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Let L be a simple Lie algebra over an algebraically closed field of characteristic 
p > 7 and T an optimal torus in some p-envelope L,. We determine the action of 
Ton the two-sections of L, which have been described in [St4]. We also give some 
new and noncomputational proofs to determine the conjugacy classes of the tori in 
W(n; 1) and of the Cartan subalgebras of W( 1; n). G 1992 Academic PISS, IX. 

I. PRELIMINARIES 

This article is devoted to the investigation of the detailed structure of 
some Lie algebras occurring in the context of the classification of simple 
Lie algebras over algebraically closed fields of characteristic p > 7. In 
particular, we deal with some Cartan-type Lie algebras of “small size.” For 
the following notations and facts we refer to [SF, Section 41. The graded 
Cartan-type Lie algebras can be described in terms of derivations of 
divided power algebras A(m; n): n is an m-tuple of natural numbers, 
r(n) := (p”‘- 1, . . . . p”m-- 1)~ N”. For m-tuples a, b we write a < b if 
ai < bi for all i. A(m; n) is the commutative and associative F-algebra of 
dimension p=“ having a basis (x(O) 1 a E N”, 0 < a < r(n)) and multiplica- 
tion x(~)x(~) := ( (1 1; b, x@+‘). Let si be the m-tuple with all O’s except in the 
ith slot which contains 1. Then IV(m; n) : = {DE Der A(m; n) 1 D(x(“)) = 

Cl<i<mX (O--Et)D(~(Ei)) Va < z(n)} is the algebra of “special derivations” 
(Witt algebra). Di denotes the “partial derivative” defined by the property 
Di(x@)) =x(~-&‘) for all (a). A(m; n) carries a filtration by putting 
Ah nh) := span{x’“’ 1 C ai2 k}. Th is inherits a filtration on W(m; n) 
given by IV(m; n)ckj := span{ x@)Di 1 C a,> k + 1). W(m; n) is restricted if 
and only if n = (1, . . . . 1). For n = ( 1, . . . . 1) =: Q one often prefers a different 
notation, since then A(m; 1) E F[X,, . . . . X,1/(X:, . . . . Xi) is isomorphic to 
the truncated polynomial ring in m generators xi := Xi + (A’:, . . . . Xi), the 
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isomorphism is given by x”’ I-+ (a,! . . . a,!) ~ ‘x’f’ . . . x2. In this case I prefer 
to write the monomials as x’;’ . . . x2 and the ordinary partial derivatives by 
ai. Obviously, kV(m; 21) is the full derivation algebra Der A(m; 1). For a 
description of the relevant subalgebras S(m; n; @) (special algebras), 
H(2r; n; @) (hamiltonian algebras), K(2r + 1; n; @) (contact algebras) we 
generally refer to [SF] or [BW2], and in particular to the parts of this 
article, where we deal with some of them in detail. 

One of the very basic concepts in the theory of modular Lie algebras 
is the concept of a p-envelope. We recall the definition from [St21 or 
[SF, Section 2.53: 

DEFINITION. A triple (G, [p], i) consisting of a restricted Lie algebra 
(G, [p]), and a Lie algebra homomorphism i: L + G is called a p-envelope 
of L if 

(a) i is injective 

(b) i(L), = G, 

where i(L), denotes the restricted subalgebra generated by i(L) and [p]. 

Using the concept of a p-envelope we introduced an invariant for any 
modular Lie algebra. Put C(G) := ( x E G I [x, G] = 0} the center of G, and 
more generally the centralizer of a set S in G is denoted by 
C,(S):={XEG([X,S]=O}. 

DEFINITION [St3]. Let L be a Lie algebra and (H, [p], i) a p-envelope 
of L. Suppose that G is a subalgebra of L and G, is the restricted 
subalgebra of (H, [p] ) generated by i(G). 

(1) TR(G, L):=max{dim TI T is a torus of (G,+C(H))/C(H)} is 
called the absolute toral rank of G in L. 

(2) TR(L) := TR(L, L) is called the absolute toraf rank of L. 

Let L, be a p-envelope of L containing L and Tc L, a torus. Then L is 
an ideal of L, and hence T acts on L. Decompose L into eigenspaces 

L= 1 L,(T). 
xc@ 

In the classification theory of restricted algebras some distinguished tori 
(“optimal tori”) play an important role. The corresponding definition in 
the general context is 

DEFINITION (St4, p. 6691. Let L be a Lie algebra and T a torus in some 
p-envelope. A root a # 0 (with respect to T) is called proper, if there is i # 0 
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such that cr([L,, L-J)=O. A torus is called optimal, if it has maximal 
absolute toral rank in L, and if among all these tori the number of proper 
roots with respect to T is maximal. 

If L is simple and p > 7, then every root with respect to an optimal torus 
is proper [St4, (5.3)]. To explain this concept we consider tori in the 
restricted algebras W(m; II ). Demuskin ([Dl]) showed that every maximal 
torus R is conjugate under an automorphism of W(m; % ) to one of the 
types T, := CIGjgk F(1 +xj)aj 0 &+rGjs,,, Fxjaj (k = 0, . . . . m). Here 
and in the following we want to treat several cases in common. We will 
use the expression ti for either xi or 1 + xi. Observe that with this 
notation tf = 0 in the first case and tf = 1 in the second case. The root 
spaces W(m; Ii), for the torus C Fti ai are m-dimensional and given by 
Cl <i<,,, Ff”+Ei ai, where the exponent is meant to be an m-tuple of natural 
numbers between 0 and p - 1 taken mod(p). The corresponding root c1 is 
given by a(tj aj) = aj. It is easy to check (in fact we shall do this for 
particular cases in subsequent sections) that T, is the only optimal torus 
among all these Tk. Thus W(m; 1) has exactly one conjugacy class of 
optimal tori. 

For any subset Y c @ = Q(T) of the set of roots with respect to some 
torus T let span Y denote the GF(p)-vector space generated by Y. If 

k := dim GF(p) van y 

then 

L(Y) := 1 L,(T) 
2 E span .4p 

is called a k-section with respect to T. 
It is known that a k-section with respect to a torus of maximal absolute 

toral rank has absolute toral rank <k [St3, (2.6)]. As a consequence of 
this remark one can use results of R. L. Wilson ([W3]) to determine the 
structure of the one-sections (cf. [St3, (4.2)], [BOSt, (1.9)]). 

THEOREM 1.1. Let L be a simple Lie algebra over an algebraically closed 
field of characteristic p > 7. Let T be a torus of some p-envelope L, of L of 
maximal absolute toral rank. Let L(M) be a one-section with respect to T. 
Then one of the following cases occurs: 

(1) L(a) is solvable, 

(2) L(a)/rad L(a) E s1(2), 
(3) L(cr)/rad L(a) z W( 1; d ), 
(4) H(2; II )(*) c L(a)/rad L(u) c H(2; Q ). 
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According to [BW2, (5.3.2)] we say that a root tl is solvable, if L(cc) is 
solvable, classical if L(cc)/rad L(M) z sl(2), Witt if L(a)/rad L(U) z W( 1; II ), 
and hamiltonian if H(2; II ) (2) c L(cl)/rad L(a). A Lie algebra A is said to be 
compositionally classical ([BWZ, (5.3.5)]), if every composition factor is 
abelian or classical. 

THEOREM I.2 [St4, (l.lO)]. Let L be simple, T a torus of maximal 
absolute toral rank in some p-envelope L,. Then every one-section of L and 
of L, with respect to T contains a unique (not necessarily proper) subalgebra 
M of maximal dimension with codimension ~2, such that M/rad M is 0 or 
isomorphic to sl(2). 

In coincidence with the notation of [BW2] and [BOSt] we write 
Q(p) = Q(p, T), for this distinguished subalgebra of the one-section L(p). 

The aim of this note is threefold. At some point in the classification 
theory of the restricted simple Lie algebras knowledge on the behaviour of 
the one-sections within the two-sections is needed. It has turned out, that 
in the general classification theory the same is true in a much more serious 
meaning. It is essential to have very detailed information, how one-sections 
can occur in two-sections. Only then can one lift this information to results 
on the problem, how one-sections can sit in the whole algebra. The already 
known results are not satisfactory for our purposes. First, we therefore 
determine the action of a torus R on the semisimple quotient K(cl, p) + R 
of a two-section L(a, /3) + T of a simple algebra L with respect to an 
optimal torus T by a case-by-case analysis. In some cases we shall also give 
a more detailed description of the two-sections themselves (Sections IV, V, 
VII). In the course of pursuing this aim we secondly shall often step aside 
the prove some results in more generality than they are needed in the 
classification. We will, for instance, for arbitrary m give a new proof for 
the determination of the conjugacy classes of tori in the restricted 
Jacobson-Witt algebras W(m; 1) which needs no computations at all 
(Section IX) and we shall determine all Cartan subalgebras of W( 1; n) by 
noncomputational methods (Section V). This partially improves results of 
Demuskin [Dl] and Brown [Br]. In doing all this, we thirdly hope that 
we will make the reader more acquainted with the concepts of an optimal 
torus and a section and thereby hopefully shall promote the understanding 
of the previous and forthcoming papers on the classification of simple 
modular Lie algebras. 

I appreciate very much the very careful reading of this manuscript by the 
referee and her/his valuable comments. 
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II. REMARKS ON A PRECEDING PAPER 

Unfortunately it happened that some proofs in [St41 are incorrect. The 
results, however, are not seriously affected by this, as we shall see in this 
article. 

Lemma 4.2 and in consequence Proposition 4.3 in [St41 are not valid. It 
is therefore not true (as claimed in Theorem 4.4) that we can exclude the 
algebras of type (d) from [BW2, (9.1.1)] in Theorem 4.4. In case (7) below 
R(C,(z( T)), A) denotes the maximal ideal of CA(rc(T)) which acts 
nilpotently on A. The revised proof of [St4, p. 6671 yields immediately 

THEOREM [St4, (4.4) revisited]. Let L be a simple Lie algebra over an 
algebraically closed field of characteristic p > 7. Let T be a torus of some 
p-envelope L, of L of maximal absolute toral rank. Consider the root space 
decomposition of L with respect to T, 

L= 1 L(T)= 1 L,, 
Lx.59 ae@ 

and the two-section 

L,(oz, fi) I= CLp(T) + 1 L;z+jb. 
i,jE GF(p) 

Let 71 be the canonical homomorphism 

x = ?c,,p. ’ ~,(a, j?) -+ L,(a, B)/rad L,(LT PI =: A(CG b) =: A. 

Then one of the following cases can occur: 

TR( A) = 0: 

(1) A=O; 

TR(A)= 1: 

(2) SC A c (Der S)(l), 

3y~GF(p)cr+GF(p)/?withA=~(L,(y)), 

SE (s1(2), W(1; I), H(2; Q)(2)}; 

TR(A) = 2: 

(3) S,OS,cAc(DerS,)“‘O(DerS,)“‘, 

s,, S2E (s1(2), W(l;i), H(2; I)(2)}; 
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(4) H(2;Q)(*)cAcDerH(2;Q)(*); 
(5) SOA(n;Q)cAcDer(SOA(n;Q)), n#O, 

n(T) $ Per S)OA(n; Q), 

SE {s1(2), W(1; Q), H(2; II)‘*‘}; 

(6) ScAcDerS, rc(T)cS,, 

SE { W(1; 2), H(2; (2, l))(2), H(2; Q; @(z))(l), H(2; 11; A)}; 

(7) ‘4 = s+ NC,(dT)), A), 

SE (A,, C2, G,, W(2; Q), S(3; II)“‘, H(4; Q)‘*‘, K(3; II)}; 

(8) (added to the original oersion) 

s@A(n;Q)cAcDer(S@A(n;Q)), 

n(T) c (SOW; Q )Jp, n>O 

Sz H(2; II; Q(t))“‘, 

C sBAcn; B ,(n( T)) acts nilpotently on A. 

This change of (4.4) has no impact on the proofs and the results of 
Section 5 in [St4], since there we only refer to [BW2, (9.1.1)]. In 
particular, Theorem 5.3 is valid and so all roots with respect to an optimal 
torus are proper. To salvage Theorem 6.3 we need the following: 

LEMMA 11.1. Let L be simple, p > 7, and T an optimal torus in some 
p-envelope L,. Put H := C,(T) and @ the set of roots. If u E @ is a solvable 
root, then every x E [L,, H] acts nilpotently on L. 

Proof: (1) If a(H) = 0 then L(M) is nilpotent and hence triangulable. 
(2) Suppose that U(H) # 0 and that x E [L,, H] acts nonnilpotently. 

Then there is p E @ with p(x) # 0. Sz := {p E @ 1 p(x) # 0) is a nonvoid set. 
The simplicity of L enforces H = CPen [L,, L-,I. Therefore there is /I E L2 
with a([L@, LeB]) #O. We consider A(a, 8) the semisimple quotient of 
L,(cc, /?). [BW2, (10.2.1)] applies and yields that A(a, /I) is one of the 
algebras listed in [BW2, (9.1.1)(ek(h)]. Then [BW2, (11.2.1)] applies to 
prove that b(x) = 0, a contradiction. # 

We are now in the position to prove a revised version of [St4, (6.3)]. We 
have to consider optimal tori instead of tori just of maximal absolute toral 
rank. 
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THEOREM II.2 [St4, (6.3) revisited]. Let L be a simple Lie algebra over 
an algebraically closed field of characteristic p > 7. Let T be an optimal torus 
in some p-envelope L, of L. Consider the root space decomposition of L with 
respect to T: 

L= 1 L,(T)= 1 L,. 
ore@ L-t(E@ 

Put 

L(aV 8) := C L&+jfl. 

i,jeGF(p) 

Let I := Z(cc, /?) be the maximal solvable ideal of L(cr, 8) + T and consider 

0 = ~a,~: L(a, B) + T+ bYa> B) + T)lZ(a, B). 

Put K := K(a, /?) := a(L(a, l?)), If := a(C,( T)), and R := a(T). Then only 
one of the following cases can occur: 

(1) K=O; 

(2) SC K+ Rc (Der S)(l), 

+~GP(P)~+GP(P)P with K = o( L(y)), 

SE {s1(2), W(1; Q), H(2; Q)(2)}; 

(3) S,@S,cK+Rc(DerS,)“)@(DerS,)“), 

S1) s2 E {A(2), W( 1; Q ), H(2; Q )‘2’}; 

(4) H(2;Q)‘2’cK+RcDer(H(2;Q)‘2’), R $ H(2;II); 

(5) S@A(n;II)cK+RcDer(S@A(n;Q)), n=l,2, 

y(C,(T)) z0 VYEGP(P)~+GP(P)B- (01, 

SE {s1(2), W(1; Q), H(2; Q)(2)); 

(6) S@A(l;Q)cK+RcDer(S@A(l;Q)), 

(S@A(l;Q))n(radK)=S@xA(l;Q), 

SE (s](2), W(1; Q), H(2; Q)‘2’}; 

(7) ScK+RcDerS, 

SE { W(1; 2), H(2; (2, 1))‘2’, H(2; II; G(T))(~), H(2; II; A)}; 

481/151/Z-12 
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(8) K= S+ C,(R), 

SE {A*, C2, G,, W(2; II), S(3; II)“‘, H(4; Q)‘*‘, K(3; Q)}. 

In all cases except (6), K is semisimple, i.e., rad L(a, 8) = I(a, /I) n L(a, j?). 

ProoJ (a) The first part of the proof remains unchanged (cf. [St4, 
p. 6721): Consider the canonical mapping 

7~: L,(a, /?) -+ A := L,(a, jI)/rad L,(a, /I). 

There exists a homomorphism p from A (‘I into K with solvable kernel. Let 
C denote the socle of A, 

C c A(‘) c x(Lp(a, b) c A c Der C. 

(b) We only have, in addition to the proof given in [St4], to 
consider the case that A is of type (8) of the revised version of [St4, (4.4)] 

C=S@A(~;Q)~A~D~~(S@A(~;Q)),TT(T)~(S@A(~;II)),, 

n > 0, Sz H(2; II; G(r))(‘), C,@,.(,; o ,x(T) acts nilpotently on A. 

Put H’ := C,(T). As a consequence of the assumptions “,S@ A(n; Q ) c 
A(‘)c n(L(a, 8))” and “n(T)c (S@A(n;Q),)” we have 

7r(L(a,/?))=S@A(n;Q)+n(H’), 

and since C sBAA(n;li ,n( T) acts nilpotently, every one-section of SO A(n; Q ) 
with respect to z(T) is solvable. Then every one-section of x(L(a, 8)) is 
solvable as well, proving that the same is true for L(a, /I). According to 
(11.1) [L,, H’] acts nilpotently on L for all p~GF(pp)a+GF(p)@ 

Let J:=rad{S@A(n;Q)} d enote the maximal ideal of S@ A(n; Q). 
Observe that this is invariant under rr( T). J’ := J+ [J, H’] is also an ideal 
of S@ A(n; II). The maximality of J enforces J’= SO A(n; II) or J’=J. In 
the first case we obtain 

S@A(n;Q)cJ+ c 4CL,, H’l). 
PEGF(~)~+GOP)B 

The Engel-Jacobson Theorem now implies that SO A(n; Q) is nilpotent, a 
contradiction. Therefore the second case is true, showing that J is invariant 
under rr(H’), and hence is a solvable ideal of z(L(a, /I)). Thus there is a 
homomorphism with solvable kernel, which maps x(L(a, /I)) into 
Der( H(2; Q ; @(z))(i)). We are now in case (7) of Theorem 6.3. 1 

It has been claimed in [St4, (7.2)] that in case (5) of that theorem the 
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ideal SO 1 x,A(n; II ) is invariant under R and that the arguments given by 
Block and Wilson in [BW2] to settle the corresponding case for restricted 
algebras remains valid in general. This last statement on the proof seems to 
be incorrect. We shall salvage the result by offering further arguments, 
which need more information on simple Cartan-type Lie algebras of toral 
rank two and their root space decompositions. We therefore shall postpone 
the treatment of this case to the end of this article. 

This revision does not at all affect [St5], since all tori used there are 
supposed to be optimal. 

III. CASES (2)-(4) OF THEOREM II.2 

The algebras K mentioned in cases (2k(4) of (11.2) are treated in this 
section. We determine the conjugacy classes of tori in general and optimal 
tori in particular, and the root space decompositions with respect to such 
tori. This is done for the sake of completeness and elucidation, although 
the results are essentially known (but partially not published yet). 

(A) Case 2 

We consider algebras 

ScK+Rc(DerS)(“forS~{s1(2), W(l;f),H(2;11)(*‘}, 

R any torus. 

S= sl(2). In this case Der S= S and therefore K+ R = S is true. There 
is a standard basis (e, h, f) of sl(2) with R = Fh. Since every nonzero root a 
has a multiple icr which is not a root, every torus R of sl(2) is optimal. 

S = I%‘( 1; II ). We have Der S = S and therefore K + R = S. In the case 
under consideration R is conjugate (cf. the remark in Section I) to a torus 
T,, or T, which we write without index Ftd. The root spaces with respect 
to the torus Fta are one-dimensional and of the form Ffa, the corre- 
sponding eigenvalue being a(d) = a - 1. As it was pointed out in Section I, 
R is not an optimal torus if t = 1 +x, while for t = x it is optimal. 

S=H(2;11)‘*‘. Put z:=r(ll)=(p-l,p-l)~NxfV and 

DH(xy’xy) :=a,xT’-‘~7 a,-a2x;‘xyp’ a,, 

as well as 

H(2;Q):=(f,a,+f*a*If,,f2~~(2;a),a,(f,)+a,(f,)=o} 

H(2; ~)(‘~=span{D,(x~1x~2)l (0,O) <(a,, a,)<t} 

H(2; Q )(*) = span{ DH(x;IIxT) I (0,O) < (a,, a*) < T}. 
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These graded Cartan-type Lie algebras are described in [SF, Section 41 
(where we have used a slightly different notation). The following can easily 
be derived from the results presented there. Some of the material is also 
treated in [BWl] and [BW2]. 

H(2; Q )C2’ = @ F(altf;‘-‘tya,-a ta’fa*-‘a,) 212 

(o,o'<(al,~2'<7 

H(2.Q)‘l’=H(2;11)‘2’~F(t4-2t,P-’ a2-tp-‘t;-2a,) 2 

H(2;Q)=H(2;Q)(‘)OFtf-‘a20Ft2P-‘a, 

Der(H(2;Q)(2))rH(2;Q)@F(t,a,+ t,a,)c W(2;Q) (if p>3). 

We shall always consider Der(H(2; a)(‘)) as a subalgebra of W(2; Q ). 

PROPOSITION III. 1. 

(1) dim Der(H(2; Q)“‘)/H(2; Q)‘2’= 4, dim Der(H(2; Q)‘2’) = p2 + 2. 
(2) Every one of the four algebras listed above is a restricted sub- 

algebra of W(2; Q ). 
(3) (a) Der(H(2; Q )(‘))/H(2; Q ) is a one-dimensional torus. 

(b) H(2; 21 )/H(2; Q )(2) is p-nilpotent with H(2; Q )r c H(2; Q )(2). 

(c) Every maximal torus of Der(H(2; Q )‘2’) has dimension 2. Its 
intersection with H(2; Q )(2’ is one-dimensional. 

(4) TR(Der(H(2; Q)(2)))=2, TR(H(2;1))= 1, TR(H(2; Q)‘2’)= 1. 
(5) Every maximal torus of Der(H(2; Q )(2)) is conjugate under 

an automorphism of W(2; Q), which stabilizes H(2; Q ), H(2; II)‘*‘, and 
Der(H(2; Q )‘2’), to one of 

T,=Fx, a,@Fx2a2, 

T,=F(1+x,)a,@Fx2a2, 

T,=F(l+x,)a,@F(l+x,)a,. 

Proof (1) is an obvious consequence of the above mentioned facts on 
the algebras under consideration. 

(2) Let L denote one of the algebras H(2; Q)‘2’, H(2; II)“), H(2; Q ), 
Der( H(2; II )(*i). A direct computation shows that L is invariant under the 
torus To := Fx, a, + Fx2 a2 of W(2; Q). Thus L decomposes into root 
spaces with respect to To 

L= @ Ln W(2; Q), (To). 
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[SF, (4.2.7) and the succeeding remark] yields 

(Ln W(2;Q),)~=O if a #O, 

while L n W(2; a),( T,) = L n T, (which is either F(x, 8, -x2 a,) or T,,) is 
in any case closed under pth powers. Thus [SF, (2.2.3)] implies that L is 
a restricted subalgebra of W(2; 1). 

(3) (a) H(2; II) is a restricted ideal of Der(H(2; Q)(2)) and 

Der(H(2;Q)(2))=H(2;Q)@F(x, 8, +x2 a,). 

x1 8, +x2 a2 is a toral element. 

(b) G :=Fxf-’ 82@Fx2p-- 8, @ F(~f-~x;-r 82-x;-‘~,P-2&) 
is a three-dimensional restricted subalgebra (isomorphic to the Heisenberg 
algebra) with GP = 0. The equation H(2; II) = H(2; Q)‘2’ 0 G yields 
H( 2; Q )” c H(2; Q)(2). 

(c) Let T be a maximal torus of Der(H(2; Q )‘2)) and consider the 
restricted homomorphism 

cp: Der(H(2;Q)(2))+Der(H(2;Q)(2))/H(2; Q)‘2’=: L. 

cp( T) is a maximal torus of L [SF, (2.4.5)]. Since L = cp(F(x, 8, +x2 a,)) 
8 q(G) and q(G) is a p-nilpotent ideal of L, we obtain dim q(T) = 1. 
Assume that Tn ker cp = 0. Then dim T= 1, Tn H(2; Q )(2) = 0, and 
H(2; Q )(2) decomposes with respect to T into eigenspaces 

H(2; 1 )(2) = @ H(2. II )!” (T) 3 ra . 
icGF(p) 

Take UE H(2; Q)L2)(T). Then some p-power t = up’ is semisimple and 
(as H(2; Q )(2) is restricted) is contained in H(2; Q)f’( T), i.e., in 
Tn H(2; Q )(2) = 0. Applying the Engel-Jacobson Theorem we obtain that 
H(2; Q )C2) is nilpotent, a contradiction. Hence T n ker cp # 0. As 
Der(H(2; Q )‘2’) c W(2; Q ), and TR( W(2; 21)) = 2 we obtain dim T= 2 and 
dim TnH(2; Q)(2)= 1. 

(4) We conclude from (3) that TR(Der(H(2; Q)(2))) = 2. Let T denote 
a maximal torus of H(2; II ) (2) If dim T> 2, then T is a maximal torus of . 
Der(Z-Z( 2; Q )‘2’) and hence T = T n H(2; Q )(2) is one-dimensional according 
to (3). This contradiction shows that dim T= 1 and TR(H(2; Q)(‘)) = 1. 
[St3, Chap. 21 then yields 

1 = TR(H(2; Q)‘2’) < TR(H(2; II)) 

< TR(H(2; Q)‘2))+ TR(H(2; Q)/H(2; Q)“‘)= 1. 
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(5) Every automorphism of H(2; ll ) defines in a natural way an 
automorphism of H(2; Q)‘2’ and of Der(H(2; a)(‘)). Therefore (5) results 
from [BWl, (1.18.4)]. 1 

We now return to case (2) of 11.2. Since every torus R of 
(Der(H(2; II )(2)))(1) c H(2; II) is contained in a maximal torus of 
Der(H(2; Q)(2)), the preceding theorem applies to the case under 
consideration. R is conjugate to a subtorus of T,, T, , or T2. The definition 
of H(2; 1) shows, that R is conjugate to either F(x, 8, -x2 a,) or 
F((l+x,)a,-x28,) or F((l+xr)a,-(1+x2)a2). In the last case we 
substitute x2 by x1 +x2, and show by this that R is even conjugate to one 
of 

F(t1~1 -x2 a,), t, being(l+x,)orx,. 

THEOREM 111.2. Assume thar S c KC (Der S)(l) with S = H(2; % )(2) and 
let R be a maximal torus. Then 

(1) H(2;Q)‘2’cK+RcH(2;Q). 
(2) If R is optimal, then there is $ E Aut W(2; II), which stabilizes 

H(2; Q )(2) and H(2; Q ), such that R = +(F(x, 8, -x2 a,)). 
(3) Zfct#O then 

If a=0 then 

Proof: (1) (Der(H(2; Q)‘2~))~1~cH(2;Q)~1~+[H(2;Q),xl LJ,+x,a,] = 
H(2; Q). (2), (3) The above deliberations show that there is $ E 
Aut W(2; Q), which stabilizes H(2; Q)(2) and H(2; Q), such that R = 
$(F(t, 8, -x2 a,)) with t, = 1 +x1 or =x1. The following spaces are 
contained in the root spaces H(2; Q), with respect to F(t, 8, -x2 J2): 

c F(btTx;- ’ ~3, - at;- ‘x; a,) a#0 
a - b = a(t, a, - x2 az) 

c ~(t~~;-~a,-t;l-~~;a~)+~f~-~a~+~~;-~a, u = 0. 
l<a<p-1 

These spaces span H(2; Q), so they constitute the full root spaces. Since for 
or#OwehaveH(2;Q),cK,,thisgives(3).Taket,=(1+xl).Choosea#O 
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and a~f+J with a-1=a(t,a,-xz8,), O<a-l<p. Then [K,,K-,I= 
[H(2; ll),, H(2; !)-,I contains 

[t’; a, -aat;-lx, a,, ty+* a, -(2-a) tf~0+lX2 a,] 

=2(1-a)(tf+‘a,-t~X*a2)=2(1-a)(tla,-X&)#0. 

This means, that no root is proper and this is not an optimal torus. 1 

(B) Case 3 

We consider algebras K+ R with 

S=S,@S*, SiE {s1(2), W(1; I), H(2; I)‘*‘}, 

SC K+ R c (Der Sr)(‘) + (Der S2)(‘), R any torus. 

Observe that 

2 2 TR(K+ R) 2 TR(S) = TR(S,) + TR(S,) = 2. 

We identify K + R with ad,(K + R) c Der S. Let KP + R, S, denote the 
p-envelopes in Der S of K + R and S, respectively. Note that S is restricted. 
Therefore S, = S is a restricted subalgebra of Der S under this identifica- 
tion. The above equation in combination with [St4, (1.3.(5))] proves that 
R c S + C(K, + R) c Der S. The above identification, however, implies 
CW, + R) = Gp+ R(S) = 0 and therefore R c S. Put Hi := C,(R) and 
H:=C,(R).WeobtainthatRcHnS=H,@H,andK+R=S+H.The 
root space decomposition with respect to R is given by the action of Hi on 
Si. We have now reduced this case to the former one. 

(C) Case4 

Suppose that K + R satisfies 

H(2; 1 )(2) c K + R c Der( H(2; II )‘2’), R q? H(2; II ), 

R any two-dimensional torus. 

According to Proposition 111.1, R is conjugate to one of T,,, T, , T2. We are 
interested in the one-sections with respect to R. 

PROFQSITION 111.3. Let T denote one of the tori T,, T,, T, and write 
ti := 1 + xi or ti := xi. Let a be a root with respect to T. Choose a, b such 
that 0 < a, b < p- 1, a E a(t,lll) + 1, b = a(t,a,) + 1 mod(p). Then 
(Der(H(2; II )‘2))), coincides with 
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F(af-‘t;a,-bt$’ a,) if (a,b)#(O,O),(L 1) 

T if a=b=l 

Ftf-‘a,oFt;-l a, if a=b=O. 

Proof. The displayed vector spaces are in the appropriate root spaces. 
Since they span a (p’ + 2)-dimensional vector space (which is the 
dimension of Der(H(2; II )(2))), equality holds. 1 

THEOREM 111.4. With the notation as in (111.3) the following is true: 

(1) Zfa(tla,)#a(t2a,)chooseai, b,(l<i<p-l),such thatO<cq, 
b,<p-1, a,=ia(t,a,)+l, b,=ia(t,a,)+lmod(p). Then 

(Der(H(2; f)(2)))(a)= TO 1 F(a,t~-‘tea,-b,tl’t~-‘a,). 
i#O 

(2) Ifa(tl a,)=a(t,a,)#O then 

(Der(H(2;II)(2)))(a)= T@Ftf-’ a2@Ft,p-’ a, 

0 1 F(t;-9; a2- ty-1 a,). 
ZCaCp-1 

Proof. (1) If a(t,a,)#a(t2a2) then a,#b, Vi#O. The root space 
(Der H(2; 21 )‘2’))i, (i#O) is given by the first case of Proposition 111.3. 

(2) If a(t, a,)=a(t,a,) then a,=bi Vi#O. Since a#0 we have 
a(t,a,)#O and hence {ai~i#O}=(a~GF(p)~a#l}. PropositionIII.3 
yields the result. [ 

THEOREM 111.5. Assume that H(2; 11)(2) c Kc Der(H(2; 11)(2)). Let R be 
an optimal torus in K + R with R $ H(2; d ) and a be a nonzero root. 

(1) There exists $ E Aut W(2; I), which stabilizes H(2; II)‘2’ and 
H(2; II), such that R=$(T,). 

(2) If a(+(xl 8,)) = 0, then 

K(a) = + 
1 

1 F(x;a2-ix,x;-la,) +RnK. 
OCiGp-1 I 

{K(a)+R)IRn(k 1 er a is isomorphic to W( 1; ll ), the isomorphism is induced 
by 

$(~;a,-ix,x;-l al)k-+X;a2. 
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(3) Zj a(Jl(xl 8, +x, 8,)) = 0, then K(a) c W(2; Q),,, and 

{K(a)+R}/(K(a)n W(2; Q)c1,+ Rn(kera)} rsl(2). 

(4) If a(ll/(xl 8,)) ZO, a(t4x2 8,)) # 0, a(t4x1 al +x2 a211 Z 0, then 
K(a) c R + W(2; II),,, and K(a) is solvable. 

Proof: The optimality of R in conjunction with the assumption 
“R # H(2; 21)” ensures that dim R = 2. (111.1.(S)) yields that there is 
+ E Aut W(2; II), which stabilizes H(2; I)(*) and H(2; n), such that 
J/-‘(R) =: T is one of the tori described in (111.1). Consider the root space 
decomposition with respect to T. 

(1) Take any nonzero root a with a(t, a,)=O. Then (as a #O 
and hence a(t, 8,) # 0) we are in case (1) of the preceding theorem. 
Adjust a, such that a(t2 a,) = 1. Observe that ui = 1 Vi and { bil i # O> = 
{b E GF( p) ( b # 1). Note that according to (111.3) [K,,- ,)%, K+ l)r] 
contains 

[tjLa2-itlti;’ a,, t$-jt,ti-l a,] 

= (j- i)(ti+j-’ a,- (i+j- 1) t,rl+j-* d,) 

for 0 < i, i < p - 1. Since R and T= II/ - ‘(R) are optimal and hence every 
root is proper, this implies that rf =O, i.e., r2 =x2. Similarly, r, =x1 and 
T= T,. This proves (1). 

(2) Case ( 1) of (111.4) yields that 

JW=+ C 
i 

F(x’, a2 -jx,x’;-’ a,) + Rn K. 
OSj<p--l,j#l 1 

As R n Kc #(F(x2 a2 - x1 13,)) + C(K(a)) a short computation proves (2). 
(3) We are in case (1) of the preceding theorem with 

ui + bi = i(a(x, a,) + a(x2 a,)) + 2 = 2 mod(p). 

In particular, a,+ bi 2 2 and therefore the one-section is contained in 
the zero part of the liltration: I,-‘(K(a))c W(2; II),,,. As $ is an 
automorphism of W(2; ll) it stabilizes W(2; %),,,. Hence K(a)c W(2; I),,,. 

Since a(x, 8,) #O, a(xZ a,) #O there are i, j such that ui = 2, bi= 0 
and uj= 0, bj= 2. The corresponding monomials lie in K(a). Put 
J:=K(a)n W(2;ll),,,. Then J is a solvable ideal of K(a) + R and 

K(a) + R = J+ R + $(Fx, a, + Fx, a,}. 

Then {K(a) + R}/{J+ Rn (ker a)} E sl(2). 
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(4) If aj + bj2 3 then the corresponding root space is contained in 
W(2;Q),,,. If aj= 1 for somej#O then c((xI a,)=O, which is not this case. 
Hence ai, bi # 1 for i# 0. If there is some j# 0 such that aj = 0 = bj, then 
the corresponding root space is contained in W(2; II),,, (111.3). If there is 
some j#O such that aj=O, bj=2 then joc(x, a,)= -1, @(x,8,)= 1 and 
hence a(xl 8, +x2 a,) = 0, which cannot happen in this case. 1 

The theorem yields that there is only one conjugacy class of optimal tori. 
For such a torus we have determined all one-sections modulo the radical: 
two of them are Witt algebras, one of them is isomorphic to s1(2), all other 
are 0. 

Let -at, -a, denote the nonclassical roots, which stick out of 
Kn W(2; II),,,. Then 

--a,= [xi ai, a,] = -aj(xi ai) 

and 

(a1 - a2)(x1 8, +x2 8,) = 0. 

Thus K(a, - a2) is the classical nonsolvable one-section. The root spaces 
of K n W(2; II )(,,) sticking out of Kn W(2; II),,, are represented by 
x1 a2, x2 a,, R n K. The corresponding roots are a, - a2, a2 - a,, 0. 

IV. CASE (6) OF THEOREM II.2 

We start with some general observations. 

LEMMA IV.l. Let G be a Lie algebra and put K := G ($3 A( 1; I ). Consider 
a torus Tc Der K, put To := Tn (Der G)@ A(l; I). Assume that every 
T-invariant ideal Z of K decomposes Z= IO@ A( 1; Q), I,, c G. 

(1) There is o E Der K, such that 

(a) T=Tn((DerG)@A(l;II))@F(id@8++) 
(b) o(G~AA(l;II),n)CG~A(l;II),nfor all j. 

(2) To acts on G and G @ F via the isomorphism G E G @I F= 
GOA(l; Q)/G@A(l; Q )(I). Decompose G @I F = C, (G @I F)P with respect to 
T 03 

(G@F),:={~EG@FJ~(~)-~.~(~)~EG@A(~;II)&~~T~}. 



THE TORAL STRUCTURE 441 

ForanyeE(GQF)I,andeachj~GF(p)thereexistsuEG~A(1;~)withthe 
properties 

(1) u=e mod G@A(l;Q),,, 

(2) t(u) = CL(tbJ Vte TO 

(3) (id@a+a)(U)=jU. 

ProoJ (1) According to a well known result of R. E. Block, 

Der(G@A(l;%))=(DerG)@A(l;II)+Fid@IV(l;Q), 

and thus there is a restricted homomorphism 

Put U:=I//-‘(W(1;ll)~,,).Notethatfora11j,G@A(1;21)~~,isa U-invariant 
subspace. If T c U, then G @ A( 1; II )(i) is a T-invariant ideal, which has 
trivial intersection with G Q F. This contradiction shows that T $ U. e(T) 
is a torus of W( 1; II ) and thus conjugate to F(l +x)8. Then 
T=Tn{(DerG)@A(l;II)}OFD, where D is mapped onto (1+x)8. 
Hence D-id@8 mod U. 

(2) We will first construct inductively elements uO, . . . . up-r with the 
properties 

(a) uk-e mod GOA(l;II),,, 

(b) D(uk)-juk~GQA(l;Q)(k). 

For k = 0 we put u,, = e and observe, that (b) is true since A( 1; II )(,,) = 
A( 1; 1). Assume that we have constructed uk for some k < p - 1. Write 

D(z+)-juk-w@xXk modG@A(l;II)(,+,,. 

Ifk<p-1 put 

Then 

uk+l :=u,-(k+ 1))‘w@xk+‘. 

D(Uk+1)=D(Uk)-D((k+l)-1W@Xk+1)=jUk=jf.4k+~ 

mod GQNl; Q)(k+l)- 

Consider the case k = p - 1. Since D is toral and jE GF(p), we have 
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(D-jid)J’=DP-jPid=D-jid. Hence computing modG@A(l;II)(,, 
we obtain 

wo~P-‘=(D-jid)(u,_,)=(D-jid)~(~~_~) 

=(D-jid)Ppl(w@xP-‘) 

=id@ap-‘(w@xP-‘)= (p- l)! w@ 1. 

Thus w = 0. We end up with an element up- i satisfying (1) and (3). 
Consider V:= {uEGOA(I;II)~D(U)=~U}. V is invariant under TO and 
decomposes into a direct sum of eigenspaces with respect to TO. Then 
V+GQA(l;Q),,, is also invariant. As up- i E V, we have according to 
(a)eEV+GOA(l;Q)(,,. Moreover, e is mapped onto an eigenvector in 
{ V+G@A(l; Q),,,}/{G@A(l; II),,,} s I/ with respect to TO. Therefore 
there is some eigenvector u E k’, such that u = e mod GO A( 1; II )(i). This is 
the desired element. [ 

COROLLARY IV.2. Let G be a Lie algebra and put K := GO A(m; I). 
Consider a torus T c Der K. Assume that every T-invariant ideal I of K 
decomposes Z = I, Q A( m; II ), I, c G. Decompose T = T,, 0 T, into a direct 
sum of subtori with TO := Tn ((Der G)O A(m; II)}. TO acts on G via the 
isomorphism GzGQA(m;Q)/G@A(m;ll),,,. Then: 

(1) m=dim T,. 

(2) For any root a~ T,* on G and any j3~ T: there is a root cc@/? of 
T on K. The homomorphism 7t:K+K/G@A(l;II),,,rG maps KEes 
bijectively onto G,. 

ProoJ: Put G’:=G@A(m-1;Q). Then KEG’@A(~;II) and the 
assumption if (IV.l) is fulfilled. We now proceed by induction on m. 
(1) and the first part of (2) are direct consequences of (IV.1 ). In order to 
prove bijectivity we first observe that according to (IV.l) x(K,,,) = G,. 
Put I:= (ker rc) n KaeB. Z is T-invariant since every t E T acts as (a(t) + 
P(t)) id on Kmes. Then CnaO (ad K)“(Z) c ker A is a T-invariant ideal of K. 
By assumption this has to vanish. Hence K 1 K,,, is injective. 1 

The following are applications of (IV.2). 

THEOREM IV.3. Let G be a Lie algebra and put K := GO A(m; II). 
Consider a torus T c Der K. Assume that every T-invariant ideal Z of K 
decomposes 

Z=ZOOA(m;II), Z,,cG. 
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( 1) There are roots /3,, . . . . p,, such that G E K(fi, , . . . . p,). 

(2) K~:K(B,,...,BI)OA(m;Q). 
(3) T is conjugate under an automorphism $ of K to some torus 

WW’F)@ {O~,i,m id @ F( 1 + xi) a,}, where T’ is a torus of Der G and 
T’@F=@o(Tn {(Der G)@A(1;11)})0$-‘. 

Proof. ( 1) Put according (IV.2) T = T, 0 T, , T, = Tn ((Der G) 6 
A(m; II)}, and t := dim T,. Choose c1,, . . . . a,E To* roots of T,, on G which 
span the root lattice of T, on G and let pi denote the extensions of ai by 
putting /Ii( T,) = 0. (IV.2) shows that the homomorphism 

maps KM,, . . . . b,) bijectively onto G. Thus R[~(~,,.,,,~,) is an isomorphism of 
Lie algebras. 

(2) Use multiindex notation for monomials x” of A(m; 1). Apply the 
Lie algebra homomorphism cp: K @ A(m; II ) -+ K, cp(u @ x” 0 xb) = u 0 x” + b 
to the subalgebra K(/l,, . . . . P,)@A(m;ll).ForgEGthereare(cf.(l))g,EG, 
hEA(m;Q)c,, such that g’:=g@l+Cg,OfiEK(B,,...,fi,). Then 
cp(g’ @x0) = g@ xa + C gi@lfixL1, where fix” is of higher order than xp. 
Inductively we see, that rp(K(/l,, . . . . fl,) 0 A(m; 1)) = K. Checking 
dimensions (with use of (1)) we obtain that this restriction of cp is 
an isomorphism of Lie algebras, which maps K(/?, , . . . . /I,)@ F onto 
WI 9 . ..> B,). 

(3) cp induces an isomorphism 

$‘: Der(K(Bi, . . . . /3,)@A(m;11))%DerK. 

Put Ti:=($‘)-‘(Ti) (i=O, 1). The property /?,(T,)=O implies that 
T1 c id @ W(m; II). Demuskin’s result then shows that F, is conjugate 
to some torus xlGiGJid@F(l +xi)ai+xs+,.i.,id@Fx,8i. Our 
assumption on the ideal structure of K enforces s = m. 

Since [ T1, T,,] = 0 the preceding result yields that T0 c 
Per WI, . . . . B,)) @ F, i.e., T,,= F”@ F, T’ a torus in Der K(pI, . . . . 8,). 
Next the isomorphism obtained in (1) rc’ : K(fl, , . . . . p,) + G extends to 
d 0 id: K(/3,, . . . . fi,) 0 A(m; 1) + G @ A(m; B ) = K. Putting isomorphisms 
together we obtain that T is conjugate to some {T’OF}O 
(OI~i~midOF(l+xi)ai>. I 

THEOREM IV.4. With the assumptions and notations of (11.2) let K+ R 
be as in case (6). 
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(1) There is a root j3 #O with B(H) =O. K(b) is nilpotent. 

(2) There is a root a with a(H) # 0. 

(3) For every root a with a(H) # 0, and any j E GF( p), a + jb is a root. 

(4) For every root a with a(H) # 0, n,,, K(a)(“) E S. 

(5) K(b) is the only solvable one-section. 

Proof We identify K with ad,,,(,;, , K. As in the case under considera- 
tion S is restricted, SQ A( 1, II ) is considered as a restricted subalgebra 
of Der(S @ A( 1; II )). Then R n (S @ A( 1; 1)) is one-dimensional. Put 
R,:=Rn(S@A(l;Q))=: Fr, with some toral element rl. 

S@A(l; II),,, is the unique maximal ideal of SO A(1; II). It is invariant 
under K, but not under K+ R. Then SO A( 1; Q ) is R-simple and therefore 
meets the assumptions of (IV.3). 

Since S@A(l; Q),,, is not (K+ R)-invariant but K-invariant, we 
conclude that R $ Kr and therefore R n Kr = R, as well. 

(1) Let p be a root with P(rI) = 0. If p(H) # 0, then TR(H, K) = 2. As 
a consequence of [St4, (1.3.(5))], R c Kr + C(K, + R) = K,. This would 
contradict the above observations. Thus B(H) = 0 and K(b) is a nilpotent 
one-section. 

(2) Since rl E H there is a root a with a(H) # 0. 

(3) As a(H)#O we have a(Fr,)=a(RnH)#O and K(a)c 
[r,,K(a)]+HcS@A(l;Q)+H. (IV.2) proves that a+j/? is a root for 
each j. 

(4) Let aE (Fr,)* be a nonzero root of Fr, on S and extend a to a 
root a’ of R on K. (IV.2) yields that n K(a’)‘“‘= K(a’) n S@A(l; II)= S. 

(5) Consider any root ,u = ia + j/J, i # 0. Then u(H) # 0. Apply (4). 
I 

THEOREM IV.5. With the assumptions and notations of case (6) of (11.2) 
the following are true: 

(1) R is conjugate under an automorphism of S@A(l; II) to 
{R,@F}@{id@F(l+x)~}, R, an optimal torus of S. 

(2) Kc (Der S)(‘)@A(l; Q). 
(3) For every jE GF(p), Kjs contains an element xj such that a(x) # 0. 

Proof ( 1) As before S 0 A( 1; 1) is R-simple and (IV.3) applies. 
Then R is conjugate under an automorphism of SQA( 1; II) to 
{R, @ F} @ F( 1 + x)8, R, a torus of Der S. R, is one-dimensional. The 
optimality of R ensures that R, is a maximal torus in S + Ra. Hence R, is 
an optimal torus in S. We suppress the notion of this automorphism. 
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(2) Consider the restricted homomorphism 

$: Der(SOA(1; II)) 

=(DerS)@A(l;Q)+Fid@W(l;Q) 

+Der(S@A(l;Q))/(DerS)@A(l;Q)r W(l;Q). 

According to (1) there is rr E R, such that $(rr) = (1 +x)8. As 
S@A(l; Q),,, is an ideal of K, we have II/(K) c W(l; II),,,. Moreover, $(K) 
is invariant under (1 +x)8, which is now only possible if II/(K) = 0. Hence 
Kcker$=(DerS)@A(l;Q). 

Consider the isomorphism p: (Der S) @ A( 1; 21 )/(Der S) 0 A( 1; Q )(r) E 
Der S. As TR(p(K)) < TR(K) = TR(S) = 1, we have p(K) = SE {s1(2), 
W(l;Q)} or S=H(2;Q)(2) c p(K) c H(2; Q ) = (Der S)“‘. This shows that 
Kc(DerS)“‘@A(I;Q)+(DerS)@A(l;ll)~,,. Since the k-fold application 
of ri E R defines a surjective mapping (Der S) 0 A( 1; Q )(kJ(Der S) @ 
41; Q )(k+l) onto (DerS)OA(l;Q)/(DerS)@A(l;Q)o, we obtain that 
Kc (Der S)“‘@A(l; Q). 

(3) Choose r E R, c S. Then r 8 ( 1 + x)~ E K, acts nonnilpotently. 1 

V. THE ZASSENHAUS ALGEBRA W(1; n) 

We will consider W(l; n) in more detail. Since we only have one 
“indeterminate,” we omit indices. W( 1; n) has dimension p”. The derivation 
algebra is given by Der W(l;n)=&,i,,-, FDp’@ W(l;n). Since 
Der W( 1; n) contains a p-envelope of W( 1; n) and every p-envelope in 
Der W(1;n) has to contain CISiLn--lFDp’, Der W(l;n) is also a 
p-envelope of W( 1; n). 

Some general remark might be helpful. There is a canonical injection of 
A(m; n) into A(n, + . . . + n, ; Q ) induced by ~(~‘9) + x@‘), where 
k=n,+ ... +ni-r+i+l (l<j<m, O<i<ni-1). This mapping gives 
rise to an injection W(m; n) + W(n, + ... + n,; Q ). In the present case we 
have an injection W(l; n) into W(n; Q). As a consequence, TR( W(l; n)) < 
TR( W(n; 1)) = n. 

LEMMA V. 1. ( 1) W( 1; n)(,,, is closed under p th powers. 

(2) Let t:=DP’+CO~idr--liDPi+u, uE W(l;n),,,, r20, be u 
semisimple element, T the torus generated by t, and W( 1; n), a root space 
with respect to T. Then 

(a) dim T/Tn W(l;n)(,,,an-r. 

(b) W(l;n),n W(l;n)(,,-,,=O, dim W(l;n),<p’. 



446 HELMUTSTRADE 

(c) Zf dim W( 1; n), = pr, then 

w(l;n),Ow(l;n)(,,_,,= W(l;n). 

Proof (1) Let g be an element of W( 1; n)(,,,. Then gp is a derivation 
of W(l; n) which does not lower the degree of a monomial. As 
Der W(l;n)=C,.j..-, FDp’ + W(1; n)(,, this shows gp E W( 1; n)(,,. 

(2) (a) We considerpth powers oft: tP’=DP’+‘+~i<i+r~jDr’+~i, 
USE W( 1; n)(,,,. For i= 0, . . . . n - r - 1 these are linearly independent 
mod W( 1; n)(,,). 

(b) Let w = xjak yjx(j)D, yk # 0, be an eigenvector with respect to 
t. If k>p’- 1 then, as WE W(l;n)+,, 

yw = [t, w] e DPr(ykxCk))D s ~,x’~~~‘)D f 0 mod W(l; n)c,_prj, 

a contradiction. Hence w 4 W(l; n)cprp,J and the mapping W(l; n) + 
W( 1; n)/W( 1; n)cpr- i) is injective on every root space. Therefore every root 
space has dimension at most p’. 

(c) If the dimension of a root space is exactly p’, then this 
mapping is bijective. 1 

THEOREM V.2. Let T be a maximal torus of W( 1; n)p and assume that T 
contains an element of the form D + u, u E W( 1; n)(,,,. Then 

(1) dim T = n; T is generated as a restricted subalgebra by D + u. 

(2) Every root space of W( 1; n) with respect to T is one-dimensional. 

(3) W(l;n) has a basis (~,~)~~o,r of root vectors with multiplication 

i-u,, u,l=(P-ebb.,. 
(4) Every one-section is isomorphic to W(l; S). 

Proof Put t := D+ UE T. Thus we may apply the lemma with r=O. 
The torus generated by t has dimension at least n. As W( 1; n) may 
considered a subalgebra of W(n; Q ) every torus has dimension at most n. 
This proves (1). The lemma also implies, that every root space is one- 
dimensional. Write t = D + ctx(‘)D + u’, u’ E W( 1; n)clj. According to the 
lemma, every root space has zero intersection with W(l; n)co,. Let 
v:=D+9x(“D+v’, V’E W(l;n),,, be a root vector with respect to t. The 
corresponding eigenvalue r is given by 

r(D + 9x”‘D + u’) = ru = [t, u] = [D + ax”‘D + u’, D + 9x”‘D + v’] 

s($-a)D mod W(~;II)~,,. 
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Thus r = 9 - tl and W( 1; n) has an eigenvector basis (u,) of the form 

up = D + (p + a) x”‘D + u;, f.4;~ Wl; n)(,,, Cc upI = pup. 

Next we determine the product of two of these vectors. Considering the 
eigenvalues we see that [u,, up] E Fug +p. 

CU,, up]= [D+($+a)x(‘)D+ u$, D+(p+a)x”‘D+ub] 

-(p-$)D=(p-9)ug+, mod W(l;n)(,,. 

Then CQ, upI = (P-@u~+,. 
Every one-section W( 1; n)(9) is of the form CieGFcp) FQ, 9 #O. The 

mapping ui9 H 9-‘( 1 + x)~ a establishes an isomorphism onto W( 1; 21). 1 

G. M. Benkart and J. M. Osborn call a basis of this type a “group basis” 
and they say that the roots are “dependent.” No root is proper. 

THEOREM V.3. Let T denote a maximal torus of W(l; n)p with 
dim T < n. Then 

(1) O#Tn W(l;n)c W(l;n)(,,; 
(2) Cw(,:nj(Tn W(l;n))=:HisaCSAof W(l;n)andiscontainedin 

Wl; n),,,; 
(3) C,,,;.JT) =: ii is a CSA of W(l; n)p. A(‘) does not act 

nilpotently on W( 1; n). 

Proof: (1) Tn W(l;n)c W(l;n)(,, is true since dim Ten (apply 
(V.2.(1))). Choose r>l maximal such that Tn(C,Gis,-, FDpi+ 
Wl; n)&= Wk n)(o). Then T contains an element tl := 
Dp’+C OGi<,yiDP’+u, UE W(l;n)(,,. t, generates a torus T’. Then 
dim T’>n-r (V.l.(2a)). Assume that Tn W(l;n)=O. Then T’= T, T’ 
has dimension n-r, and therefore there are at most p”-’ different roots. 
Adding dimensions, (V.l.(2b)) in combination with dim W( 1; n) = p” yields 
dim W( 1; n), = pr for all roots. Applying the lemma for a = 0 we obtain 

An W(l;n)+ W(l;n),,,-,,= W(l;n). 

In particular, Rn W(l; n)co, $ W( 1; n)(,,. Since W(l; n)(,, and fi are 
closed under pth powers, the intersection of these contains a nonzero semi- 
simple element. This element lies in Tn W( 1; n)(,), a contradiction. 

(2) Since Tn W(l; n)(,,= 0, there is an element t of the form 

481/151/2-13 
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t=x(‘)D+u, UE W(l;n)(,, and Tn W(1; n) =Ff. Then t acts on the 
quotients W(1; n)(,,/W( 1; n)ck+ i) with eigenvalue k. Hence 

H= Cwc,,,,(Tn W(1; n))= C,,;,,,(R)= Hn W(1; n)c,,+Ft 

and H is a CSA. 
(3) fi is a CSA since T is a maximal torus. Since W(1; n)y’c 

W( 1; n), W( 1; n) contains every root space for any nonzero root. Hence we 
have W(l;n),=W(l;n)+~ and so there is uEW(l;n) such that 
Dp+u~fi. 

T acts on H and An W( 1; n) c H. In (2) we have described H to some 
extent 

H= @ F(xCip+‘)D+ui), withsomeuic W(l;n),,+,,. 
O<i<p”-‘-I 

Recall the definition of T’ from (1) and note that T = T’ + Ft. Let a’ be any 
root with respect to T’. According to the lemma we have 

W(l;n),,n W(l;n)~pr-,,=O, 

hence dim W( 1; n),, n H 6 p’- ’ for all roots a’ on T’. Then 
dim W(l;n),nH<p’+’ for all roots a on T with a(t)=O. There are at 
most p”-’ roots of T vanishing on Tn I+‘( 1; n)co, (since dim T/Tn 
W(l;n)co,=n-r). Since dim H=pn-‘, and H=&,,=oHn W(l;n), this 
dimension argument yields dim W(1; n), n H = p’- ’ for all roots with 
a(t) = 0. In particular, dim fin H = p’- ‘. Observe that n > dim T= 
(n-r)+ 1, i.e., r>2. Therefore there are i>O and UE W(1; n)cip+lj such 
that x(‘~+ ‘)D + u E i% Then 

ad’(DP + u)(xcip+ ‘)D + u) = x(‘)D mod W( 1; n)(,, 

and lies in A(‘). Hence ff(i) contains an element of the form h = x(‘)D + w, 
WE W(1; n)clj. h does not act nilpotently on W(1; n). 1 

The torus Fx”)D is an example for this type of torus. In the particular 
case of n = 2, dim T = 1 we obtain the result Tc W( 1; 2)(,,. A torus of type 
(V.2) is not optimal, since no root is proper. A torus of type (V-3) is not 
optimal, since its dimension is less than n = TR( W( 1; n)). Thus there is a 
remaining class of (optimal) tori. 

THEOREM V.4. Let T denote a maximal torus of W( 1; n),. Assume that 
T is none of the types described in (V.2) and (V.3). Then 

(1) dim T=n, dim Tn W(l;n)= 1, Tn W(l;n)= Tn W(l;n)(,,. 
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(2) Every root space is one-dimensional. For every root a there is i, 
O<i<p-1, and w~,,E W(l;n)(,, such that W(l;n),=F(x(‘)D+Wi,,). 

(3) Zf a is a root such that a( Tn W(1; n)) #O then W(1; n)(a) z 
W( 1; 1). The isomorphism is given by x”‘D + wi,a H (i!))‘xi 8. 

(4) Zf a is a root such that a(Tn W(1; n)) = 0 then W(1; n)(a) is 
abelian and every nonzero root vector of W(l; n)(a) acts nonnilpotently on 
W( 1; n). 

(5) T is an optimal torus. 

Proof. (1) We are not in case (V.3) and therefore dim T= n. As 
dim W( 1; n),/w( 1; n) = n - 1, this yields Tn W( 1; n) # 0. Since we are not 
in case (V.2), Tn W(l;n)=Tn W(l;n),,,. As Tn W(l;n),,,=O, we have 
dim Tn W( 1; n) = 1. 

(2) There is a nonzero t E Tn W( 1; n)(,,, and we may choose 
t=x(l)D+u, UE W(l;n),,,. In addition, since dim T/Tn W( 1; n) = n - 1 = 
dim W(l;n),/W(l;n) Tcontains an element Dp+v~T, VE W(l;n). Let w 
be an eigenvector with respect to T for a root a E T*. Write 

w = 1 rjx(j)D, rj E F, rk # 0. 
j> k 

According to (V.l.(2b)) we have k -C p. 

a(t)w=[x”‘D+u,w]=(k-l)rkxCk)D mod W(l;n)(,,. 

Choose i such that 

O<i<p-1, i= 1 +a(t) mod(p). 

The above shows that if the eigenvalue with respect to t is a(t) then w is 
of the form 

w=rx(‘)D+w. ,9 WiE WI; n)(ij, rEF, r#O. 

This implies that every root space of W( 1; n) is one-dimensional and by 
this proves (2). 

(3) Consider a root a with a(t) # 0. W(l; n)(a) is p-dimensional and 
it has a basis of the form 

(x(‘)D + w,,), wi,a E Wl; n)(ij, O<iGp- 1. 

The mapping W( 1; n)(a) + W(l;ll) given by x(i)D+wi,,H(i!))1xi8 is an 
isomorphism from W( 1; n)(a) onto W( 1; 21). 
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(4) Consider tl, such that u.(t) = 0. B’( 1; n)(cr) is p-dimensional and it 
has a basis of root vectors of the form 

(x”‘D + w,), WiE WI; n)(,), o<i<p- 1. 

The product of any two of these vectors is an element of W(1; n)(i). Since 
every nonzero element has to have a nonvanishing summand ~x(l)D, all 
these products vanish. Every element of type x”‘D + wi acts nonnilpotently 
on W(l; n). 

(5) According to the preceding results, every root is proper and 
dim T= TR( W(l; n)). 1 

Remark. Let H denote any CSA of W( 1; n) and R the maximal torus 
of the p-envelope of H in a p-envelope of W( 1; n). Let T be a maximal 
torus of W( 1; n)P containing R. According to the preceding theorems there 
are essentially two different situations: If T is a torus described in theorem 
V.2, then R c T= F(D + ~4)~. H is a section with respect to T, since R is a 
subtorus of T. Since H is nilpotent, and according to (V.2.(3)) no one- 
section is nilpotent, H must be a zero-section, i.e., H = Cwclin ,( T) = 
F(D + u). The multiplication of the root vectors with respect to H is given 
by (V.2.(3)). If T is a torus described by theorems V.3 and V.4 then 
Hx Tn W( 1; n) = F(x(‘)D + ui) and H= Cw(,;nJ(~(l)D + u,), as the latter 
is a Cartan subalgebra. In this case the root spaces with respect to H are 
P nP ‘-dimensional. We obtain some of the main results of Brown [Br] with 
only very few computations just by using the concept of a p-envelope. 

We are going to apply these results to the situation of case (7) in (11.2). 

COROLLARY VS. With the assumptions and notations of (11.2) let K + R 
be as in case (7) with S = W( 1; 2). Then K= W( 1; 2) and R is a torus of type 
(V.4). 

ProoJ: It is clear from the above, that R is a torus as described in (V.4). 
There is a root c1 with a(R n W( 1; 2)) = 0. c1 is a solvable root. If R c K, 
then R c H and H would be a Cartan subalgebra on which no root 
vanishes. In particular, a(C,( T)) # 0. Lemma II.1 shows that L, acts 
nilpotently on L, yielding a contradiction to (V.4.(4)). Thus R $ K and 
hence 

W(1;2)cK#Der W(1;2)= W(l;2)+FDp. 

This gives the result. 1 



THETORALSTRUCTURE 451 

VI. THE HAMILTONIAN ALGEBRA H(2;(2, 1))‘2’ 

The algebra H(2; (2, 1)) is defined analogously to H(2; 1) in Section III. 
Put z:=2(2, 1):=(p2-l,p-1) and 

D,(x’“‘) := X(C1-q)2 -X(“-&2)D, 

as well as 

fw; (2, 1)) := {f*D, +f2~2lfi,f2EJ4(2; (2, l)), ~lu-,)+D2(f2)=0) 

= span{D,(x(“‘) 10 < u < r} u {DH(~(P2&1)), DH(xcPE2))}, 

H(2; (2, l))~‘~=span{D,(x~“~))O<a<t), 

H(2; (2, 1))‘2’ = span{D,(x’“‘) 10 <u < r}. 

Recall that A(2; 8) is a subalgebra of A(2; (2, l)), isomorphic to the 
truncated polynomial ring F[x,, x2]. It is mentioned in [BW2, (lO.l.l)] 
that TR(H(2; (2, 1))‘2’) = 2. Put as an abbreviation G := H(2; (2, 1)) and 
consider any optimal torus T c G, = H(2; (2, 1)) @ FDf. The following 
proposition is a consequence of [BW2, (lO.l.l)]. 

PROPOSITION VI.l. Let T be an optimal torus in G,. Then dim T= 2, 
Tc H(2; (2, 1));’ and Tn G = Tn G(,, is one-dimensional. Thus 
T= Ftl @ Ft, with toral elements ti, and t, = Of+ u, u~H(2; (2, 1))‘2’, 
t, = r + u, r = CC~~X(‘~)D~, LX~E F, u E H(2; (2, 1))::;. 

Proof: As H(2; (2, 1)) (2) is an ideal of G, and GJH(2; (2, 1)):’ is 
p-nilpotent, we have TR(G,) = TR(H(2; (2, 1))‘2’) = 2. Since C(G,) = 0 
[St4, (1.3.(5))] implies that TcH(2; (2, 1)):‘. Put in [BW2, (lO.l.l)] 
A := G,. We obtain by (d) of this theorem that TnH(2; (2, l)){$#O. If 
Tc G then T would be contained in Gn H(2; (2, l))F’=H(2; (2, 1))‘2’. 
Part (f) of that theorem shows that this is impossible. 1 

We are now going to discuss the root space decomposition of G with 
respec to T. Put 

U:=span{D,(x’“))I(a,Bp+l)v (a,=p,a,#O)}. 

Note that G = H(2; (2, 1)) = U@ H(2; II ) and U has codimension p2 + 1 
in G. 

THEOREM VI.2. Put G := H(2; (2, 1)) and let TC G, be an optimal torus. 
Let G = @ G, be the root space decomposition with respect to T. 
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(1) G, n U = (0) for all roots IX. 

(2) dim G, = p + 6,, 0 for all CL 

(3) Any root vector u, E G, can be written as 

Urn = %,k + w,,k> %,k E Gck, - Gck+ 1)~ W,,kEG(k+l)+ U’-‘G(k,; 

u,,~ E H(2; II) is a root vector with respect to r corresponding to the eigen- 
value c(( tz) and homogeneous of degree k. 

(4) Given any homogeneous root vector u,,~ of H(2; 1) with respect 
to r corresponding to the eigenvalue a(t,) and of degree k, there is 
Wm,kEG(k+l, + U n GCk, such that u,,k + w,,~ E G,. 

Proof Take any w E G, and write 

w= c it(a) DH(X@)), K(U) E F. 
a,>.5 

If w~G(,c+lj+ UnG(/+ but “‘$G(k+,j then there occur monomials in w 
with a, > p and 

cc@; + u) w = [Of + u, w] = c K(U) &,(x(-‘~~)) + 1 d(b) D&@‘)), 

where in the right hand side sum there occur monomials D,(x”‘) with 
D/,(x”‘) # G (k+l-p)’ This contradiction shows that 

G,n(UnG(,,+G(,+,,)=G,nG(k+,,. 

This proves (1). We now consider the graded space 

!iY G, := @ G, n G,k,/G, n G(k+ 1) 
k 

k 

which embeds canonically into H(2; II ). t2 acts on gr G, via the action of 
r on H(2; 1). As a consequence, dim G, < p + 6,,,. In addition, the above 
reasoning proves (3). We now count dimensions: there are at most p2 roots 
on G, each of dimension at most p+ 6,,,. As dim G = p3 + 1, we obtain 
dim G, = p + 6a,0 and gr G, is the full corresponding root space in H(2; II ). 
This proves (4). 1 

COROLLARY VI.3. Suppose that a(t,) #O. G(U) is filtered by G(a)(,)= 
G(u) n GCkj. There is an isomorphism of graded algebras u: grG(u) 3 H(2; 1) 
with u(t2) E F(x, 8, -x2 a,). 
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Proof Every G(a)(,) is invariant under fZ, and as T= Ft, + (ker a), it is 
invariant under T. Therefore the results of (VI.2.( l), (3)) yield 

gr G(a) := 0 G(ahk,IG(a)(k+ I) 
k 

= O O Gic,nG(k)IGiunG(k+,). 
icGF(p) k 

Since a( tz) # 0 the isomorphic image of the right hand side in H(2; II ) runs 
through all root spaces with respect to r. Hence we have a surjective 
mapping gr G(a) -+ H(2; 1). Note that in every homogeneous space 
G(a)(k)/G(a)(k+ I) the root spaces are at most one-dimensional. Therefore 
this mapping yields an isomorphism of algebras. 

Clearly this isomorphism maps t, onto some toral element contained in 
H(2; II),,,. Demuskin’s result now gives rise to an automorphism of 
H(2; II), which maps this element into F(x, 8, -x2 a,). 1 

The preceding result says, that there is a choice of a root vector basis 
{%k + %,k)or,k such that p(u,, + w,,k) = D,(x’,X$ with i+j= k + 2, 
i-j=a(r*). 

We now apply the results to the situation which occurs in the context of 
the classification theory. 

THEOREM VI.4. With the assumptions and notations of (11.2) let K + R 
be as in case (7) with S=H(2; (2, 1))‘2’. Then 

(1) RcH(2; (2, l))f’. 

(2) Kc fW; (2, 1)). 

(3) There is a root j3 with p(H) = 0; GF(p)j? is the set of all solvable 
roots; for every i # 0 there is a root vector eiS E K, which acts nonnilpotently 
on K. 

Proof: The assumption ensures that TR(K) = 2. It is known 
that Der H(2; (2, 1))‘2’= H(2; (2, 1)) + FDf + F(xCE1)DI + xCE2)D2). From 
TR(H(2; (2, 1))‘2))=2 we conclude that KJH(2; (2, 1)):’ is p-nilpotent. 
As a result, K cannot meet F(xCE1)D1 +x(~*)D,), showing that 
Kc H(2; (2, 1)) + FDf’. Similarly, R c H(2; (2, l))r’. 

We now apply the preceding results. After the application of a suitable 
automorphism the root spaces are of the form given in (V1.2). Let /? # 0 be 
a root with /3(t2) =O. As i/? #O for i#O, Kisc H(2; (2, 1))‘2’. (VI.2.(4)) 
shows that K, contains some element eiS := r + wi, wie H(2; (2, l))(i). This 
element acts nonnilpotently. 

Suppose K $ H(2; (2, 1)). Then Rc H(2; (2,l))F’c H(2; (2, 1)) + FDf’ 
= K+ H(2; (2, 1)) = K+ span{D,(X’p2”1)), DH(xCpE2)), D,(x”‘)}. In this 
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case no root vanishes on H = C,(R). According to Lemma 11.1 all root 
vectors ep, p E GF( p)a + GF( p)/I, ,U # 0 act nilpotently. This contradiction 
proves the assertion. i 

VII. THE HAMILTONIAN ALGEBRA H(2; II; Q(t))“’ 

We will introduce a description of some of the hamiltonian type 
algebras, which is more appropriate than the description as derivations 
of a truncated polynomial ring or a divided power ring. We follow 
R. D. Schafer [Sch]: 

Let F[x,, . . . . xZr], xp = 0, denote the truncated polynomial ring in 2r 
generators and let cii E F[x,, . . . . xZr], 1 4 i, j< 2r, be arbitrary elements 
satisfying 

(i) cii= -cji 

(ii) Cl cfG2r (JtC,) c,k + (atC,ik) Cti + tarcki) C,=O 

(iii) one of the cii has nonzero constant term. 

Define a “Poisson bracket” on F[x,, . . . . x2,] by use of (cU) 

{f, 8) := C (aif)(ajg) cg. 
l<i,j<2r 

Then (F[x,, . . . . xZr], { , }) = (F[x,, . . . . ~~~1, { , }, (cij)) is a Lie algebra and 
FCx,, . . . . x,,]“‘/Fl n F[x,, . . . . x2,](l) is a simple Lie algebra of Cartan 
type. Its dimension is p2’ - 1 or p” - 2. [Sch, St1 1. We call these algebras 
Poisson Lie algebras (PLA). All Lie algebras of type L(G, 6, f) of R. E. 
Block [B] are PLAs [Sch], every PLA is of hamiltonian type [Wl]. 

THEOREM VII.l. There is exactly one isomorphism class of PLAs of 
dimension p2 - 1. Every such algebra can be realized as a PLA on a 
truncated polynomial ring F[x,, x2] with generators x,, x2 and a Poisson 
bracket { , > such that 

(1) (x1, x2} = 1 -q--lx”-’ 
2 . 

It also can be realized as a PLA on a truncated polynomial ring F[ y,, y2] 
with generators y,, y, such that 

(2) {Y,,Y2}=(l+Y,)(l+Y,). 

Proof: Let L be a PLA with dimension p2 - 1. Then it has generators 
x1, x2 of the form [Sch] 

{Xl? x2} = 1 + ,xp-ix;-i, u E F, ci # 0. 
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Due to [0] this algebra is isomorphic to a PLA F[x;, xi] with generators 
xi, x; such that {xi, x;} = 1 - xip ~ ‘xi” ~ ‘. Hence every such algebra can 
be described by a Poisson bracket of type (1) and therefore there is exactly 
one isomorphism class. 

Define as in [Sch] on the truncated polynomial ring I;[ y,, ~~1, yp = 0, 
a Poisson bracket by 

Then conditions (it(iii) above are satisfied and therefore this also defines 
a PLA of dimension p2 - 1. Since there is only one isomorphism class 
of these algebras, it is isomorphic to L. This means that L can be realized 
this way. 1 

THEOREM VII.2. H(2; II; Q(T))(~) is a PLA of dimension p*- 1. 

ProoJ H(2; 1; Q(z))“’ has been described in detail in [BW2, 
Section 2.11, where they use the notation of divided power algebras: 

In that paper, y(Q)=(p-l)s,+(p-l)s,=z(ZI)=:r, a:=J(@(!))= 
1 +#I), Ui :=a-1 o,(a) and (cf. [BW2, Definition 2.1.2, (2.1.3)]) 

D,: A(2; I) + H(2; ‘I; Q(T)) 

is given by 

Da(f) = (D, +4(f) D, - (D, + u,)(f) D, 

=a-‘D,(uf)D,-a-‘D,(uf)D,. 

[BW2, (2.1.5)] yields 

CD,(f )> Da(g)1 

= D,{Wh + al)k)(D, +4(f) - (D, + u,)(f )(D2 + u,)(g)) 

= D,{u-‘D,(ug) a-‘D,(uf) - a-‘D,(uf) a-‘D,(ug)}. 

We will transpose that notation into one using the truncated polynomial 
ring F[x,, x2] which is canonically isomorphic to the divided power 
algebra A(2; 1) under the isomorphism given by Y(x~‘x~) := 
al. 

I a2 ! ~(“1~1 +WQ). Then 

u= 1 +X((P-lh+(P--Ih)= 1+ lp(xf~‘X;p), u-l = Y(1 -x;-‘x2p-1). 

Since YyloDio Y(xj)= Y-‘~D,(x(~))=~~, we obtain Yy-‘oDio Y=CJi. 
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Define the Poisson bracket on F[x,, x2] by {x1, x2) := 1 -xf-lx;-’ and 
Put 

cp: UTX,, x21, { 9 >I + w; 1; @(~)h w-1 :=Da(-a-‘w-1). 

Then the above equation yields 

= w-*(4 YY(g)N& Y(f)) -a-2(Dl ly(f)WZ wd)) 

= -(Py-’ WY& yl(g)W* f-WI)- a-‘@, w-I)@2 ul(gN) 

=~~~~-~f~~~~-~~~~l~~~~~~~~-~l~~~~~~~~~=~~~~ g>,. 

Hence cp is an isomorphism from (F[x,, x2], { }) onto H(2; II; Q(r)). This 
proves the result. 1 

It is well known, that, if the dimension of a PLA is p* - 1, then 
Fl n FCX,, x*1 (l)=O. This implies that 

fw; Q ; us)“’ = @TX,, -4 { > P = (J,[Xl, x21, { > )lFl. 

It is also known (cf. [Sch]), that the mapping {f, ?}: F[x,, x2] -+ 
F[x,, x2] is a derivation of the truncated polynomial ring. As such it can 
be described in the realization (1) of theorem (VII.1 ) as 

If, ?> =c12 alu-) a*-c21 a*u-) a,= (1 -Xf-lXrlwl(f, a*-a*w 31). 

Let @ denote any automorphism of the truncated polynomial ring 
F[x,, x2] and put yj := @(xi), i= 1,2. y,, y, are generators for the 
truncated polynomial ring and are polynomials in xl, x2 

yi=aljxl + u2jx* +fi, degfi> 1, LQEF, det(o+) # 0. 

One can express the Poisson brackets in terms of y,, y2 according to the 
chain rule, 

If, g> = 42(wa.Yl)(w~Y2) - 42(w~Yl)(%?Y2), 

with d,, = { y,, y2} = det(aG) 1 + g, deg g 2 1. 
It is known (cf. [Sch]), that dim Der H(2; II; @(r))(l)= p2 + 1. Thus it is 

easy to check that 

Der H(2; II; Q(r))(‘) 

= ((1 -,q-‘q-1 )(al(f)a2-a2(f)al)lf~F~Xl~X2i~ 

@Fxf-'a,@FX~~'a,. 



THETORALSTRUCTURE 457 

THEOREM VII.3. LA T be a torus of Der H(2; 1; 0(z))“’ of maximal 
toral rank. Then 

(1) dim T=2, Der H(2; II; @(T))(‘) is a p-envelope ofH(2; II; Q(z))“‘. 

(2) There is J/eAut F[x,, x,], such that for the generators 
yi := @(xi), i = 1,2, the Poisson bracket has the form 

and 

T= F(1 + ~,)a/@, Or;(l+ y#/ayz. 

(3) Every root space of H(2; 1; Q(z))(‘) for a nonzero root with respect 
to T is one-dimensional, while CH(2;,:O(rj, w(T) = 0. Every root vector acts 
nonnilpotently on H(2; II; G(t))“‘. 

(4) Every one-section is abelian. 

(5) H(2; 1; G(T))(‘) has an eigenoector basis (u,) and a biudditive form 
f, such that [ul, upI =f(A p) ~i+~c. 

Proof: (1) We realize H(2; II ; Q(t))“’ as a PLA with generators y,, y, 
and { y,, y2} = (1 + yi)( 1 + yZ). Then the p-fold Lie multiplication with y, 
is an element of W(2; B ) and hence is of the form fi 8/8y, + f28/8y2. 
Application of this derivation to yi yields 

fi=fi alay,(y,)=(ad~,)~(~,)=O, 

f2=fZWyZ(yz)=(ad YA~(Y~= {ylv . . . . {yly Ed...) 

=(1+Y,)p(1+Y2)=(1+Y2). 

Therefore the p-envelope of H(2; 1: @(r))(l) contains the torus F( 1 + y,) 8/8y, 
6 F( 1 + y2)8/ayZ of dimension 2. This proves TR(H(2; II; Q(z))“‘) = 2. It 
is straightforward to prove that this torus has trivial intersection with 
H(2; 1; @(z))(l). A dimension argument yields that H(2; II; @(t))(i)@ 
F( 1 + y,) 8/8y, @ F( 1 + yJ alay, coincides with Der H(2; II; G(r))(‘). Thus 
the latter is a p-envelope of H(2; II; @(r))(l). 

(2) Choose $ taut F[x,, x2] such that T’ := I,-’ 0 TO $ is one of 
the tori T,,, T, , or T,. There are ai E (0, 1 } for which ti := di + xi are 
eigenvectors with respect to T’. Put yi := tj(xi). Then 
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This means that T= F(6, + y,) ~?/cYy, + F(6, + y2) a/@,. We have to 
compute the Poisson bracket ( y,, y2) =: d 

(61 + Y,) W.Y,(4 

=(6,+Y,)alaYl({Yl,Y*}) 

= ((4 + Y,) W?Y~(Y,), ~z> + {Y,, (6, + Y,) W?Y,(Y,)) =d 

Thus writing d= C B,,(6, + y,)‘(6, + y2)j we obtain 

This shows Bii = 0 for i # 1. By symmetry we have pii = 0 for j# 1 and 
d= (6, + y,)(6, + y2). The constant term of this polynomial is 6, 6,. It has 
been mentioned earlier that this constant term is nonzero. As a result, 
6, =dZ= 1. This proves (2). 

(3) Every monomial (1 + y,)“(l + Y,)~ is an eigenvector with 
respect to T with root CI, the root is given by a((1 + y,) ~/c?JJ,)= a, 
CI(( 1 + yZ) a/+,) = b mod(p). Different exponents yield different roots. 
Hence every root space in H(2; II; Q(r)) is one-dimensional. Since Fl is 
the zero root space and is not contained in H(2; II; @(r))“‘, this yields 
the assertion about the root spaces. Recall that 

{(l+y,)“(l+y$‘, (l+~,)~(l+y,)“}=(us-br)(l+y,)“+‘(l+y,)b+s. 

This vanishes only if det(; 1) = 0. Therefore (1 + yi)“( 1 + Y,)~ does not act 
nilpotently on H(2; 0; Q(t))“’ if (a, 6) # (0,O). 

(4) Every one-section of H(2; II; Q(r))“’ is of the form 
C~~i~p-~~F(1+y~)ia(l+y~)i6f or ixe a, b. Hence it is abelian. f d 

(5) The eigenvector (1 + y,)“(l + Y,)~ corresponds to the root 
(a, 6). Then 

((I+ y,)“(l + J#‘, (1 + y,)‘(l + Y~Y) = (as-br)(l + ~,)“+‘(l + YZ)~+~, 

and we put f((a, b), (r, s)) := (us - br). 1 

THEOREM VIIA. With the assumptions and notations of (11.2) let K+ R 
be us in case (7) with S= H(2; II; Q(r))(‘). Then KzH(2; II; Q(T))(‘). 

Proof: Let c1 be any nonzero root. There is, due the preceding theorem, 
x E K,, which acts nonnilpotently on K. (11.1) shows that a(H) = 0. Hence 
(R n K) c (n, ker LX) = 0 and therefore K has codimension at least 2 in 
Der H(2; 21; G(r))“‘. As H(2; 8; @(r))(l), which is contained in K also has 
codimension 2, we have equality. 1 
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VIII. THE HAMILTONIAN ALGEBRA H(2;Q; A) 

The algebra H(2; II; A) is described in [BW2, (2.1.8)] as follows: Put 

DA(f) := D,(f) D, - (D,(f) + x(tp-‘)“)f) D, 

H(2; II; A) := {Dd(f)If~A(2; II)}. 

H(2; 21; A) is a simple algebra of dimension p2 and Der H(2; Q ; A) = 
H(2; 1; A) @F(x’““D, + xtE2)D2) = H(2; II; A)p is the (p2 + l)-dimensional 
p-envelope. H(2; 21; A) carries the filtration inherited by the canonical filtra- 
tion of W(2; 9 ). 

THEOREM VIII. 1. Assume that H(2; II ; A) c K + R c Der H( 2; Q ; A). Let 
R be a two-dimensional torus such that all roots with respect to R are proper. 
Then 

(1) K+R=H(~;Q;A)@F(x(“‘)D,+x(“~)D~) 

(2) R c W+ R) n WC& Q J(o) 

(3) Every root space of H(2; Q ; A) is one-dimensional. 

Proof Put in [BW2, (11.1.3)] A := H(2; II; A) f F(x@‘)D, + xCE2)D2) and 
T := R. Then it is mentioned in the proof there, that R $ H(2; II; A) (but 
R c W(2; 21 )COj). Thus by a dimension argument we have that K+ R = A. A 
has p* - 1 nonzero roots of multiplicity one [BWZ, (11.1.3)]. All these root 
spaces lie in A(‘) c K. As dim A = p* + 1, the O-root space has dimension 
two in A and hence has dimension 1 in H(2; Q ; A). 1 

COROLLARY VIII.2. With the assumptions and notations of (11.2) let 
K+ R be us in case (7) with S= H(2; II; A). 

(1) There are exactly two roots a, /I such that K-,, K-, $ H(2;Q; A)(,,. 
For these holds (p = a, B) 

{K(p)+R}/Rn(kerp)Z W(1;Q). 

The isomorphism is filtration preserving. 

(2) K(~~-/~)cH(~;Q;A)~,,+R;~~~K(~-/?)~H(~;Q;A)~,,+R; 

K( a - j?)/rad K( a - B) g sl( 2). 

(3) Every root y$GF(p)auGF(p)fiuGF(p)(a-p) is solvable with 
K(Y) = R + WC Q; A),,,. 

Proof The graded algebra associated with the filtration of H(2; 21; A) 
determined by the maximal subalgebra 

JW; Q; A j(o) = H(2; 1; A) n W(2; II),,, 
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is isomorphic to H(2; II )(‘I + Fx; - ’ a2. Since R acts on every subspace 
H(2; II; d),i,, it acts as a two-dimensional torus on H(2; II)(‘)+ Fxf-’ a2 as 
well and the root spaces correspond. We now apply Theorem III.5 and the 
remark following it. 1 

IX. RESTRICTED CARTAN-TYPE ALGEBRAS 

The following is a result of Demuskin [Dl 1. We shall give a noncom- 
putational proof for it. 

THEOREM 1X.1. For every maximal torus T of W(m; II ) there is 
$ E Aut F[x,, . . . . x,] such that for some r, 0 < r < m, 

I,-‘oToII/=T,:= 1 F(l+xi)ai+ 1 Fx,a;. 
l<i<r r+l<i<m 

r is uniquely determined by T. 

Proof. As T is a torus, it acts on the truncated polynomial ring 
FCx 1, . . . . x,] by semisimple endomorphisms. Consequently, the latter is the 
direct sum of eigenspaces with respect to T. Let V denote the space of 
polynomials without linear term and consider the canonical linear mapping 

K: F[x,, . . . . x,] + F[x,, . . . . x,-j/l/~ @ Fxi. 

Thus there are eigenvectors ui, . . . . u, such that @ i G iGm Fxi = 
@ I G jCm Fn(uj). Adjusting these eigenvectors by a scalar and permuting 
the indices if necessary we find polynomials yl, . . . . y, in the generators 
x1, . . . . x, such that 

(a) yl, . . . . y, have constant term 0, 
(b) for some rE (0, . . . . m} (1 + yi), . . . . (1 + yr), y,+i, . . . . ym are 

eigenvectors, 

(c) 4Yl)P ...> d~~)s~anOl~i~~FXi. 

Note that condition (c) means, that y,, . . . . ym generate F[x,, . . . . x,] as an 
algebra. 

Let $ denote the automorphism of the truncated polynomial ring 
FCx 1, . . . . x,] defined by Jl(xi) := yi, 1 < i<m, and YE Aut W(m; 0) given 
byY(Y(D):=~-‘0D0J/.Put6~:=1forl~i~rand6~:=Oforr+l~i~m 
and define cli E T* by O(Si + yi) = a,(O)(6, + yi) VD E T. Then 

Y(u(o)(Si+Xi)=~~‘(D(~(Gi+Xi)))=JI-l(D(6i+ yi)) 

= $-‘(Ui(D)(di + yi)) = Ui(D)(di + Xi). 
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Hence Y(D) = 1 ai(D)(di + xi) ai, proving Y(T) c T,. The maximality of 
T implies T= !I-‘( T,). 

Note that r = dim T/Tn W(m; f )(Oj. 1 

Let S denote one of the algebras W(2; II ), S(3; 21 )(I), H(4; 11)(2), K(3; 1). 
It is checked in [BW2], that the ‘only optimal torus in S is conjugate 
to a torus Sn (xi Fx, CJi) under an automorphism of S. Every such 
automorphism of S can naturally considered an automorphism of Der S 
and (Der S)‘k’ for all k. 

LEMMA 1X.2. Let J be a restricted ideal of Der S, such that (Der S)/J is 
a torus, and S c J. Suppose that K is a subalgebra satisfying S c Kc Der S 
and TR(K) = 2. Then Kc J. 

Proof Let K,, denote the p-envelope of K in Der S’. [St 4, (1.3.5)] 
yields that every torus of Kr is contained in Jn Kr + C’(K,) c J. Then 
J+ K,/J is [ p]-nilpotent and a torus. 1 

We now shall describe the one-sections in detail. 

THEOREM 1X.3. With the assumptions and notations of (11.2) let K + R as 
in case (8) with S= W(2; II). Let a be a nonzero root. 

(1) K = W(2; II ); there exists e E Aut W(2; II ) such that 

R=+{Fx,a,@Fx2a,). 

(2) IfNtW, al))=O, then 

K(a)=+ c i Fx,x;a,+ c Fx; a2 ) 
O<i<p-1 O<i<p-1 I 

F-w: 8, 
> 

= J-W; Q )(,) + FW, a,), 

K(a)/rad K(a) 2 1 Fx; 8,~ W(l; 1). 
o<i<p-1 

(3) If a($(~~ 8, + x2 a,)) = 0, then 

K(a) = W; Q l(o), rad KW = VZ Q ICI) + 4Wl aI +x2 a,), 

K(a)/rad K(a) z sl(2). 

(4) If a(ll/(xl ad +o, @(x2 a,)) ZO, 4,4xl aI +x2 8,)) f 0, then 
K(a) t R + W(2; Q )(1j is solvable. 
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Proof ( 1) follows from (1X.1). 
(2)-(4) It is easy to check that for any root c( 

with 

a- 1 ECEtl(Xi a,), b = d- 1 s cr(xz 8,). 

In particular, choosing c( as claimed, we obtain the assertions. 1 

Let -c(i, --q denote the nonclassical roots, which stick out of 
Kn W(2; II),,,. Then 

-6,= [Xi ai, aj] = -CCj(X, a;) 

and 

(a, - aJ(x, a, -I- x2 a,) = 0. 

The root spaces of K n W(2; ?I )COj sticking out of W(2; Q )(,) are represented 
by xi a2, x2 a,, R. The corresponding roots are + (tli - a2). K(a, - a2) is 
the classical nonsolvable one-section. 

The special algebra S(n; Q )(l) (n > 3) is given in the following way. Put 

Du(Xa) := QjX”-q ai- UiXa-” a,, 

s(n;D):= CI;;ai Ia,( . 
i I 1 

Then S(n;Q)“‘=span{Dii(x”)I1di<j~n, O<a<+Q)} is a simple 
algebra of dimension (n - I)(@ - 1) [SF, (4.3.5), (4.3.7) 3. In addition, 

S(~IQ)=S(~;Q)(~)+ C n xf-laj, 
l<j<n i+j 

Der S(~*Q)(‘)=S(WQ)@FX, a, 7 7 

[SF, (4.8.6), proof of (4.3.7)]. 

THEOREM 1X.4. With the assumptions and notations of (11.2) let K + R 
be as in case (8) with S=S(3; II) . (” Let a be a nonzero root. Put V := 
Fx~-‘X,P~1a30Fxf-1X~-la2~Fx~--1X~~’a,. 

(1) S(3;Q)(“cKcS(3;Q); there exists tjEAutS(3;Q) such that 

R=I~{F(x,~,-Fx~~~)+F(x~~,-F~,~,)}. 
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(2) Ifa(t)(x, 8, -x2 a,)) = 0, then 

K(a) = Kn span $( (D0(x”) 1 a,-6,~-6v-a,+6,i+6*j=0}) 

+Kn4Q(V, 

radK(cl)cK(a)nspan~({Dij(x”)la,+a,~2})+Kn1(1(1/) 

= S(3; Q )(I) + R 

K(a) = rad K(a)@ II/ 
i 

c F(ix& i&-xi, a,) 
OGi<p- 1 

K(a)/radK(a)~IV(l;Q). 

(3) Zf a(+(2x, 8, -x2 a2 - x3 a,)) = 0, then 

K(a) = S(3; Q lco), radK(a)cS(3;Q)(,,+R, 

K( a)/rad K(a) E sl( 2). 

(4) Ifa($(xidi-xjdj))#Ofori,j, unda(~(2xi~i-xj~j-x,~,))#0 
for all i, j, k, then K(a) c R + S(3; Q )(,) is solvable. 

Proof: (1) [SF, (4.8.6)] shows that Der S(3; Q )(I) = S(3; Q ) + Rx1 8,. 
(1X.2) yields Kc S( 3; Q ). (1) is then true according to earlier remarks. 

(2) Note that DV(x”) is a root vector with respect to e-‘(R). Let p 
denote the corresponding root. ~(x, 8, -x2 a,)=0 if and only if 
a, -~?,~-6~~-a, + dzi+ 6,=0 [SF, 4.3.4)]. Thus 

K(a) = Il/(wn{RJx~)I a,-6,i-6,j-ua,+6,i+6,j=O})+Kn~(V). 

Put U:=K(a)nspanI(/({Dii(x”)la,+a,~2})+KnII/(V). Note that 
UC R+ S(3; II),,,. Moreover, a detailed but direct computation shows, 
that 

K(a)= U@tj 
I 

1 F(ix,x\-’ a,--xi, 13,) . 
Obi<p-1 I 

We observe that IC~(~,)EK(~)~J/(F~~)+S(~;Q)(~, and [$(a,), U] t UC 
S(3; II),,,. It is then clear, that the ideal of K(a) generated by U is contained 
m S(3; 1 )CoJ, which then has to be U itself. 

(3) The only roots sticking out of S(3; Q )Coj are of the type discussed 
in (2). Therefore K(a) c S(3; II )coJ in the present case. More exactly, 
K(a)c+(Fx,a,+Fx,a,)+R+S(3;21),,,. Then radK(a)cS(3;Q)o,+R 
and K(a)/rad K(a) E sl(2). 

481/151/2-I4 
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(4) The only nonzero roots sticking out of S(3; 8),,, are of types 
discussed in (2), (3). Thus K(M) c S(3; Q),,, + R. 1 

Define roots tx, /I according to ~(x, 8, -x2 a,) = 1, a(x, 8, - xj a,) = 0, 
/?(xi d, -x2 a,)=O, /?(x, 8, -x3 a,) = 1. Then the roots sticking out of 
S(3; II )COj are represented by a,, a2, a,, and hence are - tl - j$ a, /I. These 
roots are of Witt type. Similarly, the roots of S(3; II),,, sticking out of 
S(3;ll),,, are 0, ,(2a+/?), -+-(2/?+cl), *(N-P). The corresponding 
one-sections are classical. 

THEOREM 1X.5. With the assumptions and notations of (11.2) let K+ R 
be as in case (8) with S = H(4; II )(2). 

(1) H(4; I )(2) c KC H(4; II ); there is $ E Aut H(4; II ) such that 

R=ICI{F(X,~,-X,~,)~F(X~~~-X~~~)}; 

H=Knspan$({D,( x~x’;x~x~)[O<a, b<p- l}). 
(2) Zfa($(xl 8,--~~8~))=0, a#O, then 

JW = span +( {&A xlx;xix’,)IO<a,i,j<p-l,i#j})+H, 

rad K(a) c span +( {DH( x;lx;x;xi)li#j,O<a})+H 

cH(4;f),,,+R 

K(a)/rad K(a) is of hamiltonian type. 

(3) Let a, /? be the roots gioen by a($(xl ~3, -x3 a,))= 1, 
41cl(x2~, -x4 8,)) = 0, BWW, -x3&) = 0, LV,02 a2 - x4 a,)) = 1. Then 

K(a+j?), K(a-/?) are contained in H(4; II),,,, rad K(a+P) c H(4; II),,,+R, 
and K(o! + /?)/rad K(cr f /3) z sl(2). 

(4) All one-sections different from K(a), K(b), K(a + j?) are contained 
in H(4; II )(,) + R and hence are solvable. 

Proof. (1) [SF, (4.8.7)] shows that Der H(4; II )(2) = H(4; I) + 
F(C xi ai). (1X.2) yields Kc H(4; ll ). (1) is then true according to earlier 
remarks and simple computations. 

(2) It is clear, that the right hand side vector space is exactly the 
eigenspace of (x, a, - x3 a,) for the eigenvalue 0. This proves the first part. 
Then J := span I,+( { DH( x~x;x~x{)]O c a}) is invariant under K(u), and 
contained in H(4; ll),,, + R. Thus J is solvable and K(cr)/Jn K(u) is a 
nonsolvable homomorphic image of span +( { D, (xix’,) I i # j}) + H. Then 
K(a)/J is of Hamiltonian type. 

(3) We observe, that G :=FD,(x,x2)@FDH(x1x3+x2x4)@ 
FD,(x,x,) is a subalgebra, isomorphic to sl(2). It is a simple computation, 
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that II/(G) c K(a +/I), radK(a+/3)cH(4;Q)C,,+R. Hence K(a+fl)/ 
rad(a + fl) E sl(2). The assertion on a - fi follows by symmetry. 

(4) The only roots sticking out of H(4; l)(,, are represented by 
D,(x, 1, ..‘, DH(x4) and hence are fa, + /?. Let y be a root with 
KY = H(4; 1 l(o), KY @ H(4; f )(I). Then [K, K,] $ H(4; II)(,) and therefore 
there are roots p, 6 E { + a, &-b} with [Ka, KY] c K,. Therefore 
YE (0, f2a, *2/J, +(a+B)). I 

Let fa, *B denote the nonclassical roots, which stick out of H(4; 1 )CO). 
Then we obtain after a suitable adjustment 

a, EL &EK-,, a2+, a4EK-p 
Xl a3 E K-~a, x3 a, E L, x2 a4 E K-2,, x4 a2 E J&s 

x1 a*EJ&, x2 a, EK,-D, XI a4EKprrpb, x4alEKa.p 

Thus the roots sticking out of H(4; II )(,) are (0, f a, &j, +2a, f 28, 
+(a+P)}. 

The contact algebra K(2r + 1; II)(‘) is given in the following way. Define 
on A(2r + 1; II ) a Lie bracket by means of 

(x(a), X(b)) := 1 {(a+b-~l-El+r)-(a+~-~-~l+r)} X(~+b-&t-&l+r) 

l<i<r 

+ i VII ( 
a+bb&2,+i)- ilall (~+72r+1)} X(a+b--E2r+l), 

where llall := CO<i<2rai + %+l - 2. If 2r + 4 f 0 mod(p) then 
K(2r + 1; II ) is simple of dimension p2r+ I, while otherwise K(2r + 1; II )(I) is 
simple of dimension p2’+’ - 1. 

We have for 2r + 1 = 3 [SF, p. 173(iii), (iv)] 

(Xh+E2)) X(a) - ) - (a2 - a,) x@) 

(X(Q), x(n)> = Ilull X@). 

THEOREM 1X.6. With the assumptions and notations of (11.2) let K+ R 
be as in case (8) with S= K(3; I). 

(1) K=K(3;II); there is $EAutK(3;21) such that R= 
II/(Fx(“~ +w) @ FxcE3)). Define a, p by 

4x (&I + E2)) = 1, a(x@‘)) = 0 > 

B(x (&I +EZ)) = 0, jqX(&J)) = 1. 
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(2) K(B)=@ {~Fx’“‘~a,=a,}~~~(x’“~)+R+K(3;Q)(,), 

K(-ol-/?)=ll/ ~Fx@Ia,+a,=lmod(p) 
{ 1 

cF$(x’““)+ R+K(3; II),,,. 

K(a-/?)=$ ~Fx’“)Ia,+a,- 1 mod(p) 
{ I 

c FI,+(x’~*‘) + R + K(3; I )(,). 

The solvable radical of each of these one-sections is contained in 
R + K(3; I )C1,. These one-sections are if Witt type. 

(3) K(a)=ll/ {CFx(“‘I llall =O)CN~;Q)(~,, 

radK(a)cK(3;1)(,,+R, 

K( a)/rad K(a) z sl( 2). 

(4) All one-sections different from K(p), K( -a-j?), K(a - j?), K(a) 
are contained in K(3; II )C1j + R and hence are solvable. 

Proof: (1) Der K(3; II ) g K(3; II ) [SF, (4X8)]. Earlier remarks 
prove (1). 

(2)-(4) x@) is a root vector for Fx@~+~*)@Fx(~~), the root being ia +j/I 
with 

(a2-a,) xC”)= (x(~I+~*), ~(~1) =ix(“), 

llall x(a) = (X(&J’, x(0’) =j& 

Hence x@) E K(/?) if and only if a2 = a,, and x@) E K( - a - /I) if and only if 
a2-a,= Ilull mod(p). The latter means a*--,=a,+a,+2a,-2mod(p), 
i.e., a, + a3 = 1. The other one-section are treated similarly. 1 

With the adjustments of the theorem we have 

X’O’EK-*p x(‘~)E K-,p,, x@*‘E K,-a, 

x(~‘*’ E Kzc,, xc2”’ E K-2a. 

Thus the roots sticking out of K(3; I),,, are (0, f2a, -28, fa - fl}. 

X. CASE (5) OF THEOREM II.2 

As we have pointed out in Section II, we need some additional 
arguments to settle case (5) of (11.2). They go along the lines of 
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[BW2, (9.1.l.b] and [BOSt, (2.3)]. We use the notion of extended roots 
(cf. [St4]): if T is a maximal torus and u, fi are roots, let x, E T denote the 
semisimple part of a root vector x E L,. Put /3(x) := /3(x,). 

LEMMA X.1. With the assumptions and notations of (11.2) let y, 6 be 
roots such that K(y, 6) + R is of types (7) or (8). Suppose that 6(C,( T)) # 0. 

(1) Zf wEL6nrad L(6) then y(w)=O. 
(2) Let Q(s) denote the distinguished maximal compositionally classi- 

cal subalgebra of L(6) and suppose that w E [L-, n Q(s), L, n rad L(6)]. 
Then y(w) = 0. 

Proof: Consider the homomorphism Q: L(y, 6) + K(y, 6) =: K men- 
tioned in (11.2). As c(rad L(6)) = rad K(6), we may argue in K. Since 
6(H) ~0, we have rad K(6) = 0 if K is of type (7) with SZ W( 1; 2) 
(Theorem V.4.(3)) or SgH(2; (2, l))‘*’ (VI.3). Type (7) with SE 
H(2; II; @(r))(l) does not occur, since in that case p(H) =0 for all p. 
For type (7) with S z H(2; II ; A) and type (8) we might consider K as a 
subalgebra of some suitable W(m; 1). We observe (Theorems (VIII.2), 
(1X.3)-(1X.6)), that rad K(6) c W(m;Q )(i) + R and a(Q(6)) c W(m; II )(,,) in 
all these cases. Thus CJ(W)E W(m; Q),,,. 

As a conclusion, e(w) acts nilpotently on K in all cases. Moreover, there 
is a root u=ir+jS, (i#O) with K,#O. So p(g(w))=O and therefore 
0 = p(w) = iy(x), i.e. y(w) = 0. 1 

LEMMA X.2. With the assumptions and notations of (11.2) let K+ R be as 
in case (5). Let M denote the restricted subalgebra of Der(S@A(n; II)) 
generated by K + R and H’ := C,(R). Then 

( 1) R n {S 0 A(n; Q ) } is one-dimensional. 
(2) There is a root j3 such that 

(a) P(Rn (s@&;Q)})=O, 
(b) KcSOA(n;Q)+K(B), 
(cl M(B) n (SO&z; Q )} c rad K(B). 

(3)(a) /? is nonclassical. 

(b) [Q(P) + H’, SO@, Q IclJ c SOAh Q),,,. 

Proof: Put G:=S@A(n;Q), J:=S@A(n;Q)(,,. We identify G with 
ad, G c Der G. The associative p th power mapping turns Der G into a 
restricted algebra. The [PI-mapping on R c Der G then coincides with the 
p-structure on Der G. In the present situation S is a restricted algebra, so 
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G is restricted and again the [p]-structure coincides with the p-structure 
on Der G. Thus we may consider G and R as restricted subalgebras of M. 

(1) Note that dim Rn G< TR(G)= TR(S) = 1. Since every pth 
power of a root vector of G is contained in C,(R), and R n C,(R) is a 
maximal torus of C,(R) we obtain R n G # 0. Let t be a toral element with 
Ft = R n G. 

(2) If p is any root with p(t) # 0, then K, c G. Choose a root B # 0 
with b(t) = 0. Then K = G + K(p). Consider the homomorphism 

Fx(t) is a torus of S, so it is a maximal torus. As rc(M(/?) n G) c C,(n(t)) 
we have that rc(M(B) n G) is a triangulable algebra. ker rc is a nilpotent 
ideal, and therefore M(B) n G is a solvable ideal of K(j?). Thus 
M( fl) n G c rad K(b). 

(3) Take any root vector y E M, for some root /J E GF(p)a + GF( p)p 
(including 0). Consider Z, := .Z+ [ y, .Z]. This is an ideal of G containing J. 
If ZY = J for all y E lJ, M,, then J would be a nilpotent ideal of M, which 
is impossible. Thus there is p and y E M, such that Z, # J. Since J is a 
maximal ideal of G we obtain Z, = G. It follows that 

G=J+[y,J]=J+[y,G]. 

Recall that t E R n G is toral and that /I(t) = 0. The above equation is only 
possible ify$Gand hencepEGF(p)/?, p(t)=O, [t,y]=O. Write 

t=u+C CY, UAI, u E J, v,EG,. 
1 

Then 

7 CY, n(t) VA]=; [Y, Cc vJl= - Cc ~1 E J. 

Hence we may assume that n(t) = 0 for every I occurring in the above sum, 
i.e., teJ+[y,GnK(fi)]cJ+GnK(/?). 

Suppose that all [ y, v,J occurring in the presentation of t act nilpotently 
on K. Then we recall from (2) that n(K(fl) n G)“) acts nilpotently on S, 
and so n(t) would act nilpotently on S. This contradiction shows that there 
is v1 E G n K(p) such that [y, v,J acts nonnilpotently. 

We lift this information to L: Let M’ be the restricted subalgebra 
of L, generated by L(a, Z?)+ T. Then Z(a, /?)=rad{L(a, /I)+ T} = 
{rad M’} n (L(a, b) + T} and therefore K+ R embeds canonically into 
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M’/rad M’ =: I@. In fact, R is a semisimple p-envelope of K + R. As A4 is 
also a semisimple p-envelope, they are both minimal p-envelopes and hence 
canonically isomorphic (even as restricted algebras, since they are 
centerless). Then there are root vectors y’ E ML, 01. EL,, such that 
w := [y’, o’J E rad L(p) acts nonnilpotently on L. Since C,J T) acts 
triangulably, we obtain as a first consequence that p #O or 1 #O. As a 
further observation, S2 := (p E @ 1 p(w) # 0} is nonvoid, and the simplicity 
of L implies L = CpER L, + Cp,pZEn [L,, Lp,]. In the present case we have 
p(C,( T)) # 0. Then there exists y E Sz with /I( [L,, L-,1) # 0. The two- 
section L(p, y) is necessarily of type (11.2.(7)) or (11.2.(8)) (cf. [BW2, 
(10.2.1)]. In case 1+p#O we would have that wEL,+,nradL(I+p), 
(A+p)(C,(T))#O, y(w)#O. This contradicts (X.1). So A+p=O, p#O, 
GF( p)p = GF( p)b and y’ E MI c L. The assumption y’ E Q(j3) would imply 
w E [L, n Q(p), L_, n rad L(p)]. This again contradicts (X.1). 

Consequently, y’ E L and $6 Q(b). Therefore p cannot be classical. 
Moreover, as p # 0, we have y 4 o(Q(b)) + H’ and the choice of y in K(u, 8) 
yields [a(Q(j?)) + H’, J] c J. 1 

LEMMA X.3. With the assumptions and notations of (X.2) the following 
are true: 

(1) R stabilizes S@A(n; I)(,,. 

(2) K(B)n{(DerS)OA(n;Q)}cradK(B). 

(3) Zf n = 1 then j is Witt, if n = 2 then p is hamiltonian. 

ProoJ: (1) As R c H’, this is a direct consequence of (X.2.3.b). 
(2) Since (Der S)@A(n; ll)/S@A(n; II) is solvable, (X.2.(2.c)) yields 

the result. 
(3 ) Consider the homomorphism 

R: Der{S@A(n; ll)} + Der{SOA(n; 1)}/(Der S)@A(n; II) 

i2 W(n; I). 

n(K(/.?)) is a nonclassical algebra. A dimension argument ensures that for 
n = 1 /3 is Witt. 

Suppose that n = 2 and b is Witt. Then there is x E L_, with 
L(j?)=Q(jl)+Fx. Recall that S@A(2;ll) has ideals S@.4(2;1)(,,= 
Ci+jak S@Fxfx$. This is the kth power of S@A(2;ll),,,. Since 
o(Q(/?)) + H’ stabilizes S@A(2; II),,,, and r~(x)~~~ E H’, we have that 

c (ad 4x))‘(SO42; Q lczp- ,)) c SB42; Q lcpj 
o<icp-1 

is a nonzero solvable ideal of K + R, a contradiction. 1 
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We are now able to normalize the torus R. 

THEOREM X.4. With the assumptions and notations of (11.2) 
let K+ R be as in case (5). rf S s sl(2) take a canonical basis (e, h, f ), 
if SE W(1;11) write S=C,Si.,-, Fy’D, if SZH(2;f)‘2’ write 
s=c (0,0)<(0,b)<(p--l,P--1)F(ay~~‘y~D2-by~y~-1D,). Then there is 
$~Aut Der(S@A(n;Q)), which stabilizes S@A(n;Q), such that t/-‘(R) is 
one of the following: 

n=l Sr sl(2) Fh@l+FidQxa 

SE W(1; II) FyDQl+Fid@xa 

SgHH(2; 9) (2) Fty,D, - y,D,)O 1 

+F{m(y,D,+y2D2)01+id@xa},m~GF(p) 

n=2 SZ sl(2) Fh@l+FidO(x,a,-x28,) 

ss W(1; Q) ~y~~l+Fid~(x,a,-~~a~) 

SrH(2; II) (2) F(Y,D, - Y,D,)O 1 

+F{m(y,D,+y2D2)Q1+idQ(x,a,-x2a2)>, 

mEGF(p). 

Proof: (1) According to (X.2) R n (SO A(n; II )) contains some 
toral element r, . Decompose r i into its homogeneous components 
rl=dlQ1+C~.I ok, ok = &, ck dCi, 0 xCi), I > 0. 

r,=riP1=diP1@l+ c {add,}P-‘(d~ij)@x(i) 
lil =/ 

mod SQ4n; Q I(,+ 1). 

Then d, is toral and (ad d,}P- ‘(dCi,) = dCi, for all dCi, with Ii1 = 1. We 
therefore may assume that every d(,,, (Ii1 = 1) is an eigenvector for d, with 
nonzero eigenvalue. 

Note that as {x”)} P = 0 for every monomial with I il # 0, the mapping 

exp {ad (IldC,,@x(‘))} = c (j!)-lAj{ad d,,,}j@ {xCi’}j 
O<jSp-1 

is an automorphism of S@ A(n; Q ). A successive application of suitable 
automorphisms of this type reduces the number of monomials of degree I 
occurring in ri , and so eventually raises the degree itself. Hence there is an 
automorphism Ic/, E Aut { S @ A(n; Q )} with til(rl) = d,. Next we suppress 
the notion of +i and assume that rl = d, 0 1, d, toral in S. Choose /I as 
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in (X.2), /?(ri) =O. There is a toral element r2E R with j?(rz) #O. Recall, 
that 

Der(S@A(n;1))=(DerS)@A(n;B)+Fid@W(n;1). 

Write accordingly 

r,=Z,@l+ 1 du,@xu)+id@d, 
lil 21 

and observe that d2e lV(n; ll)(,,, since r2 stabilizes S@A(n; II),,,. Put 
D:=a,@l+idQd,. As above 

r,=riP1=aFPIQ1 +id@d$P1+DP-l ( 1 d(i) QXci)) 
Irl=l 

mod(Der S)@A(n; l)(r+lJ. 

We conclude that a,, dz are toral. As dz E lV(n; II)(,) there is 
I+G* E Aut A(n; II ), such that $Jx,), . . . . ti2(x,) are eigenvectors with respect 
to d, (see also the proof of (IX.1 )). $2 induces an automorphism id @ $z 
of S@,4(n;II). Note that (id@+,)(r,)=r,. 

Thus we may assume that every dcij@x(‘) (Ii1 = I) is an eigenvector 
for D with nonzero eigenvalue. Applying as above successively auto- 
morphisms of type exp{ ad(ldu, @ xc’))} we find ti3 E Aut { S@ A(n; II )} 
with rz = ti3 0 (a, @ 1 + id0 dJ 0 +; ‘. Moreover, we have 0 = [r,, r2] = 
[d,,a,l@l+Z Cd,,d~i,l@x”‘, and hence [d,, a,] = 0 = Cd,, d&J, which 
yields $3 0 rl 0 $; ’ = rl . d, , 2, are toral elements in Der S. In case that R acts 
on S as a one-dimensional torus then d,, 2, are linearly dependent. So we 
may assume 2, = 0 and a multiple of dI is conjugate under an automorphism 
$z, of S to h (S~s1(2)), yD (SE W(1; i)), y,D, - y,D, (S~H(2,21)“‘). 
In the last case SE H(2; II )(2) the assertion is true for m = 0. 

Otherwise S z H( 2; II ) (2) R acts on S as a two-dimensional torus and so , 
S+ R is of type (11.2.(4)). Then we find $a~ Aut S and r, SE F, so that 
I~/&~)=Y~D~-YJ&, ~4(rdl+S~1)=~lD1+~2D2. 

Since d, stabilizes A(n; 1 )o) we find I,$~ E Aut A(n; II) such that 
t:=t,b50d20+;‘cFxa if n=l, and tEFx,a,+Fx2a2 if n=2. Consider 
the case that n = 2. We want show that id@ t is mapped under the 
homomorphism 
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into F(x, 8, -~,a~). (X.3) yields that q(K(fl)) is of Hamiltonian type. 
As rl(K(B)) n W2; Q j(o) is a compositionally classical subalgebra of 
codimension ~2, it has to be the distinguished maximal compositionally 
classical subalgebra in q(K(/I)). Ch oose h E H n a(Q(@)“‘, /I(h) # 0. Then 
some rz := uhCpjk + bd, 0 1 is toral with /?(rz) # 0. Using this element we 
construct d2, t as above. Every automorphism of S 0 A(2; II ) induces via 
the extension to Der S 0 A(n; II ) and composition with q an automorphism 
of W(2; II ), and as such it stabilizes W(2; II )(OJ. Thus h is mapped into 
w2; Q l(O). (I) As the latter is closed under the [p]-mapping, we obtain 

v](id@ t) E {Fx, d1 + Fx, a,} n W(2; II )[A’, = F(x, 8, -x2 a,). 

Thus we may adjust r2, so that $4(r’d, + ,‘a,) = m(y,D, + y,D,) and 
$5~d,~~;1=xa(ifn=1)and =x,8,-x,a,(ifn=2).To haver,toral 
means m E GF(p). $s extends to an automorphism of Der S@A(n; II) 
which leaves dI, 2, unchanged. Putting these automorphisms together we 
obtain $ E Aut Der(S@A(n; Q)), so that I+-‘(R) is of the claimed form. All 
automorphisms occurring in this context are induced by automorphisms of 
S@A(n; I). Hence S@ (n; II) is invariant under II/. 1 

We apply these results to determine root spaces (see also [BOSt, (2.7)]). 

THEOREM X.5. With the assumptions and notations of (11.2) let K-I R be 
as in case (5). Let $ denote the automorphism constructed in (X.4). Put 

S@) :=o if Srs1(2), 

:= 1 Fx’a zj- Sz W(l;Q), 
i>O 

:= H(2; Q )(*) n W(2; Q )Coj if S z H(2; II )‘*‘, 

K(O) :=Nor,(S,,OA(n;Q)+SOA(n;Q)~,,) 

K(i+ I) :={uEK(,)ICU,K]~K(~,}, i>,O. 

Then 
(1) S,,,OA(n;Q)+SOA(n;Q)(,, is invariant under $. 

(2) KCi, is invariant under R for all i > 0. 
(3) The only roots sticking out of KC,, are (after a suitable ad$stment) 

n=l n=2 

s= sl(2) -B +P 

Sz W(l; II) -a, -B -4 +p 

S rz H(2; Q )(*) -cqff-2mj3, -/I -a, a-2mfi, */I 
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(4) K(,,, n K(p) is the distinguished maximal compositionally classical 
subalgebra of K(p), for all p E FG( p)a + GF( p)p. 

(5) The only roots of KC,, sticking out of KC,, are (after the adjustment 
of@)) 

n=l n=2 

s z sl(2) 0, *a 0, fa, +2g 

sz W(l;Q) 0, -a+p 0, -a*B, f2B 

SEH(2;Q)‘2’ 0, -a+B,a-2mB+/I, 0, -@*Aa-2mD+8, 

f 2(a - m/3) &- 2(a - mb), f 2/3 

(6) &I, is solvable. 

Proof: (1) + stabilizes SQA(n; Q). Since S@A(n; II),,, is the unique 
maximal ideal of SO A(n; II ), $ stabilizes this ideal. Hence it induces an 
automorphism on SQ A(n; Q )/S 0 A(n; II )C1j % S. As SCO) is invariant under 
all automorphisms we obtain the result. 

(2) In all cases of (X.4) +-l(R) maps S,,,OA(n; II) + S@A(n; II),,, 
into itself. According to (1) this subalgebra is therefore invariant under R. 
We now conclude by induction that KCi, is invariant under R. 

(3) Applying (X.4) we see that the only root vectors with respect to 
$ -l(R) sticking out of KC,,, are represented by the following: 

n=l n=2 

SZ sl(2) id Q 8 idOa,,id@a, 

SE W(1; Q) D@l,id@a DOl,id@a,,idQa, 

S z H(2; Q )(2) D,@l,D2@1,id@a 4QLD2Q1,idQa,, 

id@&. 

If S z sl(2) or g W( 1; Q ) the roots are obviously as claimed. We only have 
to have a closer look if S z ZY( 2; Q )(2). 

n=l:LetD,@l,D,@l,id@aberootvectorsfortheroots -a,, -a2, 
-/I. Put t,:=(y,D,-y,D*)Ql, t,:=m(y,D,+y,D,)@l+idOxa. 
Then 

-fi(ti)id@a= [t,, id@81 =0, 

-p(t2)id@a= [t2, id@81 = -idaa, 

-ai DiQ 1 = [Cl, DiQ l] = (- l)‘Di@ 1, 

-ai(t2) DiQ 1 = [tz, DiQ l] = -mD,Q 1. 
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Thus /?(tI)=O, /?(f2)=1, cr,(t,)=(-l)‘, cq(t,)=m and hence G~~+Q= 
2mB. Put c( := gI to obtain the result. 

For n = 2 a similar computation proves the claim. 
(4) KC,, is invariant under R and hence decomposes into root spaces. 

(3) shows that all classical or solvable one-sections are contained in KC,,. 
Moreover, if p is a nonclassical root KC,, n KC,, is a subalgebra of codimen- 
sion 1 (if p is Witt) or 2 (11 hamiltonian), which contains rad K(p). 

(5) A computation similar to that in (3) yields the result. We do that 
explicitly only for the case Sz H(2; Q)‘*‘, n = 2. A basis of KC,,/K,,, is 
represented by 

R,D,@x,,y,D,@l (i#j),id@xiaj(i#j) for i, j= 1, 2. 

The corresponding roots are 0, -a&b, a-2mBf8, +2(a-mfi), *2/?. 

(6) We proved in the course of (3) and (5) that KCllc 
(DerS)(,,OA(n;Q)+(DerS)(,,OA(n;II)(,,+(DerS)OA(n;II)(,,+ 
FidO lV(n; I),,,. The latter is solvable. 1 
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