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Abstract. In universal domains, the retractions form a fundamental notion of ‘data type’. We
define a partial order on the retractions of Scott’s domain Pw and completely describe the set
of data types which can be generated by an arbitrary chain of such retractions. This set is precisely
the free upper regular band over the chain, and is a lattice-ordered semigroup.

1. Motivation

In universal domains [2, 3, 5], the retractions (actually, their mappings) form a
fundamental notion of ‘data type’. In Scott’s domain P«, an element, b, is an
improveinent over or better defined than another, a, if a = b. When a and & are
retractions, a < b indicates that b is a more widely defined data type than a.

If in addition a =acb-a, the data type a is an invariant subtype of . This
indicates that a and b cannot be much different in structure. Furthermore, con-
sidered as data types, b includes an image of a, in much the same way as the reais
include the integers. Smyth and Plotkin [4] suggest that the partial order

asbiffacb&a=acbeoa

is a reasonable method of ordering retractions.

Consider a finite (or countable) chain a; <a,<as=<- - - of retractions. What data
types can be generated from the 2;? We give a complete answer to this question
by demonstraiing the free system of retractiors over the generators.

2. Upper regular bands

Definition. Let S be an ordered semigroup. Thatis, x <x’and y <y'imply xy <x'y’
for some fixed pa:tiai order <. An element x is called upper regular if for all y in
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S such that x <y, x =xyx. S is called upper regular if all its elements are upper
regular. If every element is also idempotent (i.e., xx = x) then S is an upper regular
band.

Theorem L. Let A be a (possibly infinite) chain of elements in an arb trary ovdered
semigroup, where for all a, be A, a <b implies aa = a = aba. Also let <1, %2, ..., %n
be arlitrary elements of A. Then the following hold:

@) x1sx> imiplies X1X3 = X1X2X3 & X3X1 = X3X2X1,

(ii) X1%2...Xs = X1XminXn, WHETE Xmin = min(x1, X2, . . . , Xn).

Proof. (i) We show x1x3 < x1X2X3<X1X3. AS X1 =<X3,

X1X3=X1X1X3=<X1X2X3.

The relation x1x2x3 < x;x3 is shown in three cases:
Case 1. x1<sxp<x3:

X1X2X3 = X1X3X3 = X1X3.
Case 2. x1<1(3<X3:

X1X2X3 = X1X1X2X3 < X1X3X2X3 = X1(X3X2X3) = X1X3.
Case 3. x3<<x1<x3:

X1X2X3 = X1X2X3%3 < X1X2X1X3 = (X1X2X1)X3 = X1 X3.

This shows x1x3 = x;x2x3. The other equality (x3x; = x3x,x;) follows similarly.
An induction on n provides the proof of (ii).

The second result required is

Theorem 2. Let A be a (possibly infinite) chain of elements in an arbitrary ordered
semigroup, where for all a, b € A, a <b implies aa = a = aba. Then the subsemigroup
generated by A is an upper regular band. '

iroof. Let x=x;x,- - x,and y =y,y5* * - v, be arbitrary compositions of a finite
number of eiements of A. We must show

() xx=ux,

(ii) x sy implies x = xyx.

From Theorem 1 we have xx = x1X3 * * * X, X1X2 * * * Xp = X1XminXn = X. TOshow i),
there are two cases. First, if min(xy, xs,...,x,)<min(ys, ¥z .., ym) then by
Theorem 1.

XVX = X MiN(X1, X2, + « 5 Xy Y15 Y25 « + + Ym)Xn = X1 XminXn = X.

On the other hand, if min(yy, y2, . . . , Ym) Smin(x1, X2, . . - ; Xn) thpn XnYX1 = XuYmin¥i
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and
X =Xx%
< xyx
=Xx1X2° * * (XnYX1)X2* " * Xn
=X3%2 * * * (XnYminX1)X2* * * X
=XiX2 xny::linxlxz *cc Xp
STX1X2° " XuX1X2° * " XpX1X2* " " X

= XXX

3. The construction

e construct a free upper regular band over an arbitrary totally ordered s=t. In
the ne«t section, this construction is shown to be precisely the free system generated
by a chain of retractions in Pw.

Let A be an arbitrary totally ordered set. By a free uppe- regular band over A
we mean an upper regular band F together with a monotcne function f: A>F
such that for every monotone function g: A - X, where X is an upper regular
band, there exists a unique homomorphism h: F-> X so that hf =g, as in the
following diagram:

For any totally ordered set A, a free upper regular band is constructed as follows:
Let F be the set of all ordered triples of A for which

{a,b,c)eFiffb<a&b=c.
Now definc a binary operation in F as
(a, b, )+ (a', b', ") = (a, min(b, b"), ¢"),
where mini{h, b') is the smailer of b and b’ in 4. Also define an order on F by

(@, b,c)<(a',b,cyiffa<a' &b<b' & c=c'.
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F is aii vpper regular band. Finally define f: A F so that for all a€ A, f(a)=
(a,a,a).

Theorem 3. (F, f) is a free uipper reguiar band over A.

Proes. Let g: A-» X be an arbitrary monotone function, where J{ is an upper
regular band. Define a function 4 : F > X by

h(a, b, c)=g(a)- g(b)- g(c),
for every (a, b, c)e F. Then h is the unique hoinomorphism prese:ving hf =g by
standard alyzbraic techniques.

Theorem 4. The order on any free upper regular band (F,f) is a lattice order, so
that F is a latice ordered semigroup.

Proof. It suffices (o consider (F, f) as constructed above. From the definition of <=,
Jeast upper bounds can be shown to be

(a,b,c)v(a', b, c')= (max(a, a'), max(b, b'), max(c, c")),

and similarly for greatest lover bounds.

Examples. (1) A ={a, b} with a<b.

(b, lli b)
(b,a,b)
_ - \
(a,a, bl (b,a,a)
\\ /
(a,a,a)
(2) A={a,b,clwitha<sb=c.
(c,c,c)
(c,b,c)

(b,b,c) (c,a,c) (c,b,bh)
”

X

~

9, a,c) (b, b, b) (c,a,b)
e \\\\ I - \\\\
(a,a, c)\ )(b, a,b) (c,a,a)
~ \\\\ ////
(a,a, b)\ (b,a,a)
N ,./

(a,a,a)
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The next theorem follows from the definition of F.

Theorem 5. If A has n elements, for any integer n, then F has ¥7_, i*=Y(n?) =
n(n+1)(2n +1)/6 elements.

4. Applications to Pw

The powerdomain of the integers is defined to be:
Po={x|x={0,1,2,...}}.

Scott [3] constructs a function, fun: Pw -» [Pw -» Pw]., vhich associates a continuous
function on Pw (i.e., an element of [Pw » Pw].) wi‘* each element of Pw. A second
function, graph : [P« -» Pw . - Pw, associates an element of Pw with each continuous
function on Pw. A binary operation can be defined in Pc: by

a o b = graph(fun(a)-fun(b)),

where fun(a}efun(b) is the funciional composition of fun(a} and fun(b). Formally,
fun(a)efun(b) is that function f, such that for all x € Pw, f(x)=fua(a)[fun(b)(x)].

With this operation and subset ordering, Pw forms an ordered semigroup. Of
particular importance are those elements where aca =a. Such an clement is a
retraction and its mapping a retract. The retracts in Pw form a fundamental notion
of ‘data type’ [3, 5].

If ach and a =acbeoa, then a is said to be an invariant subtype of b. The
constraint a = a b ca implies that some subset of the image of b 13 isomorphic with
the image of a. Thus, considered as a data type, b ‘includes’ a. If a is an invariant
subtype of b, we write a <b.

Theorem 6. =< is a partial order on the retractions of Pw.

Proof. Clearly < is antisymmetric and reflexive. We must show tlhat it is transitive.
Tet a<b zrd b<c. Since < is transitive, a = c. It remains to be shown that
a = acca. This follows from the fact that Pw is an ordered semigroup with order
< and operation o. Therefore,

a=acacacaccea.
But also
aocea=acaocecaca
Saobocobea
=aqgohoa
=q

Thus, a =accea.
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Now we can consider a (possibly infinite) chain a;<a;<as;<- - - of retractions.
Call this chain A and note that for all ¢, b€ A, a<b implies aca=a =acbca.
Following directly ‘rom Theorem 2 is

Theorem 7. A chain of retractions in Pw, ordered by <, generates ar upper regular
band with the operation cf o.

We have completely characterized the data types that can by constructed from
a chain of retracticas, A. The free upper regular band over A gives tue free system
of retractions over the generators. Furthermore, if A has n elements, no more than
¥ (n?) data types can be constructe.

The structure of a free upper regular band is particularly clear fro:a Example 2,
having A ={a, b, ¢} and a <b =<c. The illustrated lattice has three ‘planes’, corres-
ponding to the three generators. The a-plane consists of the 9 tripies with a at the
second coordinate. The b-plane has 4 elements and the c-plane is just a point. A
fourih generator would ad¢ another plane with 4° = 16 elements, and so on. Each
of these planes is an upper regular band, and, in fact, a free rectangular band. (In
a rectangular band, for all x and y, x = xyx; see [1].)
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