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The superoxide dismutase (SOD) of Bacteroides gingivalis can use either iron or manganese as a cofactor in its catalytic activity. In this study,

the complete amino acid sequence of this SOD purified from anaerobically maintained B. gingivalis cells was determined. The proteins consisted

of 191 amino acid residues and had a molecular mass of 21 500. The sequence of B. gingivalis SOD showed 44-51% homology with those for iron-

specific SODs (Fe-SODs) and 40-45% homology with manganese-specific SODs (Mn-SODs) from several bacteria. However, this sequence homo-

logy was considerably less than that seen among the Fe-SOD (65-74%) or Mn-SOD family (42-60%). This indicates that B. gingivalis SOD, which
accepts either iron or manganese as metal cofactor, is a structural intermediate between the Fe-SOD and Mn-SOD families.
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1. INTRODUCTION

Superoxide dismutases (SODs; EC 1.15.1.1) are a
family of metalloproteins containing either iron
(Fe-SODs), manganese (Mn-SODs) or copper plus zinc
(CuZn-SODs) as cofactor(s). With some exceptions,
procaryotes possess Fe-SOD, Mn-SOD, or both [1].
The Fe-SOD and Mn-SOD subfamilies have similar
amino acid sequences, suggesting that these two sub-
families have diverged from a common ancestor [2-4].
The CuZn-SOD subfamily, on the other hand, differs
markedly from the Fe-SOD and Mn-SOD subfamilies
in both amino acid composition and sequence [2-4].
Despite such a structural similarity, metal replacement
experiments showed that each of the Fe-SODs and Mn-
SOD:s tested possessed a strict metal cofactor specificity
[5-8]. Recent studies have shown that Pro-
Dbionibacterium sherimanii [9] and Streptococcus
mutans [10] utilize the same apoprotein to form Fe-
SOD or Mn-SOD depending on the metal supplied to
the growth medium. It has further been reported that
the apoproteins of both Fe-SOD and Mn-SOD isolated
from Bacteroides fragilis [11,12] and Bacteroides
thetaiotaomicron [13] accept either iron or manganese
to form holoenzymes, which migrate identically on
polyacrylamide gel electrophoresis. Moreover, we have
found that anaerobically maintained Bacteroides
gingivalis contains a Fe-SOD and that the denatured
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apoprotein of this SOD accepts iron or manganese
resulting in restoration of catalytic activity [14]. These
findings suggest that in certain bacteria, the apopro-
teins of both Fe-SOD and Mn-SOD are encoded by the
same gene. However, no primary structures have yet
been reported for these SODs that can bind iron or
manganese to exhibit SOD activity.

In the present study, we determined the complete
amino acid sequence of B. gingivalis SOD, which uses
both iron and manganese to form the holoenzyme, and
compared the determined sequence with those of Fe-
and Mn-SODs possessing a strict metal cofactor
specificity.

2. MATERIALS AND METHODS

The SOD from B. gingivalis 381 cells maintained anaerobically was
purified as previously described [14]. The purified protein was
denatured by dialysis for 18 h against 5 M guanidinium chloride con-
taining 20 mM 8-hydroxyquinoline (pH 3.2) and finally dialyzed for
8 h in 5 M guanidinium chloride to remove the organic chelator. For
amino acid analysis, protein and peptides were hydrolyzed in 5.7 M
HCI at 110°C in evacuated, sealed tubes for 24 h. The hydrolysates
were analyzed with a Hitachi 835 S amino acid analyzer (Hitachi
Ltd.). The apoprotein (1-2 mg) was subjected to separate proteolysis
with Achromobacter protease 1 (AP-I; Wako Pure Chemicals), en-
doproteinase Asp-N (Asp-N; Boehringer Mannheim GmbH) and
trypsin treated with L-1(-p-tosylamino)-2-phenyl-ethyl chloromethyl
ketone (Worthington Biochemical Co.). In the case of tryptic diges-
tion, the apoprotein was acetylated with acetic anhydride prior to pro-
teolysis [15]. The resulting peptide fragments were separated by
HPLC using a C4 reverse phase column (0.39x 15 c¢m, 300 A;
Millipore Ltd.). The elution of peptides was carried out with a linear
gradient of organic solvent (2-propanol/acetonitrile, 7:3, v/v) from
0% to 60% (v/v) in 0.1% trifluoroacetic acid for 1 h at a flow rate of
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1 ml/min. Sequence analysis was carried out with a 477A/120 gas-
phase automatic sequencer (Applied Biosystems) as previously
described [16).

3. RESULTS AND DISCUSSION

Fig. 1 shows the amino acid sequence of B. gingivalis
SOD, together with the peptides used for the sequence
determination. The sequence was determined on the
basis of the complete set of overlapping AP-I peptides
obtained by Asp-N digestion and of a tryptic peptide
(Ac-T) obtained from acetylated protein, which provid-
ed evidence for the alignment of AP-I peptides (Al12
and -13). The subunit of B. gingivalis SOD consisted of
191 amino acids and had a molecular mass of 21 500.
Fig. 2 compares the sequence of B. gingivalis SOD with
previously determined sequences of Fe- and Mn-SODs
[2-4,17-19]. Gaps have been inserted to maximize the
homologies among the sequences, and the resulting
scores are listed in Table I. The B. gingivafis SOD show-
ed 43.5-51.3% homology with other Fe-SODs,
although the homology among the other three Fe-SODs
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was 65.1-74.0%. The homology between B. gingivalis
SOD and the Mn-SODs was 39.8-45.0%, whereas those
among the Mn-SOD was 42.2-59.9%. In the sequence
of B. gingivalis SOD, 41 residues were found at iden-
tical positions of both Fe-SODs and Mn-SOD:s (Fig. 2).
In addition to these residues, 18 and 14 residues of B.
gingivalis SOD were at identical positions of the other
Fe-SODs and Mn-SODs, respectively. These results
suggest that this SOD, which binds either iron or
manganese without loss of activity, is a structural in-
termediate between Fe-SOD and Mn-SOD. Further-
more, as shown in Fig. 2, glycine residues, which often
have a specific structural role in the folding of the
polypeptide chain [20-22], were present at a similar
level and position in all SODs, implying that the three-
dimensional structure of B. gingivalis SOD is similar to
those of Fe- and Mn-SOD as determined by X-ray dif-
fraction studies. Judging from the results of X-ray
studies for Fe-SODs from E. coli [20] and Ps. ovalis
[21] and Mn-SOD from Thermus thermophilus [22],
His?’, His®, Asp'”* and His'” in the sequence of B.
gingivalis SOD might be ligands to iron.

Fig.
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1. Amino acid sequence of Fe-SOD from B. gingivalis 381, Residues arrowed () were identified by Edman degradation. A and N denote
the peptides obtained by proteolysis with Achromobacter protease I and endoproteinase Asp-N, respectively. Ac-T denotes the peptide obtained

by proteolysis with trypsin after acetylation of «- and ¢-amino groups of the apoprotein.
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Fig. 2. Comparison of the amino acid sequences of E. coli (Ec), human liver (H1), Bacillus stearothermophilus (Bs), B. gingivalis (Bg), Ph.

leiognathi (P1) and Ps. ovalis (Po) SODs. Gaps have been introduced to obtain maximal homologies amongst the sequences. Boxes indicate posi-

tions at which residues are identical. Asterisks (*) indicate positions regarded as metal ligands.

Table 1
Sequence homology between Fe-SOD and Mn-SOD

Human liver

(Mn)

E. coli
(Mn)

Ba. stearo-

Ps. ovalis
(Fe)

Ph. leiognathi

(Fe)

E. coli
(Fe)

thermophilus

(Mn)

43.5 47.6 45.0 40.3 39.8

51.3

B. gingivalis

396
35.0

45.3
39.3

52.6
49.8

67.2
65.1

74.0

-~
L
53
S
£
@8
&9
m..m.
i A,

42.2 39.4
59.9 47.8

52.7

Ba. stearothermophilus (Mn)

Ps. ovalis (Fe)
E. coli (Mn)

42.2

Values are given as percentage of identical residues among the total residues aligned in Fig, 2

219



Volume 272, number 1,2

Acknowledgement: This work was in part supported by a Grant-in-
Aid from the Ministry of Education, Science and Culture of Japan.

REFERENCES

{1] Fridovich, 1. (1986) Adv. Enzymol. 58, 61-97.

{2] Barra, D., Schinina, M.E., Bannister, W.H., Bannister, J.V.
and Bossa, F. (1987) J. Biol. Chem. 262, 1001-1009.

[3] Isobe, T., Fang, Y., Muno, D., Okuyama, T., Ohmori, D, and
Yamakura, F. (1987) FEBS Lett. 223, 92-96.

[4] Carlioz, A., Ludwig, M.L., Stallings, W.C., Fee, J.A., Stein-
man, H.M. and Touati, D. (1988) J. Biol. Chem. 263,
1555-1562.

[5] Kirby, T., Blum, J., Kahane, 1. and Fridovich, 1. (1980) Arch.
Biochem. Biophys. 201, 551-555.

[6] Yamakura, F. and Suzuki, K. (1980) J. Biochem. (Tokyo) 88,

191-196.

[7] Ose, D.E. and Fridovich, I. (1979) Arch. Biochem. Biophys.
194, 360-364.

{8] Brock, C.J. and Harris, J.1. (1977) Biochem. Soc. Trans. 3,
1533-1539.

{9] Meier, B., Barra, D., Bossa, 1.F., Caiabrese, L. and Rotilio, G.
(1982) J. Biol. Chem. 257, 13977-13980.

220

FEBS LETTERS

October 1990

[10] Martin, M.E., Byers, B.R., Olson, M.0Q.J., Salin, M.L.,
Arceneaux, J.E.L. and Tolbert, C. (1986) J. Biol. Chem. 261,
9361-9367.

[11} Gregory, E.M. and Dapper, C.H. (1983) Arch. Biochem.
Biophys. 220, 293-300.

[12] Gregory, E.M. (1985) Arch. Biochem. Biophys. 238, 83-89.

[13] Pennington, C.D. and Gregory, E.M. (1986) J. Bacteriol. 166,
528-532.

[14] Amano, A., Shizukuishi, S., Tamagawa, H., Iwakura, K.,
Tsunasawa, S. and Tsunemitsu, A. (1990) J. Bacteriol. 172,
1457-1463.

[15] Kitagawa, Y., Tsunasawa, S., Tanaka, N., Katsube, Y.,
Sakiyama, F. and Asada, K. (1986) J. Biochem. 99, 1289-1298,

[16] Tsunasawa, S., Kondo, J. and Sakiyama, F. (1985) J. Biochem.
701-704,

[17] Brock, C.J. and Walker, J.E. (1980) Biochemistry 19,
2873-2882.

[18] Takeda, Y. and Avila, H. (1986) Nucleic Acids Res. 14,
4577-4589.

[19] Barra, D., Schinina, M.E., Simmaco, M., Bannister, J.V., Ban-
nister, W.H., Rotilio, G. and Bossa, F. (1984) J. Biol. Chem.
259, 12595-12601.

[20] Stallings, W.C., Powers, T.B., Pattridge, K.A., Fee, J.A. and
Ludwig, M.L. (1983) Proc. Natl. Acad. Sci. USA 80, 3884-3888.

[21] Ringe, D., Petsko, G.A., Yamakura, F., Suzuki, K. and
Ohmori, D. (1983) Proc. Natl. Acad. Sci. USA 80, 3879-3884.

[22] Stallings, W.C., Pattridge, K.A., Strong, R.X. and Ludwig,
M.L. (1985) J. Biol. Chem. 260, 16424-16432.



