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Abstract. In universal domains, the retractions form a fundamental notion of ‘data type’. We 
define a partial order on the retractions of Scott’s domain PO and completely describe the set 
of data types which can be generated by an arbitrary chain of such retractions. This set is precisely 
the free upper regular band over the chain, and is a lattice-ordered semigraup. 

1. Motivation 

In universal domains [2,3,5], the retractions (actually, their mappings) form a 
fundamental notion of ‘data type’. In Scott’s domain Pw, an element, 6, if; an 

improvement over or better defined than another, a, if a E b, When a and b are 
retractions, a s 6 indicates that b ifs a more widely defined data type than a. 

If in addition a = a 0 b ~a, the data type a is an invariant subtype of B. This 
indicates that a and b cannot be much diffterent in structure. Furthermore, con- 
sidered as data types, b includes an image of a, in much the same way at* the reais 
include the integers. Smyth and Piotkin [4] suggest that the partial order 

is a reasonable method of ordering retractions. 
Consider a finite (or countable) chain al G a2 s a3 G . . . of retractions. What data 

types can be generated from the ni? We give a complete answer to this question 
by demonstrating ths free system of rctractiolrh over the generators. 

2. Upper Regular bands 

Definition. Let S be an ordered semigroup. That is, x c x’ and y < y’ imply xy s x”y’ 
for sotie fixed pa,diai order s. An element x is called upper regular if for all y in 
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S such that n s y, x = xyx. S is called upper regular if all its elements are upper 
regular. If every element is also idempotent (i.e., xx = x) then S is an upper rc!gular 
band. 

Theorem 1. Let A be a (possibly in&ite) chain of elements in an arb -trary o&ered 
semigroup, where for all a9 b E A, a G b implies aa = a_= aba. Also let XI, x2, ..I, xJI 
be arbitrary element,e of A. Then the following hold: 

(i) x1 S x2 implies ~1x3 =X1X2X3 &X3X1=X3X2X1, 
(ii) ~1x2 . . . xn = XlXminxn, where xmin = min(xl, ~2, . . . ) x,). 

haof. (i)We SLOW x~x~sx~x~x~~x~x~.Asx~~x~, 

x1x3 =x1x1x3 SXlX2X3. 

The relation ~1~2~3~~1x3 is shown in th#ee cases: 
&se I. x16x+x3: 

x1x2x3 ~xlx3x3=xlx3. 

Case 2. x1 Ct3sx2: 

x1x2x3 zXlXlX2X3 sxlx3x2x3 =x1(x3x2x3)=x1x3. 

Case 3. x3SxlSx2: 

x1x2x3 =x1x2x3x3 SXlX2XlX3= (x1x2x1)x3=x1x3* 

This shows ~1x3 = ~1~2x3. The other equality (x3x1= ~3~2x1) follows similarly. 
An induction on n provides the proof of (ii). 

The second result required is 

Let A be a (possibly infinite) chain of elements rin an arbitrary ordered 
semigrou,?, where for all a, b E A, a s b implies aa = a = aba. i”hen the subsem,igroup 
generated by A is an upper regular band. 

Yeoof, Let x =x1x2 - . l xn and y = yly2 l l l y, be arbitrary compositions of a finite 
number of ekments of A. We must show 

(i) xx = x, 
(ii) x 4 y implies x = xyx. 
From Theorem 1 we have xx = ~1x2 l 9 * x,x1x2 l . l x, = xlxminxh = X. TO S~CW {ii), 

there are two cases. First, if minfxj, x2, . . . , x,) s min(yl, yz, o . . ) y,) then Iby 
Theorem 1 a 

xyx z: X1 min(x,,, X2, . . e , Xn, yl, y2, . . . Ym)Xn = XlXminXji = X. 

On the other iaand, if min(yl, ~2, . . . , y,) smin(xl, ~2~ l g l p x,) t&n&y% = &Yn)inJ~ 
. 
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and 

x = XA.2: 

s xy;a 

=x1x2 l * l (x,yx&z l . ’ xn 

zX1X2' "(X,YminX1)X2"'Xn 

=x1x2* l 'XnY&inXIX2'* l Xn 

~XlX2" * XnXlX2' l 'XnXlX2' l l xn 

=xxx 

3. The construction 

We construct a free upper regular band over an arbitrary totally ordered set. In 
the nt:xt section, this construction is shown to be precisely the free system generated 
by a chain of retractions in Pw. 

Let A be an arbitrary totally ordered set. By a free uppejp regular bmd mer A 
we mean an upper regular band F together with a monotone function f : A + F 

such that for every monotone function g : A +X, where X is an upper regular 
band., there exists a unique homomorphism h : F+ X so that hf = g, as in the 
following diagram: 

A--/.6; 

\ 1 

\’ h 
Is 

1 
X 

For any totally ordered set A, a free upper regulzu band is constructed as folBows: 
Let F be the set of all ordered triples of A for which 

Now definli; a binary operation in F as 

(4X,3, c) l (a’, b’, c’) = (a, min(b, b’)$ cl’), 

where min(b, b’) is the smaller of b and b’ in 14. Allso define an e:)rder on fi by 



,F is ati upper regular band. Finally define f : A + F so that for all s E A, f(a) = 
(a, a, a). 

ml 3. (F, f) is a free upper regttlirr band suer A. 

Let g : A +X be an arbitrary monotone function, where X is an upper 
regular band. Define a function h : F-B X by 

h(a, b,cj=g(a)*g(b)ag(c), 

for every (a, B, c) E F. Then h is the unique homomorphism prese-xing hf := g by 
standard! a&braic techniques. 

Theorem 4. ‘TRe order on any free upper regular band (F, f) is a h ttice order, so 
that F is a hke ordered semigroup. 

rosf. It sufkes 1.0 consider (F, f) as cor%ructed above. From the definition of G, 
least upper bounds can be sho!wn to be 

(a, 0, c) v (a’, b’, c’) = (rnax(a, a’), max(b, b’j, max(c, c’)), 

and similarly for greatest lower bounds. 

Examples. (1) A = .[a, b} with a s b. 

(b,b,ti) 

I 
tb, a, b) 

/I 
/ 

(a, (a, 61 
% 

\ \ 

\ 
(0, a, a) 

/ 

(2) A = (a, b, C} with a s b :S c. 

khd 

\ 
\ / \ 

(a, 12, b) 
\ 

\ / 
(a, a, a’j 
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The next theorem follows from the definition of Iz 

. If A has n elements, for any integer n, 
n -I- I)/6 elements. 

then F has CyC1. i’=C(n*) =I 

The powerdomain of the integers is defined to be: 

Po=(x~x~{o, 1,2,. . .}). 

Scott [3] constructs a function, fun: PO + [Bw + P&Jo Nhich associates a continuous 
function on PO (i.e., an element of [PO + P&) witi each element of 1%. A second 
function, graph : [Pti -* Pw& -9 PO, associates an element of Psc, with each continuous 
function on PO. A binary operation can be defined in PC: by 

a 06 = graph(fun(a)ofun(b)), 

where fun(a jofun is the func’iional composition of fun(a) and fun(b). Eormally, 
fun(a)ofun(b) is that function f, such that for all x E Pu, f(x) = fr;81(a)[fun(b)(x)]. 

With this operation and subset ordering, PW forms an ordered semigroup. Of 
particular importance are those elements INhere a oa = a. Such an element is a 
retraction and its mapping a retract. The retracts in PO form a fundlamental notion 
of ‘data type’ [3,5]. 

If a G b and a = a ob oa, then a is said to be an inuariant subtype of 6. The 
constraint a = a 0 b oa implies that some subset of the image of b !T isomorphic with 
the image of a. Thus, considered as a data type, b ‘includes’ a. If a is an invariant 
subtype of b, we write a s b. 

Theorem 6. s is a partial order on the retractions of Peel. 

Proof. Clear%y E- is antisymmetric and reflexive. We must show that it is transitive. 
Let a 6 b sr..d b < c. Since c is transitive, a G c. It remains to be shown that 
a = a oc oa. This follows from the fact th:at PO is an ordered semigroup with order 
G and operation 0. Therefore, 

a = aoaoa Gaocoa. 

Rut dso 

aova = aoaocoaoa 

~aobocobOa 

= aoboa 

r. a 

Thus, a = awoa. 
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NOW we can consider a (possibly infinite) chain ccl s u2 s a3 s l l l of retractions. 
Call this chain A md note that for all Q, b E L$ ~1: s b implies a oat = a = a: ob VZ. 
Followmg directly from Theorem 2 is 

eorem ‘7. A chain of retractions in Pm, ordered by S, generates an upper regukzr 
band with the operation of 0. 

We have completely characterized the data types that can by con”structed from 
a chain of retractiolq, A. The free upper regular band over A gives trre free system 
of retractions over the generators. Furthermore, if A has n elements, no more than 
C (n2) data types can be constructei. 

The structure of a free upper re&ular band is particularly clear f cosn Example 2, 
having A = {a, b, c) and a s b 6 c. The illustrated lattice has three ‘planes’, corres- 
ponding to the three generators. The a-plane consists of the 9 triple:; with CE at the 
second coordinate. The b-plane has 4 elements and the c-plane is just a point. A 
fourth generator would adC another plane with 42 = 16 elements, and so on. Each 
of these planes is an upper regular band, and, in fact, a free rectangular band, (In 
d rectangular band, for all x and y, x = xyx ; see [l].) 
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