties. The logic we introduce allows to describe secrecy, authentication and any safety
property.

Henceforth, let K ⊆ K be a fixed but arbitrary set of keys, such that ∅ �= K �= K . This
set of keys can be understood as the set of “good” keys, whose inverses are not known by
the intruder.

A major problem we face for developing a complete inference system for cryptographic
protocols is secrecy. i.e., E �� m, is not expressive enough. For instance, consider the pro-
tocol ?{x}k; !x and the property E �� (s1, s2). What should be the weakest precondition that
ensures this property at the end of this protocol? In this section, we introduce a modality
that allows to express weakest preconditions and provides a syntactic characterization of
secrecy.

Intuitively, this modality is a predicate that asserts that given the intruder’s knowledge
E, a term s is protected by a key in K in any message the intruder can derive from E.

4.1. Term transducers and the main modality of the logic

A pair ({t}k, r), where t is a term, k ∈ K and r a critical position in {t}k is called a
term transducer (TT for short). Intuitively, the pair ({t}k, r) can be seen as a function that
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takes as argument a term that matches with {t}k and returns as result the term {t}k |r . Notice
that the decomposition rules in the intruder model can be considered as a set of term trans-
ducers the intruder can apply to get new terms. As it will become clear later, a run of a CP
provides the intruder with new term transducer she (he) can apply to learn new terms.

The main modality of the logic we use can be defined as follows:

Definition 5. Let m and s be two messages and let w ∈ (M × P os)∗ be a sequence of
term transducers. We define the predicate m〈w〉s, which we read “s is w-protected in m”,
recursively on the structure of m and length of w:
• m is atomic and m �= s, or
• m = pair(m1, m2), m �= s and both m1〈w〉s and m2〈w〉s are true, or
• m = encr(m1, k), m �= s, k �∈ K and m1〈w〉s is true, or
• m = encr(m1, k), m �= s, k ∈ K and w = ε, or
• m = encr(m1, k), w = (b, r).w1, m �= s, k ∈ K , and m �= b or m|r〈w1〉s is true.

In other words, s is w-protected in m means s can not be obtained from m by means of
decomposition or w-transducer use.

This definition is easily generalized to sets of messages: Let M and S be sets of mes-
sages, w a sequence of term transducers and K a set of keys. We say that the secrets S are
w-protected in M denoted by M〈w〉S, if it holds

∧
m∈M,s∈S m〈w〉s.

Example 6. Let m = ({A, {N}k1}k2 , A) and K = {k1, k2}. Then, m〈ε〉N is true since
{A, {N}k1}k2〈ε〉N and A〈ε〉N are true.

Let now w = ({A, {N}k1}k2 , 12).({N}k1 , 1). Then, m〈w〉N is false since applying the
term transducer ({A, {N}k1}k2 , 12) yields {N}k1 on which an application of ({N}k1 , 1)
yields N .

4.1.1. Closure of sets of secrets
In this section, we define when a set of messages is closed. Closed sets of secrets enjoy

the property that they are not derivable by composition. Intuitively, a set of messages is
closed, if it contains, for any message m in the set, all messages along at least one path of
the tree representing the message m. The same idea is used in e.g. [14,24,29].

Let M be a set of sets of messages and let m be a message. We use the notation: m &
M = {Mi ∪ {m}|Mi ∈ M}.

We define when a set of messages is closed. The closure of a set S ensures that the
intruder cannot derive a message in S by composition rules.

Definition 7 (Closure).

wc(m) = m &



wc(m1) ∪ wc(m2) if m = (m1, m2)
wc(m′) ∪ wc(k) if m = {m′}k
{K−1} if m is atomic

where K−1 = {k−1 | k ∈ K}. A set M of messages is called closed, if for any m ∈ M there
exists M ′ ∈ wc(m) such that M ′ ⊆ M .

Example 8. Consider the message m = ({A,N}k, B). Then wc(m) consists of the fol-
lowing sets:
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K−1 ∪ {({A,N}k, B), {A,N}k, (A,N),A} K−1 ∪ {({A,N}k, B), {A,N}k, k}
K−1 ∪ {({A,N}k, B), {A,N}k, (A,N),N} K−1 ∪ {({A,N}k, B), B}.

We can prove the following:

Lemma 9. Let S be a closed set of messages. And let E be a set of messages such that
S ∩ E = ∅. Then, E ��c S. In other words, if S is closed then no message in S can be
derived uniquely by the composition rules.

We use the notation E〈wi, Si〉I for
∧
i∈I

E〈wi〉Si . Our purpose now is to define conditions

on wi and Si such that for any set E of messages, if E〈wi, Si〉I then m〈wi, Si〉I , for any
message m derivable from E. In other words, such conditions ensure that E〈wi, Si〉I is
stable under the derivations rules defining the intruder. Remember that closure guarantees
stability only under composition rules.

Example 10. Let E = {s1, s2} be a set of messages. Then we have E〈w〉(s1, s2). But we
have both E � (s1, s2) and ¬(s1, s2)〈w〉(s1, s2).

This example shows that we need to consider only closed sets of secrets. But this is not
sufficient, as showed by the following example.

Example 11. Let E = {{s}k, k} be a set of messages and let b = {{s}k}k . We have
E〈(b, 11)〉s. But we have both E � b and ¬b〈(b, 11)〉s.

This example shows that E〈w〉S is not stable under intruder composition rules. To rem-
edy to this we only consider well-formed formulae. To define well-formedness, we need
the following:

Let t be a term and p a critical position in t . Then, we denote by NP(t, p) recursively
on the structure of t as follows:
• if t is a constant or a variable, or p = ε, then NP(t, p) is undefined.
• if t = (t1, t2) and p = 1 · p′ then NP(t, p) = 1 · NP(t1, p′). Similarly, when p = 2 ·
p′.

• if t = {t ′}k and k ∈ K and p �= ε then NP(t, p) = ε.
• if t = {t ′}k and k �∈ K and p �= ε then NP(t, p) = 1 · NP(t ′, 1−1p).

Example 12. Consider the term t = ({A, {N}k1}k2 , N), where k1, k2 ∈ K . Let p = 1121
and p′ = 2. Thus, t|p = t|p′ = N . Then, we have NP(t, p) = 1, which corresponds to the
key k2; NP(t, p′) is, however, undefined.

Definition 13. Let (b, p) be a term transducer. Then the next term transducer in b from
above that dominates p (denoted by NT(b, p)) is defined as follows:

NT(b, p) =
{
(b|1q, (1q)−1p) if NP(b|1, 1−1p) = q

undefined otherwise
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We illustrate this definition by the following example.

Example 14. Let b be the term {({N}k′ , A)}k with k, k′ ∈ K . Then, we have NT(b, 111) =
({N}k′ , 1). On the other hand, NT(b, 12) and NT(b, 11) is not defined.

We have now everything we need to express the conditions that guarantee stability under
the intruder’s derivations. i.e, the well-formedness condition:

Definition 15. (wi, Si)i∈I is called well-formed, if the following conditions are satisfied
for every i ∈ I :
1. Si is closed,
2. if wi = (b, r).w, then the following conditions are satisfied:

a. there exists j ∈ I such that wj = w and Si ⊆ Sj ,
b. if there exists a term transducer (b1, r1) = NT(b, r), then there exists k ∈ I such that

either b ∈ Sk or wk = (b1, r1).w and Si ⊆ Sk .

The main property of E〈wi, Si〉I is that it is stable under the intruder’s deduction rules.
Indeed, we have:

Proposition 16. Let E be a set of messages such that E〈wi, Si〉I and let (wi, Si)i∈I be
well-formed. Moreover, let m be a message with E � m. Then, m〈wi, Si〉I .

Proof. See Appendix B.1.

The modality E〈w〉S has another interesting property with respect to intruder’s deriva-
tions:

Proposition 17. Let m be a message and E a set of messages such that K \ K−1 ⊆ E.
Then, E �� m iff there exists a set of messages A ∈ wc(m) s.t. E〈ε〉A.

Proof. See Appendix B.2.

4.2. TSPL: A logic for security properties

In order to express general secrecy properties that involve variables, we introduce a new
set of function symbols B. Extended terms are build as before except that now we allow
function symbols in B to occur applied to variables, which we denote by x.f . We denote
by BX the set {x.f | f ∈ B, x ∈ X}. Given a substitution σ that associates a message m

to x, it will associate a set in wc(m) to x.f .
The syntax of TSPL is defined in Table 1, where X is a fixed second-order variable that

ranges over sets of messages and f is a meta-variable that ranges over B. x is a meta-
variable that ranges over the set X of first-order variables. First-order variables range over
messages; t is a meta-variable over terms. Moreover, S is a finite set of extended terms and
w is a finite sequence of term transducers that can contain free variables. The formulae
are interpreted over a restricted set of configurations Conf0 = {(σ, E, ν, l) | (σ, E, ν, l) ∈
Conf,K \ K−1 ⊆ E}.

Notice that omitting the negation for time constraints is not essential as any negation of
a time constraint can be put in a positive form.
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Table 1
The set of formulae TSPL

� ::= � | ∑n
i=1 aici + ∑m

j=1 bj Tj �� δ | �1 ∧ �2 | �1 ∨ �2 time constraints

� ::= X〈w〉S | x〈w〉S | t〈ε〉x.f | x = t | pc = ) |
∃x� | ∀f� | � | � ∧ � | ¬� term formulae

� ::= � | � | � ∨ � | � ∧ � TSPL formulae

Definition 18 (Semantics). The interpretation of a formula is given by the set of its models,
i.e., the set of configurations from Conf0 that satisfy the formula. The semantics of TSPL

is defined by the following clauses:
• [[�]] = {

(σ, E, ν, )) | [[�]]ν,σ = 1
}

• [[X〈w〉S]] = {
(σ, E, ν, )) | E〈wσ 〉Sσ}

• [[x〈w〉S]] = {
(σ, E, ν, )) | {xσ }〈wσ 〉Sσ}

• [[x = t]] = {
(σ, E, ν, )) | xσ = tσ

}
• [[pc = )]] = {

(σ, E, ν, )′) | )′ = )}
• [[t〈ε〉x.f ]] = {

(σ, E, ν, )) | {tσ }〈ε〉(x.f )σ}
• [[∀f�]] = ⋂

f0∈B

{
(σ, E, ν, )) | (σ ⊕ [f ,→ f0], E, ν, )) ∈ [[�]]}

• [[∃�]] = ⋃
x0∈M

{
(σ, E, ν, )) | (σ ⊕ [x ,→ x0], E, ν, )) ∈ [[�]]}

• [[¬ϕ]] = Conf0 \ [[ϕ]]
• [[�]] = Conf0
• [[�1 ∧ �2]] = [[�1]] ∩ [[�2]]
• [[�1 ∨ �2]] = [[�1]] ∪ [[�2]].

For convenience of notations, we extend the set of formulae TSPL as follows:

TSPL+ - ϕ,ψ ::= . . . | (X, x)〈w〉S | t〈w〉S
The semantics of the newly introduced formulae is:

[[t〈w〉S]] = {
(σ, E, ν, )) | tσ 〈wσ 〉Sσ} [[(X, x)〈w〉S]] = [[X〈w〉S]]∩[[x〈w〉S]]

We can prove that any formula of the form t〈w〉S is definable in TSPL, i.e. that there is
a TSPL formula J(t, w, s) such that t〈w〉s ≡ J(t, w, s) (see Appendix B.3).

Notations. We use the notations ⊥ for ¬�, (σ, E, ν, )) |= ϕ for (σ, E, ν, )) ∈ [[ϕ]], t〈�w〉S
for ¬t〈w〉S, X〈�w〉S for ¬X〈w〉S. Also, given a term s, we write X〈w〉s instead of X〈w〉{s}
and t〈w〉s instead of t〈w〉{s}. We identify formulae modulo the usual properties of boolean
connectives such as associativity and commutativity of ∧, ∨, distributivity etc... and use
⇒ as the classical logical implication (it can be easily defined in TSPL logic using set
inclusion).

Well-formed formulae. We extend now the notion of closure of sets of messages to sets
of extended terms. The definition is similar except that we have to consider two new cases:
(1) the case of a term t of the form x.f : wct (t) = t & {K−1} and (2) the case of a variable
x: wct (x) = x.f & {K−1}, where f is a fresh function symbol.
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Definition 15, that defines when (wi, Si)i∈I is well-formed for Si sets of messages, is
now easily extended to sets of extended terms. As now we are dealing with formulae, we
have to define when a formula is well-formed in the same sense.

Definition 19. A formula � is well-formed, if for any sequence of term transducers w and
closed set of terms S, whenever � ⇒ X〈w〉S, there exist (wi, Si)i∈I well-formed, such
that � ⇒ ∧

i∈I X〈wi〉Si and (w, S) ∈ (wi, Si)i∈I .

The main property satisfied by well-formed formulae is a parallel to Proposition 16 and
given by the following corollary, which is a direct consequence of Definitions 15 and 19
and Proposition 16.

Corollary 20. Let � be a well-formed formula such that � ⇒ X〈w〉S and let (σ, E, ν, l) ∈
[[�]]. If m is a message such that E � m, then m〈wσ 〉Sσ .

Now, the property of Corollary 20 turns out to be crucial for developing a complete
symbolic method and well-formedness has to be preserved. Therefore, we introduce the
function H . It takes as arguments a formula X〈b.w〉S and computes the weakest (the
largest w.r.t. set inclusion) well-formed formula H(X〈b.w〉S), such that H(X〈b.w〉S) ⇒
X〈b.w〉S. The intuition follows from the Definition 15: in the case that the term transducer
b = (t, p) contains an inner term transducer b1, either t cannot be built or it doesn’t help;
moreover, the formula H(X〈b.w〉S) is closed with respect to suffixes of w.

H(X〈b.w〉S) =



X〈b.w〉S ∧ H(X〈w〉S) if NT(b) is undefined

X〈b.w〉S ∧ H(X〈w〉S)∧(
H(X〈b1.w〉S) ∨ ∨

S′∈wc(t) X〈ε〉S′) if b = (t, p) ∧ b1 = NT(b)

Proposition 21. Let � be a well-formed formula. Let b.w be a sequence of term trans-
ducers and S a closed set of terms such that � ⇒ X〈b.w〉S. Then � ⇒ H(X〈b.w〉S).

Proof. A direct consequence of Definitions 15 and 19.

Given a term t , let F(t) denote the formula ∀−→
f

∧
S′∈wct (t)

X〈� ε〉S′ where
−→
f is the set of

all fresh variables f ∈ BX that occur in wct (t). The intuitive explanation of the usefulness
of F(t) is the following: being in a state (σ, E, ν, l), in order to be able to make an input
t (x̃), such that x̃ are instantiated by ρ, it must be that (σ, E, ν, l) ∈ [[F(tρ)]]. To give an
idea of how secrecy and authentication can be expressed in TSPL we present an example in
Appendix A.

5. Computing predecessors

We are interested in proving reachability properties of bounded timed cryptographic
protocols. Given a property ϕ and an action α, pre(α, φ) denotes the smallest set of con-
figurations such that by executing α may lead to a configuration that satisfies ϕ. That
is,
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Definition 22 (Predecessors). The predecessor of a set of configurations C ⊆ Conf with
respect to an action α, denoted pre(α,C) is the set of configurations s, such that there is at
least one possible execution of α that leads from s to a configuration in C. More precisely

pre(α,C) ::= {(σ, E, ν, l) | ∃(σ ′, E′, ν′, l′) ∈ C s. t. (σ, E, ν, l)
α−→ (σ ′, E′, ν′, l′)}.

Given a formula �, we use pre(α,�) instead of pre(α, [[�]]) to denote the predecessor
of a formula � ∈ TSPL.

The purpose of this section is to show that pre(α,�) is effectively expressible in TSPL,
when � is a positive boolean combination of time constraints and term formulae of the
form:

x = t | pc = ) | � | ⊥ | x �= t | pc �= ) | X〈�w〉S | x〈�w〉S | t〈� ε〉x.f | ∀f� | ∃x�.

First, it is easy to see that pre(α,�) = �, if α is a time passing action and � is a

term formula. Also, for any action α = l
g,R,!t−→ l′, respectively α = l

g,R,?t−→ l′, and any time
constraint �, we have pre(α,�) = g ∧ pc = ) ∧ �[R] ∧ F(t).

Notice that pre distributes with respect to disjunction (finite or infinite). Moreover, it
distributes over conjunction, finite and infinite, for discrete action (input or output). The
main reason is that the only non-deterministic discrete action is input which gives raise to
external non-determinism.

5.1. Time passing and time constraints

In this section, we show that the predecessor of [[�]], where � is a time constraint, can
be described by a TSPL formula. We consider the action

τ−→, i.e. time passing. The case
of input and output actions is described above.

We need first to define three kinds of normal forms for time constraints. Let � be the
atomic time constraint

∑n
i=1 aici + ∑m

j=1 bjTj �� d . We denote by C(�) the sum of the
coefficients of clocks, i.e.

∑n
i=1 ai . Then, an atomic time constraint � ≡ ∑n

i=1 aici +∑m
j=1 bjTj �� d is in positive normal form (PNF for short), if C(�) > 0; it is in negative

normal form (NNF for short), if C(�) < 0; and finally, it is in 0-normal form, if C(�) = 0.
Clearly any time constraint can be put in the form of a disjunction of conjunctions of the

form �1 ∧ �2 ∧ �3, where �1 is a conjunction of formulae in PNF, �2 is a conjunction of
formulae in NNF and �3 is a conjunction of formulae in 0-NF. For the rest of this section,
we write ψ ∈ �i to state that ψ is a conjunct of �i , i.e., we view conjunctions of formulae
as sets of formulae.

Thus, let us consider a time constraint of the form �1 ∧ �2 ∧ �3 as above. Then,
pre(

τ−→, �1 ∧ �2 ∧ �3) can be described by the formula ∃δ ≥ 0· �1 + δ ∧ �2 + δ ∧
�3 + δ. We have then to show that we can eliminate the quantification on δ while obtaining
a time constraint.

First, notice that �3 + δ is logically equivalent to �3, since it is in 0-NF. Therefore, we
can rewrite the formula to the equivalent formula ∃δ ≥ 0 · (�1 + δ ∧ �2 + δ) ∧ �3 and
focus on discussing how to transform ∃δ ≥ 0 · (�1 + δ ∧ �2 + δ) into an equivalent time
constraint. Let us explain the main idea by considering the simple case where �1 and �2
are atomic time constraints.

The simple case. Consider a PNF constraint �1 ≡ ∑n
i=1 aici + ∑m

j=1 bjTj ��1 d and a
NNF one �2 ≡ ∑n

i=1 a
′
ici + ∑m

j=1 b
′
j Tj ��2 d ′. Then, we have:
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�1 + δ≡
n∑

i=1
aici +

m∑
j=1

bjTj + δ
n∑

i=1
ai ��1 d

�2 + δ≡
n∑

i=1
a′
ici +

m∑
j=1

b′
j Tj + δ

n∑
i=1

a′
i ��2 d ′

By multiplying with C(�1) and |C(�2)| we have:

�1 + δ≡
n∑

i=1
|C(�2)|aici +

m∑
j=1

|C(�2)|bjTj + δ|C(�2)|
n∑

i=1
ai ��1 |C(�2)|d

�2 + δ≡
n∑

i=1
C(�1)a

′
ici + C(�1)

m∑
j=1

b′
j Tj + δC(�1)

n∑
i=1

a′
i ��2 C(�1)d

′

Adding the right-hands of the equivalences yields the time constraint:
n∑

i=1

a′′
i ci +

m∑
j=1

b′′
j Tj ��′ |C(�2)|d + C(�1)d

′

with a′′
i = |C(�2)|ai + C(�1)a

′
i , b

′′
j = |C(�2)|bi + C(�1)b

′
i and if ��1≡��2 then ��′≡��1

else ��′≡<.

Let us denote this formula by �(�1, �2). Notice that �(�1, �2) is independent of δ.
One can prove that ∃δ ≥ 0 · (�1 + δ ∧ �2 + δ) is equivalent to the time constraint �1 ∧
�(�1, �2). The conjunct �1 has to be kept as we are interesting in the predecessors, thus
the upper bound on the clocks must be satisfied as time only increases.

The general case. Let us now return to the general case, where �1 and �2 are arbitrary
conjunctions of formulae in PNF, respectively, NNF. To handle this case we generalize �

to sets (conjunctions of formulae as follows):
• �(∅, ψ) = �.
• �(ψ, ∅) = ψ .
• �(�1, �2) = ∧

ψ1∈�1,ψ2∈�2

�(ψ1, ψ2)

Then we can prove that ∃δ � 0 · (�1 + δ ∧ �2 + δ) is equivalent to �(�1, �2).

Summarizing together, we can transform ∃δ ≥ 0 · �1 + δ ∧ �2 + δ ∧ �3 + δ into the
equivalent time constraint �(�1, �2) ∧ �1 ∧ �3. Hence, if we define Pre(

τ−→, �1 ∧ �2 ∧
�3)

def= �(�1, �2) ∧ �1 ∧ �3, we obtain the following result:

Proposition 23. For any time constraint �,

pre(
τ−→, [[�]]) = [[Pre(

τ−→, �)]].

5.2. Output action and atomic term formulae

Throughout this section let α = l
g,R,!t−→ l′, and let c̃ be all the clocks that occur in t and

do not occur in R. We show that we can express pre(α, ϕ), for any atomic term formula ϕ.
The core point here is how we deal with the clocks occurrences in the sent message. Since
the values of clocks change with time, we have to freeze these values in the message added
to the intruder knowledge; we do this by replacing in t , all occurrences of clocks that are
not reset c̃ with fresh time variables T̃c and by introducing the constraints T̃c = c̃. For more
details, see Example 41, presented in Appendix B.7.
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Let us define Pre(α, ϕ):

(1) Pre(α, ϕ)
def= g ∧ pc = ) ∧ (ϕ ∨ ((X, t[0/R, T̃c/c̃])〈�w〉S ∧ T̃c = c̃)), where T̃c are

fresh time variables, if ϕ is a formula of the form X〈�w〉S or (X, x)〈�w〉S.

(2) Pre(α, ϕ)
def= g ∧ pc = ) ∧ ϕ, if ϕ is of the form x �= t ′, x = t ′, �, ⊥, pc = )′ or

t〈� ε〉x.f .
Then, we have the following:

Proposition 24. For any output action α and atomic term formula ϕ,

pre(α, [[ϕ]]) = [[Pre(α, ϕ)]].

5.3. Input action and atomic term formulae

Throughout this section let α = l
g,R,?t (x̃)−→ l′. We show that we can express pre(α, ϕ),

for any atomic term formula ϕ. To do so, we need to prove a few intermediate results.
The intuitive explanation of next lemma is the following: being in a state (σ, E, ν, l),

in order to be able to make an input t (x̃), such that x̃ are instantiated by ρ, it must be that
(σ, E, ν, l) ∈ [[F(tρ)]].

Lemma 25. Let E be a set of terms, l be a label, ν be a clocks valuation and let ρ
and σ be ground substitutions such that dom(ρ) = x̃ and dom(σ ) ∩ x̃ = ∅. Then it holds
(σ, E, ν, l) ∈ [[F(tρ)]] iff E � t (σ ⊕ ρ).

Proof. See Appendix B.4.

First, notice that the effect of an input action ?t depends on the messages that match
with t and that are known by the intruder. Therefore, we need to characterize the set of
configurations s, such that if in the next step x is instantiated by an input ?t (x̃), the reached
configuration s′ satisfies x〈�w〉S.

To understand how this characterization is obtained, the best is to consider the negation
of x〈�w〉S, i.e., x〈w〉S. The key idea can be explained by considering the sequence of
actions ?t (x̃); !x. That is, if a secret s that appears in x has to be protected then it has to
appear in x under an encryption. Thus, before executing ?t (x̃); !x, it should be the case
that if we provide the intruder with the term transducer that takes as input t (x̃) and yields
x, it is not possible to derive s.

Lemma 26. Let t be a term, S a set of terms, w a sequence of term transducers, x a
variable and Px,t the set of critical positions of x in t . Let

K(t, x, w, S) = X〈w〉S ∧
∧

p=NP(t,px),px∈Px,t

H(X〈(t |p, p−1px).w〉S).

Let E be a set of terms, l and l′ labels, and ρ, σ ground substitutions such that dom(ρ) =
x̃, x ∈ x̃, dom(σ ) ∩ x̃ = ∅. Let � be a well-formed formula such that whenever E �
t (σ ⊕ ρ), it holds

(σ ⊕ ρ,E, ν, l′) ∈ [[(X, x)〈w〉S]] iff (σ, E, ν, l) ∈ [[�]].
Then [[�]] = [[ρ(K(t, x, w, S))]].
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Proof. See Appendix B.5.

Let now α be the action α = l
g,R,?t (x̃)−→ l′, where x̃ are the variables that are instantiated

by this action. We then define Pre(α, ϕ) as follows:

(1) Pre(α, ϕ)
def= g ∧ pc = ) ∧ F(t) ∧ ϕ, if ϕ is of the form

X〈�w〉S, t〈� ε〉x.f , (X, y)〈�w〉S, x �= t ′, x = t ′, pc = )′, � or ⊥ and y �∈ x̃.
The main point here is the conjunct F(t) which ensures that the intruder can derive
a message that matches with the input term.

(2) Pre(α, (X, x)〈�w〉S) def= g ∧ pc = ) ∧ F(t) ∧ ¬K(t, x, w, S), if x ∈ x̃.

Proposition 27. For any input action α and term formula ϕ,

pre(α(x̃), [[ϕ]]) = [[∃x̃ · Pre(α, ϕ)]].

5.4. Collecting the results together

It is easy to see that for any formula ϕ ∈ TSPL and any action α, Pre(α, ϕ) ∈ TSPL.
Then, we have the following theorem:

Theorem 28. Let α be any action and ϕ any formula in TSPL. Then,

pre(α(x̃), [[ϕ]]) = [[∃x̃ · Pre(α, ϕ)]].

6. Decidability of TSPL

In this section, we prove decidability of the existence of a model for existential TSPL

formulae (that is, formulae of the form ∃x1 . . . ∃xm∃T1 . . . ∃Tn∀f1 . . .∀fpφ with φ a quan-
tifier free formula). Notice that since we showed in Section 5 that given a formula ϕ in
TSPL and a bounded CP π , one can compute Pre(π, ϕ), decidability of the satisfiability of
formulae yields a decision procedure for reachability of configurations described by TSPL

formulae.
Second, we prove that the problem of deciding the existence of a model for an existential

TSPL formula (shortly called TSPL-SAT) is NP -complete. Finally, we show that if we allow
both existential and universal quantifiers for variables in X, then the problem of deciding
the existence of a model for a TSPL formula is undecidable.

6.1. A decidable fragment of TSPL

In this section, we do not consider formulae of the from pc = ). It will be clear that
adding these formulae does not add any technical difficulty; it is only cumbersome to
consider them here. We do not consider formulae of the form X〈w〉s or x〈w〉s with s a
variable; first, positive formulae appears only from initial conditions, and clearly, it does
not make much sense to consider positive formulae with s a variable; second, such formulae
add some technical difficulties that make harder the presentation of our results. On the other
hand we shall add to TSPL two new kinds of formulae, X,U� � ε � x and U� � ε � x with
x ∈ X and U a meta-variable that ranges over sets of terms, and which have the following
semantics:
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[[X,U� � ε � x]] = {
(σ, E, ν, )) | ∀A ∈ wc(σ(x)) {Eσ ∪ Uσ }〈� ε〉A}

[[U� � ε � x]] = {
(σ, E, ν, )) | ∀A ∈ wc(σ(x)) {Uσ }〈� ε〉A}

.

Let � = ∃x1 . . . ∃xm∃T1 . . . ∃Tn∀f1 . . .∀fpφ where {xi | i = 1 . . . m} ∪ {Tj | j =
1 . . . n} ∪ {fk | k = 1 . . . p} is the set of all variables that appear in φ, and φ is a quantifier
free formula builded using the connectives ∧ and ∨ and the following literals:

X〈w〉t | t〈w〉t ′ | x = t | � | X〈�w〉s | t〈�w〉t ′ | t〈� ε〉x.f
x �= t | ⊥ |

n∑
i=1

aici +
m∑

j=1
bjTj �� d,

where X is a fixed second-order variable that ranges over sets of messages, x is a meta-
variable that ranges over the set X of first-order variables, f is a meta-variable that ranges
over B, s ranges over extended terms, t, t ′ range over terms and w is a finite sequence of
term transducers that can contain free variables.

To prove decidability for the satisfiability of TSPL formulae we follow a rule based
approach (e.g., [11,20] for two nice surveys) i.e.:

(1) We introduce a set of formulae in solved form. For these formulae it is “easy” to
decide whether a model exists.

(2) We introduce a set of rewriting rules that transform any formula ϕ into a set of
solved formulae, such that ϕ is satisfiable iff one of the formulae in solved form is
satisfiable.

(3) We prove soundness and completeness of these rules.
(4) We also prove their termination for a given control, i.e. that normal forms are reached

and that normal forms are indeed in intermediate form.
The reduction of a formula ϕ into a set of solved formulae is done in three phases.

(1) We define a preliminary form and we introduce a set of rewriting rules to transform
any formula in the fragment that interest us, into a preliminary form.

(2) We define an intermediate form and we introduce a set of rewriting rules to transform
any formula in preliminary form into an intermediate form.

(3) For each formula in intermediate form, we show how to reduce its satisfiability to the
satisfiability of a set of saturated formulae in intermediate form; moreover, for each
saturated formula in intermediate form, we can extract a formula in solved form such
that a model exists for the formula in intermediate form if and only if the extracted
formula in solved form is satisfiable.

We will encounter two sorts of rewriting rules:
• Deterministic rules are of the form ϕ → ϕ′. They transform a given problem into a

single problem. A deterministic rule is sound, if [[ϕ]] = [[ϕ′]].
• Non-deterministic rules of the form ϕ → ϕ1, . . . , ϕn. They transform a given problem

into a set of problems. A non-deterministic rule is sound, if [[ϕ]] =
n⋃

i=1
[[ϕi]].

6.2. Solved form

A formula is called in solved form if it is syntactically equal to �, ⊥ or to a conjunction
� ∧ ϕ where � is a time constraint and ϕ is of the form:

n1∧
i=1

X〈ε〉wi ∧
n2∧
i=1

X〈� ε〉w′
i ∧

n∧
i=1


 mi∧
j=1

xi〈ε〉tji ∧
li∧

j=1

xi〈� ε〉uji ∧
oi∧
j=1

xi �= v
j
i
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such that:
• For any i = 1, . . . , n, xi ∈ X.
• For any i = 1, . . . , n, xi �∈ var (tji ) ∪ var (uji ) ∪ var (vji ).

• There is an ordering xi1 , . . . , xin of x1, . . . , xn such that
lik⋃
j=1

var (ujik ) ∩ {xik+1 ,

. . . , xin} = ∅.
Here by var (t) we denote the set of variables that appear in the term t .

We now show how one can check whether a formula in solved form has a model. Let us
first assume that the time constraint is �, that is, we only have to deal with ϕ. We will later
show how to reduce the general case to this one.

Satisfiability of ϕ. So, let ϕ a conjunction as above. We consider clocks and time variables
as constant symbols and define a particular substitution σ such that ϕ has a model iff it is
satisfied by σ . To do so, let k ∈ K be a fixed public key. Let F(n), for n ≥ 1, denote n

concatenations of k, i.e., F(1) = k and F(n + 1) = pair(k, F (n)). Let now N be a natural
number strictly bigger than the size of the formula ϕ. We then define the substitution σ

recursively as follows:

• If n = 1, i.e., there is only one variable then σ(xi1) = (u1
i1
, (· · · , (uli1i1 , {F(N + i1)}k)

· · ·)). In case li1 = 0 this term is understood as {F(N + i1)}k .
• If n > 1 then replace xi1 by σ(xi1) in ϕ. This yields a new formula ϕ′ and the ordering
xi2 , . . . , xin , and by recursion, a substitution σ ′. Then, let

σ = [xi1 ,→ (u1
i1
, (· · · , (uli1i1 , {F(N + i1)}k) · · ·))] ⊕ σ ′.

Now, let E = {w′
1, . . . , w

′
n2
, k}.

Theorem 29. Let ϕ be a term formula in solved form syntactically different from � and
⊥. Let σ be the substitution and E be the set of messages as defined above. Then, ϕ has a
model iff (σ, E) satisfies ϕ.

Proof. We only give a sketchy idea of the main argument why the Theorem holds. The
interesting implication to prove is the following: If (σ, E) does not satisfy ϕ then ϕ has no
model.

Now, since σ has been defined such that σ(x) is not a sub-term of ϕ, for any x =
x1, . . . , xn, we have the two crucial properties: (1) If uσ 〈� ε〉tσ then u〈� ε〉t and (2) If uσ �=
tσ then u �= t . On the other hand, we can prove if σ is not a model of ϕ then u

j
i σ 〈� ε〉tqi σ , for

some i ∈ {1, . . . , n}, j ∈ {1, . . . , li} and q ∈ {1, . . . , mi}. Therefore, uji 〈� ε〉tqi , and hence,
ϕ has no model.

6.3. The general case

Let us now return to the case where � is a conjunction of time constraints. It turns out
that only the equalities between the variables in C ∪ Y that are implied by � might rule
out some of the models of ϕ. That is, we need only to take into account such equalities.
Let us illustrate this by an example. Consider the formula ϕ′ ≡ x〈ε〉(A, c) ∧ x〈� ε〉(A, T ).
Then, ϕ′ ∧ 0 ≤ c ≤ 1 ∧ 0 ≤ T ≤ 1 is satisfiable; while ϕ′ ∧ c − T = 0 is not. Indeed, in
the first the time constraint does not imply any equality; while in the second case it implies
c = T .
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Therefore, we proceed as follows: We compute the strongest time constraint � ′ of the
form ⊥ or

m∧
i=1

zi = z′
i

where zi, z
′
i ∈ C ∪ Y and such that � implies � ′. If � ′ is ⊥ then � ∧ ϕ is not satisfiable,

and we are done.
Therefore, let us suppose that � ′ is satisfiable. Then, � ′ induces an equivalence relation

on the variables in C ∪ Y as follows: z ∼� ′ z′ iff z = z′ is a consequence of � ′. Using this
equivalence relation we can define an idempotent substitution σ� ′ that associates to the
members of an equivalence class a designated representant. Now, we apply the substitution
σ� ′ to ϕ and check that the obtained formula is satisfiable.

6.4. Rewriting rules

In this section, we present a set of rewriting rules that transform any formula ϕ as
considered in subsection 6.1, into a set of solved formulae, such that ϕ is satisfiable iff one
the formulae in solved form is satisfiable.

For the rules of the form ϕ −→ ψ , where ϕ is an atomic formula, we tacitly assume a
rule ¬ϕ −→ ¬ψ . Obvious rules (as distributivity of ∨ (respectively ∧) with respect to ∧
(respectively ∨)) are not mentioned explicitly.

Transducer elimination. Rules T decreases the length of w in sub-formulae of the form
u〈w〉s, if w �= ε and u is X or any term; it allows to reduce such formulae to the case
w = ε.

u〈(b, p).w〉s ,→ u〈ε〉s ∧ (u〈ε〉b ∨ b|p〈w〉s) if u ∈ T ∪ {X} (T)

Preliminary rules. The following rules are useful to eliminate the universal quantifiers
and variables x.f

∀f (φ ∧ ψ) ,→ ∀f φ ∧ ∀fψ (P1)
∀f (φ ∨ ψ) ,→ (∀f φ) ∨ ψ if f /∈ var (ψ) (P2)

∀f (X〈� ε〉x.f ∨ ∨
t∈U

t〈� ε〉x.f ) ,→ X,U� � ε � x (P3.1)

∀f ( ∨
t∈U

t〈� ε〉x.f ) ,→ U� � ε � x (P3.2)

Replacement. This is the usual rule for substituting a term for a variable.

x = t ∧ � ,→ �[t/x] if x �∈ var(t). (R)

Elimination of trivial sub-formulae. The following formulae eliminate trivially satisfied
or unsatisfied sub-formulae (where ≡s denotes syntactic equality).

t = t ,→ � t〈ε〉t ,→ ⊥ ⊥ ∧ � ,→ ⊥ � ∧ � ,→ �
x = t ,→ ⊥ x〈ε〉t ,→ � x �= t ,→ � if x ∈ X ∩ var (t) ∧ t � ≡sx

x = {t}k ,→ ⊥ x = (t1, t2) ,→ ⊥ x = N ,→ ⊥ x = P ,→ ⊥
x = k ,→ ⊥ if x ∈ C ∪ Y ∪ R, N ∈ N , P ∈ P and k ∈ K ∪ KS
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Decomposition rules. The following rules deal with equalities and formulae of the form
t〈ε〉s. The first rule deals with the case where t is not atomic and transforms the formula
into equalities, inequalities between terms and formulae of the form x〈ε〉s, where x is a
variable. The second rule deals with the same formula but for the case where t is atomic.

t〈ε〉s ,→ J(t, ε, s), if t �∈ X ∪ C ∪ Y ∪ R≥0 (D1.1)
t〈ε〉s ,→ t �= s, if t ∈ C ∪ Y ∪ R≥0 (D1.2)
s = t ,→ µ(s, t) if s, t �∈ X ∪ C ∪ Y ∪ R≥0 (D2)

Occur-check. The main idea behind this rule is that y〈� ε〉t induces an ordering on the
variables in t and y. Indeed, if x is a variables in t then, in any model of this formula, the
term assigned to x is a sub-term of the term assigned to y.

ϕ ,→ ϕ[y/x]
if x and y are syntactically different and x ≤ y and y ≤ x, where
≤ is the reflexive transitive closure of < with “x < y iff there is a
sub-formula of ϕ of the form y〈� ε〉t with x ∈ var (t)”. (OC)

Simplification rules. Rules (Si1) and (Si2) deal with formulae of the form U � ε � s and
X,U � ε � s in the case that s is not a variable (such formulae can be introduced by the
elimination of equalities).

If s �∈ X then:
U� � ε � s ,→ ∧

A∈wc(s)

[ ∨
t∈A\X

∨
u∈U

u〈� ε〉t ∨ ∨
t∈A∩X

U� � ε � t
]

(Si1)

X,U� � ε � s ,→ ∧
A∈wc(s)

[ ∨
t∈A\X

(
X〈� ε〉t ∨ ∨

u∈U
u〈� ε〉t)

∨ ∨
t∈A∩X

X,U� � ε � t
]

(Si2)

Saturate rules. Rules (Sa1) and (Sa2) allow us to saturate a formula in intermediate form.

φ ∧ x〈� ε〉t ∧ X,U� � ε � x ,→ φ ∧ x〈� ε〉t ∧ X,U� � ε � x ∧ X,U� � ε � t (Sa1)
φ ∧ x〈� ε〉t ∧ U� � ε � x ,→ φ ∧ x〈� ε〉t ∧ U� � ε � x ∧ U� � ε � t (Sa2)

6.5. Preliminary form

A formula � is called in preliminary form if it is of the form

∃x1 . . . ∃xm∃T1 . . . ∃Tnφ
where {xi | i = 1 . . . m} ∪ {Tj | j = 1 . . . n} is the set of all variables that appear in φ,

and φ is a quantifier free formula builded using the connectives ∧ and ∨ and the following
literals:

X〈ε〉t | t〈ε〉t ′ | x = t | � | X〈� ε〉t | t〈� ε〉t ′ | X,U� � ε � x | U� � ε � x

x �= t | ⊥ |
n∑

i=1
aici +

m∑
j=1

bjTj �� d,

where X is a fixed second-order variable that ranges over sets of messages, x is a meta-
variable that ranges over the set X of first-order variables, and t, t ′ range over terms. It is
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easy to see that repeated application as much as possible of Transducer elimination and
Preliminary rules transform any formula as considered in Section 6.1, into an equivalent
formula in preliminary form. From now on, it is obvious that as we consider satisfiability
of formulae in preliminary form, we can restrict ourselves to conjunctions of literals.

6.6. Intermediate form

A formula is called in intermediate form if it is syntactically equal to �, ⊥ or to a
conjunction � ∧ ϕ1 ∧ ϕ2 where � is a time constraint, ϕ1 is of the form:

n1∧
i=1

X〈ε〉wi ∧
n2∧
i=1

X〈� ε〉w′
i ∧

n∧
i=1


 mi∧
j=1

xi〈ε〉tji ∧
li∧

j=1

xi〈� ε〉uji ∧
oi∧
j=1

xi �= v
j
i




and ϕ2 is of the form:

n∧
i=1


 ki∧
j=1

X,U
j
i � � ε � xi ∧

hi∧
j=1

V
j
i � � ε � xi




such that:
• For any i = 1, . . . , n, xi ∈ X.
• For any i = 1, . . . , n, xi �∈ var (tji ) ∪ var (uji ) ∪ var (vji ).

• There is an ordering xi1 , . . . , xin of x1, . . . , xn such that
lik⋃
j=1

var (ujik ) ∩ {xik+1 ,

. . . , xin} = ∅.
A formula in intermediate form defined as above, is called saturated, if � ∧ ϕ1 ∧ ϕ2 is
satisfiable if and only if � ∧ ϕ1 is satisfiable.

From preliminary form to intermediate form

Theorem 30. Application of the rules of Subsection 6.4 terminates in an intermediate
form.

Proof. Let us first briefly mention how each rule contributes in reaching a normal form:
(1) Rules D1.1 and D1.2 decrease the number of sub-formulae of the form t〈ε〉s or t〈� ε〉s

but may introduce equalities and disequalities.
(2) Rule D2 decreases the number of equalities (disequalities) where the two members

are not variables.
(3) Rules Sa1 and Sa2 decrease the number of sub-formulae of the form X,U� � ε � s

and U� � ε � s but may introduce new formulae of the form t〈� ε〉s.
(4) Rules Occur-check and Replacement eliminate a variable.

Now, to prove termination we need to introduce interpretation functions which are intended
to decrease by applications of the rules:
• f1(ϕ) is the cardinality of var (ϕ).
• f2(ϕ) is the number of formulae of the form X,U� � ε � s and U� � ε � s with s not a

variable.
• f3(ϕ) is the number of formulae of the form t〈ε〉s with t not a variable.
• f4(ϕ) is the number of equalities (disequalities) where both members are not variables.
• f5(ϕ) is the size of ϕ.
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Fig. 1. Variation of the ranking functions.

Fig. 1 summarizes the variation of each function by the transformation rules: Thus, if
we define F(ϕ) = (f1(ϕ), . . . , f5(ϕ)) then F(ϕ) decreases with respect to lexicographic
ordering by each rule. Hence, termination of the rules.

It remains now to show that if no rule can be applied then the obtained formula is in
intermediate form. This proof is easy and tedious and is left to the reader. �

Saturating formulae in intermediate form. We prove that for any formula ϕ in interme-
diate form, we can construct a set of saturated formulae ϕ1; . . . ;ϕn in intermediate form,

such that [[ϕ]] =
n⋃

i=1
[[ϕi]].

Theorem 31. There exists a strategy to apply the rules of Subsection 6.4 that terminates
in a saturated intermediate form.

Proof. To ensure the termination, we apply the Saturate rules Sa1 and Sa2 only for the
pairs (x〈� ε〉t; X,U� � ε � x) or (x〈� ε〉t; V� � ε � x) that are not marked, and after the
application of such a rule, we mark the corresponding pair. On the other hand, any time
we apply the Replacement or the Occur-check rule, we unmark all the pairs of constraints
which were marked before. Then, the termination follows from the remark that the number
of variables is finite, all the rules but Replacement or Occur-check introduce only subfor-
mulae of the formulae we already have, and no rule does not introduce any new variable.
Then, to prove that any formula obtained after the termination of the above algorithm is
saturated, we make an induction on the position of variables w.r.t. to the order ≤. Indeed let
� ∧ ϕ1 ∧ ϕ2 be such a formula and let σ be the substitution and E be the set of messages
as defined in Theorem 29 corresponding to the formula � ∧ ϕ1. Then, (σ, E) satisfies
� ∧ ϕ1 ∧ ϕ2. We prove by induction on the position of the variable x w.r.t. to the order
≤ that for any constraints X,U� � ε � x ∈ ϕ2, and V 〈� ε〉x ∈ ϕ2 and for any A ∈ wc(σ(x))

it holds (E ∪ U)σ 〈� ε〉A, and V σ 〈� ε〉A. The key of the proof, is that when the algorithm
terminates, we already applied the Saturate rules to the pairs (x〈� ε〉t; X,U� � ε � x) and
(x〈� ε〉t; V� � ε � x), and such rules introduce only formulae of the kind φ1, or of the form
X,U� � ε � z or V� � ε � z with z ≤ x. �

6.7. Complexity of the decidability of satisfiability of a TSPL-formula

In this subsection we prove that the problem of deciding the existence of a model for a
TSPL formula (shortly called TSPL-SAT) is NP -complete. We define the size of a formula
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ϕ to be the size of its DAG representation. Roughly speaking, it is the cardinality of the set
of its sub-formulae and sub-terms. We denote the size of ϕ by |ϕ|.

First, we prove the NP -hardness, using a polynomial reduction of 3-SAT to TSPL-SAT.
Let x1, . . . , xn be Boolean variables, and let f = ∧m

i=1 l
1
i ∨ l2i ∨ l3i a formula in 3-con-

junctive normal form, where l
j
i ∈ {x1, . . . , xn,¬x1, . . .¬xn}. It is well known that decid-

ing the existence of a model for such a formula is NP -complete. We shall construct a
TSPL-formula ϕf such that ϕf is satisfiable if and only if f is satisfiable.

Let c, T , F ∈ A be three distinct constants and let k1, k2 ∈ K be two distinct keys in
K . For any literal l, we denote

t(l) =
{{c, xj }k1 if l = xj

{c, xj }k2 if l = ¬xj

and for any clause C = l1 ∨ l2 ∨ l3 we denote t(C) = ((t(l1), t(l2)), t(l3)). Then, for any
clause Ci = l1i ∨ l2i ∨ l3i , we consider the formula

ϕCi
= ¬(t(Ci), {t(Ci), T }k1)〈({x, T }k1 , 11).({y, F }k2 , 11)〉c.

and finally, for f = ∧m
i=1 Ci , we take ϕf = ∧m

i=1 ϕCi
.

Now we prove that models of f coincide with models of ϕf . More precisely, given a
substitution σ : {x1, . . . , xn} → {T , F }, let σ̂ denote the boolean function such that σ̂ (xi) =
�, if σ(xi) = T and σ̂ (xi) = ⊥, otherwise. Then, we prove

σ |= ϕf iff σ̂ |= f.

For any variable xi , if a substitution σ satisfies ¬t(xi)〈({x, T }k1 , 11)〉c, then σ(xi) = T and
similarly, if σ satisfies ¬t(¬xi)〈({y, F }k2 , 11)〉c, then σ(xi) = F . Moreover, the formulae
¬t(¬xi)〈({x, T }k1 , 11)〉c and ¬t(xi)〈({y, F }k2 , 11)〉c are not satisfiable. Therefore, σ is a
model of

¬t(Ci)〈({x, T }k1 , 11)〉c ∨ ¬t(Ci)〈{y, F }k2 , 11)〉c
iff σ̂ is a model of Ci = l1i ∨ l2i ∨ l3i . And hence,

σ |= ϕf iff σ̂ |= ϕ.

Now, since if ϕ has a model, then it has a model that maps each variable xi into {T , F },
and since ϕf is polynomial in the size of f , we have the following:

Proposition 32. TSPL-SAT is NP-hard.

Now we prove that TSPL-SAT is in NP. We only consider term formulae as the complex-
ity of time constraints is well-known [28]. Moreover, as seen in Section 6.3 time constraints
can be eliminated leading to a formula � ′. This can be done in NP-time and the size of � ′
is polynomial in the size of �. Moreover, from � ′ we obtain an equivalent formula � ′′ in
preliminary form, such that |� ′′| is polynomially bounded by |� ′|.

Let ϕ be a conjunction of literals in preliminary form. Now let |ϕ|t be the cardinality
of the set St (ϕ) consisting of the sub-terms of ϕ. Clearly, we have |ϕ|t ≤ |ϕ|. Then, we
show that if ϕ is satisfiable then it has a model σ such that the size of σ(x) is polynomi-
ally bounded by |ϕ|t , for each variable x. To do so, we first introduce a special kind of
substitutions.
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Definition 33. Let Tr a set of terms, and let ρ a substitution defined on the set of variables
of Tr. Then ρ is called a Tr-substitution, if:
• for any variable x ∈ dom(ρ), there is a term vx ∈ St (T r) which is not a variable (i.e.
vx �∈ X), and such that ρ(x) = ρ(vx);

• ρ is idempotent.

Then, the following result can be proved using a similar reasoning as in the Theorem 1
from [26]:

Proposition 34. Let Tr a set of terms and let ρ a Tr-substitution. Then for any variable x,
|ρ(x)| ≤ |St(Tr)|.

Now, let {x1, . . . , xn} be the variables of ϕ. For each xi , we introduce |ϕ|t new variables
zi1, . . . , z

i|ϕ|t and consider the term txi defined as follows:

txi = (zi1, · · · (zi|ϕ|t , F (|ϕ|t ) + i)) · · ·).
Let us assume that ϕ is satisfiable. Then, there exists a formula ψ in solved form such
that ψ is obtained from ϕ using the rewriting rules from Section 6.4, and such that ψ is
satisfiable. Then, we can prove that the assertion

“there exists a St(ϕ)-substitution σ0, such that St(ψ) ⊆ (St(ϕ))σ0”

is an invariant for the rewriting rules of Section 6.4. Hence, using Proposition 34, we obtain
that |ψ |t is polynomial in |ϕ|t . Now, let (E, σ ) be the model of Section 6.2 that satisfies ψ .
Then, we can check that for any variable x, there is a term ux in St (ψ) ∪ {t | t ≤ txi , i =
1, . . . , n} such that σ(x) = σ(ux), and ux is not a variable. Then, using again Proposition
34 we obtain that the size of σ is polynomial in the size of St (ψ) ∪ {txi | i = 1, . . . , n}.
Now, since the size of {t | t ≤ txi , i = 1, . . . , n} is polynomial in the size of St (ϕ), and
since |E| ≤ |St (ψ)| we have the following:

Proposition 35. TSPL-SAT is in NP.

6.8. Undecidability for the entire TSPL logic

In this section we prove that the TSPL logic is undecidable, if we allow both existential
and universal quantifiers. We show that Post’s correspondence problem is reducible to
the decision problem in our logic. The proof is inspired from [30], where it is shown the
undecidability of a certain fragment in the theory of free term algebras.

Theorem 36. Post’s correspondence problem is reducible to the decision problem for the
TSPL logic.

Proof. Let P = {(pi, qi) | i = 1, . . . , n} be an instance of Post’s correspondence problem,
where pi, qi ∈ D∗, with D = {d1, . . . , dk}. We use d1, . . . , dk as constants, and also let c
be another particular constant.

We shall denote f (x1, x2, x3) = pair(pair(x1, x2), x3) and for i = 1, . . . , k, we shall
denote, gi(x) = pair(di, x). The monadic functions gi represent the alphabet: the string
di1 . . . dij is represented by the term gi1(. . . (gij (c)) . . .). By abuse of notation, if e =
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di1 . . . dij , we write e(y) to mean gi1(. . . (gij (y)) . . .). The use of the function f will be
clear later.

Suppose that P has a solution i1, . . . , im, that is m > 0 and 1 � ij � n for each j

and pi1 . . . pim = qi1 . . . qim . For each j = 1, . . . , m + 1, let rj = pij . . . pim and sj =
qij . . . qim . Thus r1 = s1 and rm+1 = sm+1 = ε. Then the formula �P given below is
satisfiable, with the following value for x:

x = f (r1, s1, f (r2, s2, f (. . . f (rm+1, sm+1, c) . . .))).

Conversely, if the formula is satisfiable, then from the value of x a solution to P can be
recovered.

The formula �P is
∃x, x1, x2∀y0, . . . , y6[

Isfgc(x) ∧
6∧

i=0

x〈� ε〉yi
]

(1)

∧ [
x = f (x1, x1, x2) ∧ x1 �= c

]
(2)

∧
[
y0 �= f (y1, y2, y3)∨

[
y1 �= f (y4, y5, y6) ∧ y2 �= f (y4, y5, y6) ∧

k∧
i=1

y3 �= gi(y4)

] ]
(3)

∧ [y1 �= f (y2, y3, c) ∨ y2 = y3 = c] (4)

∧
[
y0 �= f (y1, y2, f (y3, y4, y5)) ∨

n∨
i=1

[y1 = pi(y3) ∧ y2 = qi(y4)]
]

(5)

where

Isfgc(x) :: = [Isgc(x) ∨ P3(x)] ∧ ∀y[x〈ε〉y ∨ Isgc(y) ∨ P3(y)]
P3(x) ::= ∃x1, x2, x3[x = f (x1, x2, x3)]

Isgc(x) ::= M(x) ∧ ∀y[x〈ε〉y ∨ M(y)]

M(x) ::= x = c ∨ ∃y
[

k∨
i=1

x = gi(y)

]

The meaning of each subformula is given below:
(1) Isgc(t) means that t is either c or has the form gi1(. . . (gip (c))).
(2) Isfgc(t) means that t is either c or has the form gi1(. . . (gip (c))) or the form

f (t1, t2, t3) and for the last case, the same property holds for t1, t2 and t3 too.
(3) (1) y0, . . . , y6 are subterms of x, and x and also any subterm of x are builded using

only the constant c and the “function symbols” gi and f ; moreover, any subterm that
has a gi as the outermost function symbol, has the form gi1(. . . (gip (c))).

(4) (2) This forces r1 = s1.
(5) (3) For any subterm f (y1, y2, y3) of x, y1 and y2 must be c or have one of the gi

as the outermost “function symbol”, and y3 must be c or have f as the outermost
symbol.
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(6) (4) This forces rm+1 = sm+1 = ε.
(7) (5) For each j there is an i such that rj = pirj+1 and sj = qisj+1. �

7. Conclusions

In this paper, we have proved the decidability of a large class of reachability proper-
ties, including secrecy and authentication, for timed bounded protocols. Our model for
specifying timed protocols uses clocks, time variables and time-stamps. This work can be
extended in several ways:

(1) Our model can be naturally extended to associate time values to short term keys such
that if the intruder obtains a message encrypted by a short term key then after the
specified amount of time elapses the key becomes known by the intruder. Our model
and verification method can be extended to handle this model.

(2) Our model can also be extended to handle drifting clocks. It is well-known that mod-
els with clocks with drifts in bounded intervals can be transformed into models with
perfect clocks modulo an abstraction, that is, taking into account more behavior. As
discussed by Gong [18] drifting clocks can add subtle attacks.

(3) In [7], it is shown how we can use our logic to devise an abstract interpretation based
method for unbounded protocols.

Appendix A. Expressing security properties

To illustrate how TSPL can be used to express security properties, we consider the Need-
ham-Schroeder public-key protocol, NS for short. The protocol is designed to ensure prin-
cipal authentication: at the end of the protocol, the two participants A and B should be
convinced about the identity of their respective correspondent. A session S between par-
ticipants A and B of NS protocol is:

A → B : {A,Na}pbk(B)

B → A : {Na,Nb}pbk(A)
A → B : {Nb}pbk(B)

The keys pbk(A) and pbk(B) are the public keys of the participant A respectively of the
participant B and the nonce Na and Nb are fresh values generated by A respectively B.

The next table shows how we represent each participant. The labels represent the local
control points of the process.

A : B :
0 : !{A,Na}pbk(p)
1 : ?{Na, x}pbk(A)
2 : !{x}pbk(p)
3 :

0 : ?{y, z}pbk(B)

1 : !{z,Nb}pbk(y)
2 : ?{Nb}pbk(B)

3 :
We write AS to specify the process A of the session S. We write v(S) to specify a variable,
a nonce or a participant v involved in a session S.

Let us consider two parallel sessions S1(a, b)||S2(a, c). An execution trace has control
points of the form (pc(S1)

A , pc(S1)
B , pc(S2)

A , pc(S2)
B ) which correspond to the local control
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points of AS1 respectively BS1, AS2, BS2. Traces are obtained by interleaving of actions
in the two sessions. For example, one possible trace, where the session S2 starts before the
session S1 ends, is:

(0, 0, 0, 0) !{a,Na
(S1)}pbk(b) (1, 0, 0, 0) !{a,Na

(S2)}pbk(c)
(1, 0, 1, 0) ?{y(S1), z(S1)}pbk(b) (1, 1, 1, 0) ?{y(S2), z(S2)}pbk(c)
(1, 1, 1, 1) !{z(S1), Nb

(S1)}pbk(y(S1)) (1, 2, 1, 1) ?{Na
(S1), x(S1)}pbk(a)

(2, 2, 1, 1) !{x(S1)}pbk(b) (3, 2, 1, 1) ?{Nb
(S1)}pbk(b)

(3, 3, 1, 1) !{z(S2), Nb
(S2)}pbk(y(S2)) (3, 3, 1, 2) ?{Na

(S2), x(S2)}pbk(a)
(3, 3, 2, 2) !{x(S2)}pbk(c) (3, 3, 3, 2) ?{Nb

(S2)}pbk(c)
(3, 3, 3, 3)

In this example the initial substitution is [A(S1) = a;p(S1) = b;B(S1) = b;A(S2) =
a;p(S2) = c;B(S2) = c].

We can express semantic secrecy in our logic using the following result:

Proposition 37. Let t be a term. Then,[[ ∨
S′∈wct (t)

X〈ε〉S′
]]

= {
(σ, E, ν, )) | E �� tσ

}
.

There are many definitions of authentication that we can find in the literature [8,22,25,
27,31]. We show here, by means of an example, how the introduced logic allows to specify
the authentication properties discussed in [22].

Aliveness of the initiator is guaranteed to the participant b in session S1: if b completes
a run of the protocol in session S1, as responder, with one participant, let us say x, then
y(S1) = x and the participant x has previously been running the protocol (not necessarily
with b neither not necessarily as initiator).

pc
(S1)
B

= 3 ⇒ ((y(S1) = a ∧ (pc
(S1)
A

�= 0 ∨ pc
(S2)
A

�= 0))∨
(y(S1) = c ∧ pc

(S2)
B

�= 0)∨
y(S1) = b)

Weak agreement of the initiator is guaranteed to the responder b in session S1: if b

completes a run of the protocol in session S1, as responder, with one participant, let say x,
then y(S1) = x and the participant x has previously been running the protocol with b (not
necessarily as initiator).

pc
(S1)
B

= 3 ⇒ ((y(S1) = a ∧ pc
(S1)
A

�= 0 ∧ p(S1) = b)∨
(y(S1) = a ∧ pc

(S2)
A

�= 0 ∧ p(S2) = b)∨
(y(S1) = c ∧ pc

(S2)
B

�= 0 ∧ y(S2) = b)∨
y(S1) = b)

Non-injective agreement on Na of the initiator is guaranteed to the responder b in ses-
sion S1: if b completes a run of the protocol in session S1, as responder, with one par-
ticipant, let say x, then y(S1) = x and the participant x has previously been running the
protocol, as initiator, with b and they have the same value for Na .

pc
(S1)
B

= 3 ⇒ (y(S1) = a∧
((pc

(S1)
A

�= 0 ∧ p(S1) = b ∧ z(S1) = Na
(S1))∨

(pc
(S2)
A

�= 0 ∧ p(S2) = b ∧ z(S1) = Na
(S2))))

Agreement on Na and Nb of the initiator is guaranteed to the responder b in session S1:
if b completes a run of the protocol in session S1, as responder, with one participant, let
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say x, then y(S1) = x and the participant x has previously been running the protocol, as
initiator, with b and they have the same value for Na and Nb. Moreover each such run of b
corresponds to a unique run of a.

pc
(S1)
B

= 3 ⇒
[y(S1) = a∧
((pc(S1)

A
�= 0 ∧ p(S1) = b ∧ z(S1) = Na

(S1) ∧ x(S1) = Nb
(S1)∧

(pc
(S2)
A

= 0 ∨ p(S2) �= b ∨ z(S1) �= Na
(S2) ∨ x(S2) �= Nb

(S1)))∨
(pc(S2)

A
�= 0 ∧ p(S2) = b ∧ z(S1) = Na

(S2) ∧ x(S2) = Nb
(S1)∧

(pc
(S1)
A

= 0 ∨ p(S1) �= b ∨ z(S1) �= Na
(S1) ∨ x(S1) �= Nb

(S1)))
)]

It should be clear that given an authentication property and a bounded CP, one can
systematically derive a formula expressing the property. Also, interesting to notice that
the formulae that express these properties do not use the predicate Secret (t). But then,
what is about the general belief that verifying authentication can be reduced to verifying
secrecy properties? The weakest precondition calculus we develop in Section 5 clearly (and
rigorously) shows where secrecy intervenes.

Appendix B. Proofs

B.1. Proof of Proposition 16

Proposition 16. Let E be a set of messages such that E〈wi, Si〉I and let (wi, Si)i∈I be
well-formed. Moreover, let m be a message with E � m. Then, m〈wi, Si〉I .

Proof. Before tackling the proof, we introduce the following definition: We say that m is
a derivation-minimal counter-example, if the following conditions are satisfied:

(1) E � m,
(2) ¬E〈wi, Si〉I and
(3) there is a derivation for E � m which does not contain any strict sub-derivation E �

m′ of a message m′ with ¬m′〈wi, Si〉I .
Assume that the assertion does not hold. Then, there exists a derivation-minimal counter-
example m. The existence of m can be proved as follows. Take a derivation of E � m and
let N0 be its size. If m is not a derivation-minimal counter-example then there must exist
a sub-derivation E � m′ with ¬m′〈wi, Si〉I . Clearly, the size N1 of the derivation tree of
m′ is strictly smaller than N0. Repeated application of the same argument must lead to a
derivation-minimal counter-example as there are no strictly decreasing chains in N.

Thus, let us come back to our derivation-minimal counter-example m. We derive a con-
tradiction by case analysis on the last derivation step in E � m.

(1) m ∈ E. This, contradicts the assumption E〈wi, Si〉I .
(2) Case of encryption with a key from K . Thus, m = {m1}k1 , E � m1 and E � k1 with

k1 ∈ K . Since m is a derivation-minimal counter-example, we have m1〈wi, Si〉I and
k1〈wi, Si〉I . Since ¬m〈wi, Si〉I , there exists i ∈ I such that ¬m〈wi〉Si . It follows
that wi �= ε and hence wi = (b, r).w and m = b and ¬b|r〈wi〉Si (∗).
If NT(b, r) does not exist then we have ¬m1〈ε〉Si , and hence, ¬m1〈wi〉Si , which
contradicts the derivation-minimality of m.
So, let (b1, r1) = NT(b, r). From definition, we have that b|r = b1|r1 (∗∗).
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Since (wi, Si)i∈I is well-formed, following the definition 15(2a) there exists j ∈ I

such that either
b ∈ Sj or wj = (b1, r1).w and Si ⊆ Sj .
If we suppose that b ∈ Sj , since Sj is closed and m = b, we obtain that either m1 ∈
Sj or k1 ∈ Sj and hence either ¬m1〈wj 〉Sj or ¬k1〈wj 〉Sj , contradiction.
Hence wj = (b1, r1).w and Si ⊆ Sj . From m1〈wj 〉Sj we obtain b1|r1〈w〉Sj and
using (∗∗) we obtain b|r 〈w〉Sj (∗ ∗ ∗).
From (∗), (∗ ∗ ∗) and Definition 15(2a) we obtain a contradiction.

(3) Case of encryption with a key which is not in K . Thus, m = {m1}k1 , E � m1 and
E � k1 with k1 �∈ K . Since m is a derivation-minimal counter-example, we have
m1〈wi, Si〉I , and then we obtain that m〈wi, Si〉I , contradiction.

(4) Case of pairing. Similar to the previous case.
(5) Case of projection. This also contradicts the derivation-minimality assumption.
(6) Case of decryption. Thus,m1 = {m}k1 ,E � m1 andE � k−1

1 . Sincem is a derivation-
minimal counter-example, we have m1〈wi, Si〉I and k−1

1 〈wi, Si〉I . If we suppose that
k1 �∈ K , then we obtain that either ¬m1〈wi, Si〉I or m〈wi, Si〉I , contradiction.
If k1 ∈ K , since for all i ∈ I , Si are closed, we obtain that k−1

1 ∈ Si , contradiction
with k−1

1 〈wi, Si〉I . �

B.2. Proof of Proposition 17

In order to prove the Proposition 17 we start with proving the following proposition:

Proposition 38. Let m, s be two messages and E be a set of messages such that K \
K−1 ⊆ E. If ¬m〈ε〉s then E,m � s.

Proof. By induction on the structure of m.

(1) Case m atomic. Since ¬m〈ε〉s we have m = s, so that E,m � s.

(2) Case of pair m = (m1, m2). By definition, from ¬m〈ε〉s we have either m = s or
¬m1〈ε〉s ∨ ¬m2〈ε〉s. If m = s we have m � s else using the induction we have
E,m1 � s ∨ E,m2 � s and we can conclude that E,m � s.

(3) Case of encrypted message with a key which is not in K , m = {m1}k1 , k1 �∈ K . By
definition, we have either m = s or ¬m1〈ε〉s. If m = s we have E,m � s else, using
the induction we have E,m1 � s. From the hypothesis we know K \ K−1 ⊆ E and
we are in the case where k1 �∈ K. Therefore, k−1

1 ∈ E and consequently E, {m1}k1 �
m1. Hence, we obtain E,m � s.

(4) Case of encrypted message with a key of K , m = {m1}k1 , k1 ∈ K . By definition
we have {m1}k1〈ε〉s is true for k1 ∈ K hence, we are not in the hypothesis of our
proposition. �

Corollary 39. Let s be a message and E be a set of messages such that K \ K−1 ⊆ E. If
E �� s then E〈ε〉s.

Proof. If we suppose that ¬E〈ε〉s we have there is m ∈ E such that ¬m〈ε〉s and
using Proposition 38 we obtain that E,m � s. But m ∈ E hence we have E � s, con-
tradiction. �
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Proposition 17. Let m be a message and E a set of messages such that K \ K−1 ⊆ E.
Then, E �� m iff there exists a set of messages A ∈ wc(m) s.t. E〈ε〉A.

Proof. “⇒”: E �� m ⇒ ∃A ∈ wc(m) s.t. E〈ε〉A
By induction on the structure of m.

(1) Case m atomic. Then, A = wc(m) = {{m}} and using the Corollary 39 we obtain
that E〈ε〉A.

(2) Case of pair m = (m1, m2). From E �� m we have E �� m1 or E �� m2. Using the
induction hypothesis we have ∃A1 ∈ wc(m1) such that E〈ε〉A1 or ∃A2 ∈ wc(m2)

such that E〈ε〉A2. From E �� m and Corollary 39 we obtain E〈ε〉m. Hence, for A =
{m} ∪ A1 or A = {m} ∪ A2 we have A ∈ wc(m) and E〈ε〉A.

(3) Case of encrypted message with a key K , m = {m1}k1 . Similar to the previous case.
“⇐”: ∃A ∈ wc(m) s.t. E〈ε〉A ⇒ E �� m.

Let suppose that E � m. From hypothesis we have E〈ε〉A and from A ∈ wc(m) we
have (ε, A) well-formed. Hence, using Proposition 16 we obtain that m〈ε〉A. But, from
A ∈ wc(m) we have m ∈ A, contradiction. �

B.3. Definability of t〈w〉S in TSPL

We prove that any formulas of the form t〈w〉S is definable in TSPL.
Let t be a term, s be an extended term, let w be a sequence of term transducers and let

J be defined as follows:

J(t, w, s) =




x〈w〉s if t = x ∈ X
G(t, s) if t = a ∈ A
J(t1, w, s) ∧ J(t2, w, s) ∧ G(t, s) if t = (t1, t2)

J(t1, w, s) ∧ G(t, s) if t = {t1}k ∧ k �∈ K

G(t, s) if t = {t1}k ∧ k ∈ K∧
w = ε

G(t, s) ∧ (µ(b, t) ⇒ J(b|r , w1, s)) if t = {t1}k∧
k ∈ K ∧ w = (b, r).w1

where we denote by

G(t, s) =
{¬µ(a, s) if s �∈ BX
t〈ε〉s if s ∈ BX

Then, t〈w〉s ≡ J(t, w, s), i.e., both formulae are equivalent.

Proof. We give the proof for the first case, when s �∈ BX, the other case being similar.
First, notice that if µ(t1, t2) �= ⊥, then (σ, E, ν, l) ∈ µ(t1, t2) iff t1σ = t2σ , and if
µ(t1, t2) = ⊥, then for any (σ, E, ν, l), it holds t1σ �= t2σ . Now we prove by induction on
depth(t) + |w| that t〈w〉s ≡ J(t, w, s).

(1) If t = x ∈ X, then J(t, w, s) = x〈w〉s = t〈w〉s.
(2) If t = a ∈ A, then J(t, w, s) = ¬µ(a, s). Then we have (σ, E, ν, l) ∈ ¬µ(a, s) iff

sσ �= a iff a〈wσ 〉sσ iff (σ, E, ν, l) ∈ a〈w〉s.
(3) If t = (t1, t2), then J(t, w, s) = J(t1, w, s) ∧ J(t2, w, s) ∧ ¬µ(t, s). By induction

hypothesis, we have J(t1, w, s) ≡ t1〈w〉s and J(t1, w, s) ≡ t1〈w〉s. We obtain (σ, E,

ν, l) ∈ J(t, w, s) iff (σ, E, ν, l) ∈ t1〈w〉s ∧ t2〈w〉s ∧ ¬µ(t, s) iff t1σ 〈wσ 〉sσ ∧
t2σ 〈wσ 〉sσ ∧ tσ �= sσ iff tσ 〈wσ 〉sσ iff (σ, E, ν, l) ∈ t〈w〉s.
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(4) The case t = {t1}k ∧ k �∈ K is similar to the previous one.
(5) If t = {t1}k ∧ k ∈ K ∧ w = ε, then we have (σ, E, ν, l) ∈ t〈w〉s iff tσ 〈ε〉sσ iff tσ �=

sσ iff (σ, E, ν, l) ∈ ¬µ(t, s) iff (σ, E, ν, l) ∈ J(t, w, s).
(6) If t = {t1}k ∧ k ∈ K ∧ w = (b, r).w1, then J(t, w, s) = ¬µ(t, s) ∧ (¬µ(b, t) ∨

J(b|r , w1, s)). By induction hypothesis, we have that b|r〈w1〉s ≡ J(b|r , w1, s).
We obtain (σ, E, ν, l) ∈ t〈w〉s iff tσ 〈ε〉sσ ∧ (bσ = tσ ⇒ (b|r )σ 〈w1σ 〉sσ ) iff tσ �=
sσ ∧ (bσ = tσ ⇒ (b|r )σ 〈w1σ 〉sσ ) iff (σ, E, ν, l) ∈ ¬µ(t, s) ∧ (µ(b, t) ⇒
b|r 〈w1〉s) iff (σ, E, ν, l) ∈ ¬µ(t, s) ∧ (µ(b, t) ⇒ J(b|r , w1, s)) iff (σ, E, ν, l) ∈
J(t, w, s). �

B.4. Proof of Lemma 25

Lemma 25. Let E be a set of terms, l be a label and let ρ and σ be ground substitu-
tions such that dom(ρ) = x̃ and dom(σ ) ∩ x̃ = ∅. Then it holds (σ, E, ν, l) ∈ [[F(tρ)]] iff
Eσ � t (σ ⊕ ρ).

Proof. Since dom(σ ) ∩ x̃ = ∅ and using the Definition 18, we have
(σ, E, ν, l) �∈ [[F(tρ)]] iff (σ, E, ν, l) ∈ ∃−→

f
⋃

S′∈wc(t)[[X〈ε〉S′ρ]] iff

∃−→
f ∃S′ ∈ wc(t) s.t. (σ, E, ν, l) ∈ [[X〈ε〉S′ρ]] iff

∃−→
f ∃S′ ∈ wc(t) s.t. Eσ 〈ε〉(S′ρ)σ iff

∃−→
f ∃S′ ∈ wc(t) s.t. Eσ 〈ε〉S′(σ ⊕ ρ) iff

∃S′ ∈ wc(t (σ ⊕ ρ)) s.t. Eσ 〈ε〉S′ iff (using Proposition 17)
Eσ �� t (σ ⊕ ρ). �

B.5. Proof of Lemma 26

Lemma 26. Let t be a term, S a set of terms, w a sequence of term transducers, x a
variable and Px,t the set of critical positions of x in t . Let

K(t, x, w, S) = X〈w〉S ∧
∧

p=NP(t,px),px∈Px,t

H(X〈(t |p, p−1px).w〉S).

Let E be a set of terms, l and l′ labels, and ρ, σ ground substitutions such that
dom(ρ) = x̃, x ∈ x̃, dom(σ ) ∩ x̃ = ∅. Let � a well-formed formula such that whenever
Eσ � t (σ ⊕ ρ), it holds

(σ ⊕ ρ,E, ν, l′) ∈ [[(X, x)〈w〉S]] iff (σ, E, ν, l) ∈ [[�]]
Then [[�]] = [[ρ(K(t, x, w, S))]].

Proof. “⇐”: Let suppose that (σ, E, ν, l) ∈ [[ρ(K(t, x, w, S))]]. Since (σ, E, ν, l) ∈
[[X〈wρ〉Sρ]], it follows that Eσ 〈w(σ ⊕ ρ)〉S(σ ⊕ ρ).

It remains to prove that ρ(x)〈w(σ ⊕ ρ)〉S(σ ⊕ ρ).
We have that Eσ � t (σ ⊕ ρ). From (σ, E, ν, l) ∈ [[H(X〈(t |p, p−1px).w〉S)]] it fol-

lows that Eσ 〈(t (σ ⊕ ρ)|p, p−1px).w(σ ⊕ ρ)〉S(σ ⊕ ρ). By construction, the formula
H(X〈(t |p, p−1px).w〉S) is well-formed. Using Corollary 20, we obtain t (σ ⊕ ρ)〈(t (σ ⊕
ρ)|p, p−1px).w(σ ⊕ ρ)〉S(σ ⊕ ρ), and from Definition 5 we obtain ρ(x)〈w(σ ⊕ ρ)〉
S(σ ⊕ ρ).
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“⇒”: We have that (σ, E, ν, l′) ∈ [[ρ(x)〈wρ〉Sρ ∧ X〈wρ〉Sρ]]. Let suppose that
∀px ∈ Px,t∃NT(t, px).

We have to prove for any px ∈ Px,t that:
(1) (σ, E, ν, l) ∈ [[X〈wρ〉Sρ]] and
(2) (σ, E, ν, l) ∈ [[H(X〈(t |p, p−1px).w〉S)]].

From (σ, E, ν, l′) ∈ [[ρ(x)〈wρ〉Sρ ∧ X〈wρ〉Sρ]] we obtain that Eσ 〈w(σ ⊕ ρ)〉S(σ ⊕ ρ)

and ρ(x)〈w(σ ⊕ ρ)〉S(σ ⊕ ρ).
It remains to prove that (σ, E, ν, l) ∈ [[H((X〈(t |p, p−1px).w〉S)]]. First we prove that

Eσ 〈(t (σ ⊕ ρ)|p, p−1px).w(σ ⊕ ρ)〉S(σ ⊕ ρ).
If we suppose that ¬Eσ 〈(t (σ ⊕ ρ)|p, p−1px).w(σ ⊕ ρ)〉S(σ ⊕ ρ) it means that ∃m ∈

E such that ¬mσ 〈(t (σ ⊕ ρ)|p, p−1px).w(σ ⊕ ρ)〉S(σ ⊕ ρ), and using the Definition 5
we obtain that either ¬mσ 〈w(σ ⊕ ρ)〉S(σ ⊕ ρ) or ¬ρ(x)〈w(σ ⊕ ρ)〉S(σ ⊕ ρ), contra-
diction. Now the assertion follows from the Proposition 21.

The case ∃px ∈ Px,t � ∃NT(t, px) is similar. �

B.6. Proof of Proposition 24

To prove Proposition 24, we need an auxiliary Lemma.

Lemma 40. Let ρ ∈ �(x̃), and let ϕ an atomic term formula. Then

ρ(Pre(l
g,R,?t (x̃)−→ l′, ϕ)) ≡ ρ(g) ∧ (pc = l) ∧ F(tρ) ∧ ρ(ϕ)

Proof. By an analysis by cases on ϕ. The only non-trivial case is when ϕ = (X, x)〈w〉S
and x ∈ x̃, and the assertion follows as a direct consequence of Lemmas 25 and 26. �

Proposition 27. For any input action α and term formula ϕ,

pre(α(x̃), [[ϕ]]) = [[∃x̃ · Pre(α, ϕ)]].

Proof. In the sequel l′′ is a label, E is a set of terms and σ is a ground substitution such
that x̃ ∩ (dom(σ) ∪ var (E)) = ∅.

(σ, E, ν, l′′) ∈ pre(l
g,R,?t (x̃)−→ l′, [[ϕ]]) iff

∃ρ ∈ �(x̃) s.t. l′′ = l ∧ Eσ � t (σ ⊕ ρ) ∧ [[g]]ν,σ⊕ρ = 1 ∧ (σ ⊕ ρ,E, ν, l′′) ∈ [[ϕ]] iff
∃ρ ∈ �(x̃) s.t.(σ, E, ν, l′′) ∈ [[pc = l ∧ ρ(g)]] ∧ (σ, E, ν, l′′) ∈ [[F(tρ)]]∧
(σ, E, ν, l′′) ∈ [[ρ(ϕ)]] iff
∃ρ ∈ �(x̃) s.t.(σ, E, ν, l′′) ∈ [[ρ(g) ∧ (pc = l) ∧ F(tρ) ∧ ρ(ϕ)]] iff

∃ρ ∈ �(x̃) s.t.(σ, E, ν, l′′) ∈ [[ρ(Pre(l
g,R,?t (x̃)−→ l′, ϕ))]] iff

(σ, E, ν, l′′) ∈ [[∃x̃ · Pre(l
g,R,?t (x̃)−→ l′, ϕ)]]. �

B.7. Computation of predecessors for a sequence of actions

In this subsection, we give an example that shows how we compute the set of predeces-
sors with respect to a simple protocol.

Example 41. Let α0 = l0
�,∅,!{c}k−→ l1, α1 = l1

�,{d},!{c}k−→ l2, α2 = l2
g2,∅,?{T }k−→ l3, α3 =

l3
�,∅,!s−→ l4 where c and d are clocks, k is a symmetric key (intended to remain secret for the
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intruder), s is a message (the secret) and g2 ≡ d = 1 ∧ −c + T < −1. Let �
def= X〈� ε〉s

be the formula that represents the “bad configurations” (where secret s is known to the
intruder). Now let �1 = α1α2α3 and �0 = α0α1α2α3 are two protocols. We show that �1
is secure w.r.t. to formula �, while the same assertion does not hold for �2. For sake of
simplicity, we work modulo ≡.

Then Pre(
τ−→, X〈� ε〉s) = X〈� ε〉s.

Pre(α3, X〈� ε〉s) = � ∧ pc = l3 ∧ (X, s)〈� ε〉s ≡ pc = l3

Pre(
τ−→, pc = l3) = pc = l3

Pre(α2, pc = l3) = �1 where

�1 ≡ d = 1 ∧ −c + T < −1 ∧ pc = l2 ∧ X〈� ε〉{{T }k, T } ∧ X〈� ε〉{{T }k, k}
Pre(

τ−→,�1) = �2 where

�2 ≡ (d ≤ 1) ∧ d − c + T < 0 ∧ pc = l2 ∧ X〈� ε〉{{T }k, T } ∧ X〈� ε〉{{T }k, k}
Pre(α1,�2) = �3 where

�3 ≡ (0 ≤ 1) ∧ 0 − c + T < 0 ∧ pc = l1 ∧ (X, {Tc}k)〈� ε〉{{T }k, T }∧
(X, {Tc}k)〈� ε〉{{T }k, k} ∧ Tc = c

≡ −c + T < 0 ∧ pc = l1 ∧ Tc = c ∧ T < Tc ∧ ((X〈� ε〉{{T }k, T }∧
X〈� ε〉{{T }k, k}) ∨ Tc = T )

≡ −c + T < 0 ∧ pc = l1 ∧ Tc = c ∧ T < Tc∧
(X〈� ε〉{{T }k, T } ∧ X〈� ε〉{{T }k, k})

Pre(
τ−→,�3) = �4 where

�4 ≡ pc = l1 ∧ c ≤ Tc ∧ T < Tc ∧ X〈� ε〉{{T }k, T } ∧ X〈� ε〉{{T }k, k}
Pre(α0,�4) = �5 where

�5 ≡ pc = l0 ∧ c ≤ Tc ∧ T < Tc∧
(X, {T ′

c}k)〈� ε〉{{T }k, T } ∧ (X, {T ′
c}k)〈� ε〉{{T }k, k} ∧ T ′

c = c

≡ pc = l0 ∧ c ≤ Tc ∧ T < Tc ∧ T ′
c = c ∧ T ′

c < Tc ∧ ((X〈� ε〉{{T }k, T }∧
X〈� ε〉{{T }k, k}) ∨ T ′

c = T )

Pre(
τ−→,�5) = �6 where

�6 ≡ pc = l0 ∧ c ≤ Tc ∧ c ≤ T ′
c ∧ T < Tc ∧ T ′

c < Tc∧
((X〈� ε〉{{T }k, T } ∧ X〈� ε〉{{T }k, k}) ∨ T ′

c = T )

Hence, we obtain

pre(�1, X〈� ε〉s) ≡ pc = l1 ∧ c ≤ Tc ∧ T < Tc ∧ X〈� ε〉{{T }k, T } ∧ X〈� ε〉{{T }k, k}
and

pre(�0, X〈� ε〉s) ≡ pc = l0 ∧ c ≤ Tc ∧ c ≤ T ′
c ∧ T < Tc ∧ T ′

c < Tc∧
((X〈� ε〉{{T }k, T } ∧ X〈� ε〉{{T }k, k}) ∨ T ′

c = T )

Since we supposed that k is a secret symmetric key (i.e.X〈� ε〉k), if there is no any message
of the form {T ′′}k known initially to the intruder, the protocol �1 is secure with respect
to the secrecy of s. On the contrary, protocol �0 is unsecure. If we pick Tc, and T ′

c such



34 L. Bozga et al. / Journal of Logic and Algebraic Programming 65 (2005) 1–35

that T < Tc ∧ T ′
c < Tc ∧ T ′

c = T , then we obtain an attack, that corresponds to the fact
that the first message sent by our participant can be replayed successfully by the intruder
(it satisfies the time constraints), while the same is not true for the second sent message.
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