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Non-coding (nc) RNA silencing of imprinted genes in extra-

embryonic tissues provides a good model for understanding an

underexamined aspect of gene regulation by macro or long

ncRNAs, that is their action as long-range cis-silencers.

Numerous long intergenic ncRNAs (lincRNAs) have been

recently discovered that are thought to regulate gene

expression, some of which have been associated with disease.

The few shown to regulate protein-coding genes are suggested

to act by targeting repressive or active chromatin marks.

Correlative evidence also indicates that imprinted macro

ncRNAs cause long-range cis-silencing in placenta by targeting

repressive histone modifications to imprinted promoters. It is

timely, however, to consider alternative explanations

consistent with the published data, whereby transcription alone

could cause gene silencing at a distance.
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Genomic imprinting is an epigenetic process that controls

parent-of-origin expression of an estimated 1–2% of

genes in the mammalian genome [1,2�]. Although few

in number, many imprinted genes play important roles

in development and growth, often in a dose-dependent

manner [3]. Imprinted genes mostly occur in clusters in

the genome controlled by a CpG rich region known as an

Imprint Control Element (ICE). This ICE shows differ-

ential DNA methylation, which is established in the germ

cells of one parent and maintained on this parental

chromosome throughout life. The ICE on the other

parental allele remains unmethylated. The unmethylated

ICE activates a macro non-coding (nc) RNA in cis, while

methylation prevents activation on the other allele. Macro

ncRNAs are inefficiently processed long ncRNAs whose

main product is unspliced [1]. In three of four cases where
www.sciencedirect.com
the function of the imprinted macro ncRNA has been

tested, it acts as a cis-silencer to prevent upregulation of

flanking imprinted genes in the cluster [4–6,7��]. A hall-

mark of imprinted genes is that they show developmental

and tissue-specific regulation of imprinted expression [8].

For example, the Dlk1 gene is paternally expressed and

plays a dose-dependent role in regulating growth of the

embryo, but switches to biallelic expression in neural

stem cells and niche astrocytes where it is required for

normal postnatal neurogenesis [9,10��]. Imprinted genes

can be divided into two groups based on their tissue-

specific imprinted expression pattern. Multi-lineage

(ML) genes show imprinted expression in both the

embryo and extra-embryonic tissues, while extra-embryo-

nic lineage-specific (EXEL) genes show imprinted

expression restricted to specific cell lineages in the pla-

centa and visceral yolk sac. EXEL genes are an example

of long-range cis-silencing by a macro ncRNA, as they are

located in the outer region of an imprinted cluster at a

greater distance from the macro ncRNA than ML genes

(Figure 1) [11��].

Long ncRNAs are widespread throughout the genome

and include a group known as long intergenic ncRNAs

or lincRNAs, which are defined by an H3K4me3-

H3K36me3 chromatin signature [12,13]. Some lincR-

NAs are associated with long-range cis-activation of

neighbouring genes [14]; for example, HOTTIP and

Mistral activate nearby, but not distant, genes in the

HOXD and HOXA clusters by recruiting the H3K4me3

methyltransferase MLL1 [15,16�]. Other lincRNAs are

implicated in gene silencing. Approximately 20% of

lincRNAs are associated with polycomb complex 2

(PRC2), which deposits the repressive H3K27me3

modification [17]. The human lincRNA HOTAIR
expressed from the HOXC cluster acts in trans by

targeting PCR2 to the HOXD cluster and causing gene

silencing [18]; however, this function is not conserved

in mouse [19��]. The function of most lincRNAs

remains unknown, but the example of imprinted macro

ncRNAs indicates that some may regulate nearby genes

by long-range cis-silencing. Another example of long-

range cis-silencing by a long ncRNA is X chromosome

inactivation, which is regulated by Xist ncRNA [20].

However, X-inactivation results in silencing of a whole

chromosome whereas imprinted macro ncRNAs silence

a more limited domain of protein-coding genes,

making them the more appropriate model to under-

stand how long-range cis-silencing by lincRNAs may

work [21�].
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Figure 1
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Long-range silencing by macro ncRNAs in two imprinted clusters. (a) Top: The imprinted Kcnq1 cluster on mouse chromosome 7 spans 780 kb. In this

cluster ten genes are repressed on the paternal allele by the macro ncRNA Kcnq1ot1. Kcnq1ot1 is repressed on the maternal allele by a DNA

methylation mark on the imprint control element (ICE) acquired in the oocyte. Of the ten maternally expressed genes, four show multi-lineage (ML)

imprinted expression (bold font) and six show extra-embryonic lineage specific (EXEL) imprinted expression (grey font). Genes reported to be non-

imprinted in placenta by a recent reevaluation are indicated (*) [45��]. Kcnq1ot1 is located entirely within the protein-coding gene Kcnq1 and is

necessary for the silencing of all genes in the cluster [5,25]. Bottom: The Kcnq1 gene is shown visualizing all transcripts in the region by Illumina RNA-

Sequencing of mouse fetal head 14.5 days post coitum, a tissue in which Kcnq1ot1, but not Kcnq1, is expressed (pileup of sequencing reads, cut-off

at 50 reads, data from [28]). Annotated minus strand unspliced ESTs (same strand as Kcnq1ot1) are also shown as short horizontal bars. Arrows
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Non-coding RNA silencing Pauler, Barlow and Hudson 285
Imprinted macro ncRNAs as a model of long-
range cis-repressors
Two types of cis-silencing can be mediated by macro

ncRNAs: short-range silencing occurs when the ncRNA

transcript fully or partially overlaps the regulated gene,

while long-range silencing refers to regulation of non-

overlapped genes. This review concentrates on recent

findings on the mechanism of long-range cis-silencing by

ncRNAs. A fundamental question is whether macro

ncRNA silencing of gene expression requires the ncRNA

product or if transcription alone is responsible for silen-

cing. This question arises because features of imprinted

macro ncRNAs, including the lack of sequence conserva-

tion, a low splicing rate and their unusually large size do

not indicate a function for the RNA product [22,23]. The

role of long ncRNAs in regulating genes in the surround-

ing imprinted cluster has been tested in four cases. The

H19 ncRNA is fully spliced and thus not a macro ncRNA,

and it is also not responsible for cis-silencing in the Igf2
cluster, but instead has been reported to regulate

imprinted genes in trans, a function that may relate to

its role as a micro RNA host transcript [24]. By contrast,

truncation of the Airn and Kcnq1ot1 macro ncRNAs in the

Igf2r and Kcnq1 clusters, respectively, by insertion of

polyadenylation cassette resulted in re-expression of all

the genes in these clusters from their normally silent

paternal allele [5,6,25]. A similar strategy was used

recently to show that Nespas macro ncRNA in the Gnas
cluster silences Nesp, but the impact of the ncRNA

truncation on the other promoters in the cluster has

not yet been reported [7��].

Genes showing ML imprinted expression may or may not

be overlapped by the regulating macro ncRNA. However,

all genes showing EXEL imprinted expression are not

overlapped and lie further away from the ncRNA, making

them a better model to understand long-range cis-silen-

cing by ncRNAs. EXEL imprinted expression is

restricted to certain cell types in extra-embryonic tissues,

meaning studies of EXEL gene regulation can be com-

promised when using an intact organ like placenta that

contains non-EXEL embryonic cell types as well as

maternal endothelial and blood tissue. We have recently

shown that visceral endoderm, an EXEL cell type, can be

efficiently isolated from visceral yolk sac providing a

homogenous cell population to study EXEL gene regu-

lation in vivo [11��]. This review examines recent findings

that provide information on how imprinted macro
(Figure 1 Legend Continued) indicate the reported end of Kcnq1ot1 at 83 k

Igf2r cluster spans 490 kb on mouse chromosome 17. The Airn macro ncRN

repressed on the maternal chromosome by oocyte acquired DNA methylati

overlapped ML gene Igf2r (short-range silencing), and the non-overlapped E

upstream respectively (long-range silencing). Bottom: Part of the Igf2r/Airn re

(as above). Airn is covered continuously with sequence reads and also by p

spliced (long horizontal bars) ESTs over its annotated 118 kb length. The exo

Rangap1 pseudogene Au76 is indicated (#). The key is given below the Figu

chromosome, and the names of non-imprinted genes are below.
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ncRNAs may cause long-range cis-silencing of EXEL

genes, focusing on silencing by Airn and Kcnq1ot1 in

the Igf2r and Kcnq1 clusters (Figure 1).

The Kcnq1ot1 macro ncRNA product may be
necessary for long-range silencing
The Kcnq1ot1 macro ncRNA is transcribed from the

unmethylated paternal ICE located in intron 10 of Kcnq1
and silences four ML genes and six EXEL genes on the

paternal allele (Figure 1a). Using quantitative polymerase

chain reaction (qPCR) assays, it was recently reported

that Kcnq1ot1 is 471 kb long in all examined tissues, and

therefore overlaps all downstream genes, including

EXEL genes [26]. However, this finding conflicts with

previous reports using qPCR and RNase protection assays

that mapped Kcnq1ot1 to be 91 kb or 121 kb [22,27]. In

addition, our own RNA sequencing data and the distri-

bution of reported ESTs are consistent with the earlier

studies, mapping Kcnq1ot1 to be between 83 and 121 kb,

meaning that it would only overlap Kcnq1 introns 10–11

(Figure 1a) [28]. The Kcnq1ot1 RNA is reported to have

different behaviour in embryonic versus extra-embryonic

tissues. The Kcnq1ot1 RNA fluorescence in situ hybrid-

ization (FISH) signal is larger in placenta than in embryo,

correlating with the greater number of genes silenced in

the placenta [22]. Kcnq1ot1 also shows a greater associ-

ation with chromatin in placenta than embryo, implying

an association between the ncRNA product and the

chromosome in placenta [27]. In Trophoblast Stem

(TS) cells, the precursor of EXEL cell types in the

placenta, Kcnq1ot1 colocalises with a contracted chromo-

some compartment containing the entire Kcnq1 imprinted

cluster and the repressive chromatin modifications

H3K9me3, H2A119u1 and H3K27me3 [29��]. In

addition, the PRC1 and PRC2 complexes, responsible

for depositing H2A119u1 and H3K27me3, also colocalise

with this putative repressive compartment, and the loss of

either complex affects the imprinted expression of both

the ML gene Cdkn1c and EXEL genes Cd81 and Tssc4 in

extra-embryonic tissues only [29��]. By contrast, loss of

the H3K9methyltransferase EHMT2 affects imprinted

expression of EXEL genes only [30]. Although a direct

connection has not been shown, these results imply that

the Kcnq1ot1 ncRNA product targets repressive chromatin

modifying complexes to imprinted genes in extra-

embryonic tissues causing silencing. A recent study

reported that RNAi knockdown of Kcnq1ot1 in embryonic

(ES), trophoblast (TS) and extra-embryonic endoderm
b (Refseq annotation), 91 kb [27] and 121 kb [22]. (b) Top: The imprinted

A represses three genes on the paternal chromosome, while Airn is

on of the ICE. On the paternal chromosome Airn silences in cis the

XEL genes Slc22a2 and Slc22a3 whose promoters lie 157 kb and 234 kb

gion is shown visualizing all transcripts in the region by RNA-Sequencing

lus strand (same strand as Airn) unspliced (short horizontal bars) and

ns of Igf2r are visible as focal peaks cut-off at 50 reads. Signal from the

re. For both loci the names of imprinted genes are above the maternal

Current Opinion in Genetics & Development 2012, 22:283–289



286 Molecular and genetic bases of disease
(XEN) stem cells had no effect on the maintenance of

imprinted expression raising the possibility that the

ncRNA product plays no role in silencing [26]. However

these results need to accommodate the finding that

Kcnq1ot1 is a nuclear localised ncRNA and it is uncertain

if RNAi can act in the mammalian nucleus [27,31].

Airn macro ncRNA may silence by
transcription alone
The concept that transcription, rather than the macro

ncRNA product, may regulate overlapped imprinted

genes is emerging for the Igf2r, Gnas, and Copg2 imprinted

gene clusters. Transcriptional interference, where one

transcriptional process interferes with another without

the involvement of a mature RNA, is a well-established

cis-silencing mechanism in non-mammalian organisms

like bacteria, yeast, and Drosophila, and has been

suggested to occur in mammals [32��]. In both the Igf2r
and the Gnas clusters, the macro ncRNA overlaps the

promoter of a protein-coding gene in an antisense orien-

tation. Truncation of the macro ncRNAs Airn and Nespas,
so that the Igf2r and Nesp promoters are not overlapped,

respectively, leads to a loss of repression of both protein-

coding genes, indicating that repression may result from

transcriptional interference; however, these data do not

exclude a role for the ncRNA product [6,7��,33]. In the

Copg2 cluster, alternative polyadenylation of the pater-

nally expressed Mest gene produces a longer form of this

gene called MestXL, specifically in the mouse nervous

system. MestXL overlaps the 30 end of Copg2 in antisense

orientation correlating with paternal repression of Copg2,

and this repression is lost when MestXL is truncated [34].

This result shows that variants of protein-coding genes

can also act like macro ncRNAs to regulate other genes,

and was interpreted as silencing by transcriptional inter-

ference, which would indicate that transcription across

the promoter is not required. However, truncation exper-

iments do not exclude a role for the ncRNA product in

silencing, as both transcription and the ncRNA product

are lost downstream of the truncation site. In the case of

Airn, two aspects of its RNA biology, a short half-life and

inefficient splicing [23], make it less likely that the

mature ncRNA product is involved in silencing Igf2r in

the embryo.

Transcriptional interference of overlapped genes by

imprinted macro ncRNAs is consistent with what is

known from other species, but long-range cis-silencing

of non-overlapped genes by transcription interference is

conceptually more difficult to imagine. The Airn and

Kcnq1ot1 genes are up to several hundred kilobases away

from the EXEL genes they regulate (Figure 1a and b),

and in both cases correlative evidence suggests that the

ncRNA product is causing repression at a distance, as

described for Kcnq1ot1 above. In the placenta, the Airn
macro ncRNA product is located in close proximity to the

silent paternal promoter of the EXEL gene Slc22a3 that
Current Opinion in Genetics & Development 2012, 22:283–289
also carries a repressive H3K9me3 histone mark [35��].
Silencing of Slc22a3 depends on the lysine methyltrans-

ferase EHMT2 [35��] whose main activity is to catalyse

H3K9me2, but which can also catalyse H3K9me3 at some

loci [30,36,37]. As Airn also associates with EHMT2 in

placenta, it is possible that the Airn ncRNA product is

responsible for the recruitment of EHMT2 to the Slc22a3
promoter and therefore for its silencing. The Tagging and

Recovery of Associated Proteins (TRAP) method that is

dependent on detecting the ncRNA by in situ hybridiz-

ation was used to detect the close proximity of the Airn
ncRNA and the Slc22a3 promoter [35��]. Interestingly

this technique was initially used to discover a chromo-

some loop connecting enhancers in the b-globin locus

control region with the b-globin promoter [38]. Applying

the same concept to the Airn TRAP data implies that the

Slc22a3 promoter is close to the Airn transcription unit in

three-dimensional space. With this in mind we propose a

model consistent with the published data, where the

mature ncRNA product is not responsible for silencing

genes at a distance, but rather Airn transcription blocks

the binding of transcriptional activators that are required

to facilitate chromosomal looping and activation of

Slc22a2 and Slc22a3 expression.

In this model, early development is defined by a ground

state chromatin conformation that allows low-level bial-

lelic expression of protein-coding genes on both parental

alleles (Figure 2a and b, top). This ground state is well

established for Igf2r in pre-implantation embryos [39,40],

and for Slc22a2 and Slc22a3, which are not upregulated

until post-implantation [11��]. In this ground state Airn is

not made, because DNA methylation of the ICE prevents

Airn expression on the maternal chromosome [11��] and

most probably essential transcription factors are not yet

expressed to activate the paternal allele [41]. In the post-

implantation embryo, following the binding of transcrip-

tional activators, activating loops form on the maternal

chromosome between enhancers and the promoters of

Slc22a2 and Slc22a3, causing their upregulation

(Figure 2a, middle and bottom). On the paternal allele,

Airn transcription prevents upregulation of Igf2r by tran-

scription interference, and blocks the binding of tran-

scriptional activators and the formation of activating loops

within the Airn gene body, preventing upregulation of

Slc22a2 and Slc22a3 (Figure 2b, middle). In a secondary

step, EHMT2 is recruited to the Slc22a2 and Slc22a3
promoters and is required to maintain repression of these

genes [35��]. The repressed genes then attract PRC1 and

PRC2 to catalyse the H2A119u1 and H3K27me3 modi-

fications causing chromatin compaction and the formation

of a repressive compartment (Figure 2b bottom). This

compaction brings the Airn macro ncRNA, the Slc22a2
and Slc22a3 promoters and EHMT2 in close physical

proximity that can be detected by sensitive techniques

like TRAP and RNA immunoprecipitation. This model is

supported by the formation of a repressive compartment
www.sciencedirect.com
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Figure 2
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Long-range silencing by interference with active loops. A model for transcription mediated long-range cis-silencing by a macro ncRNA using the

example of Airn regulated imprinted expression in the Igf2r cluster. In the ground state, all protein-coding genes show a low level of expression from

both the maternal and paternal allele (a and b, top). On the maternal allele binding of transcriptional activators leads to the formation of activating loops

and upregulation of Slc22a2 and Slc22a3 (a, middle). The activating loops maintain high expression levels (a, bottom). On the paternal allele Airn

transcription prevents Igf2r upregulation by transcriptional interference, and blocks transcription activator binding and the formation of activating loops

preventing Slc22a2 and Slc22a3 upregulation (b, middle). The silent promoters attract EHMT2 to deposit H3K9me3, and polycomb complexes then

deposit H3K27me3 and H2A119u1 locking the silent state and causing chromatin compaction. This compaction establishes a repressive compartment

bringing Airn ncRNA in close proximity to the silenced promoters, the repressive histone modifications and their histone modifying complexes (b,

bottom). The key is given below the Figure. The gene colour code is the same as for Figure 1.
on the paternal chromosome containing Airn ncRNA, a

contracted Igf2r cluster, PRC1 and PRC2 and the repres-

sive H2A119u1, H3K27me3 and H3K9me3 modifications

[29��].

Concluding remarks
Recent reports have highlighted the importance of long

ncRNAs in disease. Overexpression of the lincRNA

HOTAIR in breast and colorectal cancers is associated

with increased PRC2 activity and an altered H3K27me3

distribution, and correlates with metastasis and a poor

prognosis [42,43�]. The prostate cancer associated long

ncRNA, PCAT-1, is correlated with aggressive prostate

cancer, and appears to have a prostate specific role in
www.sciencedirect.com
regulating cell proliferation [44�]. The many long

ncRNAs that have been recently discovered are likely

to play a role in gene regulation and misregulation in

disease, demonstrating the need for well-characterised

model systems to understand their different mechanisms

of action. Understanding the mechanism of imprinted

macro ncRNA action may reveal new drug targets and

enable improved therapy for diseases where macro

ncRNAs play a role.
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