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a b s t r a c t 

Following the 2011 accident at the Fukushima Daiichi Nuclear Power Station (NPS), which is owned by 

Tokyo Electric Power Co., radioactive nuclides were released into the environment and heavily contami- 

nated the NPS site. In this study, the contamination behavior of radioactive nuclides in accumulated wa- 

ter, rubble, soil, and vegetation is discussed. Activity concentrations are converted to a “transport ratio,”

which is the activity concentration ratio normalized using the activity in the source term for the nuclides 

of interest and a selected standard. The transport ratio of Sr to rubble and soil by way of air was approxi- 

mately 10 −2 to 10 −3 , and the successive transport to accumulated water was comparable with Cs (except 

for the initial release). Transport of Pu, Am, and Cm was lower than for Sr regardless of the transport 

process (air or water), whereas those of I, Se, and Te were comparable or greater. Contamination with 3 H 

and 14 C was independent of 137 Cs, 90 Sr, and TRU nuclides and was likely a result of different transport 

process. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

The Great East Japan Earthquake occurred on March 11, 2011. At

ukushima Daiichi Nuclear Power Station (NPS), owned by Tokyo

lectric Power Co. (TEPCO), operation of the reactors was success-

ully halted; however, the resulting tsunami caused fatal damage

o the reactors [1] . The damage to the reactor fuels of units #1

hrough #3 owing to loss of coolant and the subsequent hydrogen

xplosions in units #1, #3, and #4 owing to the reaction of fuel

ladding with steam caused a release of radionuclides contained

ithin the fuels to the environment. The contamination spread

cross the NPS site (including buildings) and the surrounding ar-

as. 

In the course of decommissioning the power plants of the NPS,

adioactive waste will be generated. The mass of waste will be

uch greater than for a case of general reactor decommissioning,

nd the potential for contamination by nuclear fuel constituents

hould be carefully considered during waste management. To es-

ablish methodologies for waste processing and disposal, obtaining
Abbreviations: NPS, Nuclear power station; PM/B, Process main building; HTI/B, 

igh temperature incinerator building; TRU, Transuranium. 
∗ Corresponding author at: Japan Atomic Energy Agency, Muramatsu 4-33, Tokai- 
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ata on the composition and amount of radionuclides in the con-

aminated materials is essential; therefore, the analysis of various

astes is important and has been previously conducted [2–4] . 

The analytical data relating to certain contaminated materials

uch as rubble, vegetation, soil, and water, have been reported to a

eam responsible for “countermeasures for decommissioning and

ontaminated water treatment” by Japan Atomic Energy Agency

JAEA) and the International Research Institute for Nuclear De-

ommissioning (IRID). Some important nuclides for waste disposal

afety include “difficult-to-measure” nuclides, which are often not 

etected owing to their low concentrations. To estimate the ac-

ivity concentration of these undetected nuclides, it is necessary

o know or presume their contamination behavior in various ma-

erials. For this purpose, the “transport ratio,” which is the activ-

ty concentration ratio normalized using the activity in the source

erm for the nuclides of interest and of a selected standard, is de-

ned, and the contamination behavior of radionuclides discussed. 

. Method 

.1. Analytical data 

The concentrations of radionuclides in contaminated materials

ere taken from publicly available reports. 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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Fig. 1. Transport ratios of selected nuclides to the accumulated water under 

the Process Main Building (PM/B) and the High Temperature Incinerator Building 

(HTI/B). The date indicates when the water was sampled. 
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t  
Below reactor buildings, turbine buildings, and the centralized

radioactive waste treatment facility, contaminated water has accu-

mulated. Analytical data for this water sampled after the accident

were taken from the study by Nishihara et al. [2] . Post August 2011,

analytical data for this water were taken from the meeting report

of the secretariat of the team for “countermeasures for decommis-

sioning and contaminated water treatment” including the former

organizations [5–8] . 

TEPCO sampled the soil in 2011 at fixed points across the NPS

site. Sampling sites were located WNW, W, and SSW of the stack of

units #1 and #2; these three sites are referred to as ground (1), the

Forest of Birds (2), and area surrounding a controlled landfill site

(3), respectively. Analytical data given in the press releases from

TEPCO were used [9] . 

Data for rubble (mainly concrete) sampled around and inside

the reactor buildings and for the paint on the floors and walls in-

side the reactor buildings were also reported as mentioned above

and are used here [10–12] . 

Concerning vegetation, felled trees from the temporal reposi-

tory and living trees sampled on the NPS site were analyzed. Data

were reported at the abovementioned meeting and are used here

[10,13] . Samples of leaf-branch, fallen leaf, and topsoil (often with

humus) were collected from selected living trees. 

2.2. Transport ratio 

The ratio of the activity concentration for a nuclide of interest

to that of a standard nuclide was divided by the ratio of activity for

the nuclide in the source term, as shown in the following equation.

For convenience, this was referred to as the “transport ratio” ( T ). 

T X = ( N X,sample / N X,source ) / ( N std,sample / N std,source ) 

= ( c X,sample / c std,sample ) / ( A X,source / A std,source ) , 

where N is number of atoms, c is activity concentration, A is activ-

ity, and the subscripts X and std are the nuclide of interest and the

standard nuclide, respectively. 137 Cs was selected as the standard

nuclide. Activities were corrected for decay half-life to March 14,

2011. 

For the source term, the calculated activity of the reactor fuels

of units #1 through #3 was used [14] . T does not provide infor-

mation on the transport process but merely describes the relative

difference between the initial (source term) and resulting (sample)

activities. 

3. Results and discussion 

3.1. Accumulated water 

The water accumulated under the reactor buildings of units #1

through #4 was transferred for chemical decontamination treat-

ment, via the turbine buildings, to the Centralized Radioactive

Waste Treatment Facility, which comprises the Process Main Build-

ing (PM/B) and the High Temperature Incinerator Building (HTI/B).

The accumulated water was treated with zeolite to facilitate ce-

sium adsorption and then passed through a reverse osmosis mem-

brane to recover freshwater that contained tritium as the major

radionuclide [15] . The freshwater was used as coolant for the dam-

aged fuels; thus, a recycling system for the water was established.

The radioactive nuclides that were initially released from the reac-

tor fuels when the accident occurred were already processed and

removed into secondary waste and concentrated waste liquid. It is

considered that the radioactive nuclides presently observed in the

accumulated water come from successive dissolution of the dam-

aged fuel [16] . 

The radionuclides 3 H, 60 Co, 63 Ni, 79 Se, 90 Sr, 129 I, 238 Pu, and
239 + 240 Pu were detected in the accumulated water sampled at the
Please cite this article as: Y. Koma et al., Radioactive contamination of 

Station accident, Nuclear Materials and Energy (2016), http://dx.doi.org
M/B and HTI/B. Values of T were calculated with the reported

oncentrations and their change versus the date of sampling is

lotted in Fig. 1 . The descending order of T values was Se, I, H,

s ∼Sr, Ni, Pu. T Se decreased from the middle of 2012, whereas T

alues for 3 H and the Pu isotopes seemed to gradually increase.

he decrease in T should be affected by differences in the de-

reases of the nuclides of interest and the standard in the source

erm, especially when successive release of the nuclides of interest

uch as Se into the accumulated water is greater than that of stan-

ard. T Co was scattered around 0.01–0.1, and a source term other

han the damaged fuel is considered likely owing to the less solu-

le nature of this nuclide. 

T Sr shows low values just after the accident, as shown in Fig. 2 .

 Sr was 10 −4 for unit #1 and approximately 0.1 for units #2 and

3 (slightly greater for unit #3 than for unit #2), and it gradually

ncreased over time. Treatment of the accumulated water and re-

ycling water was commenced in June 2011, and T Sr increased to

round unity in early 2012. During the early stages of the accident

just after the fuel damage), transfer of Sr to the water was sup-

ressed when compared with Cs. It is suggested that when the fu-

ls became damaged, the transfer process for Cs was different than

hat for Sr, although these gradually became similar. 

The concentration of 140 Ba was only obtained just after the ac-

ident. T Sr was greater than T Ba by several times for units #2 and

3; in contrast, T Sr was somewhat less than T Ba for unit #1. 

.2. Rubble 

Concrete and insulator rubble sampled from the first floor of

he reactor buildings of unit #1 and #3, and floor paint sampled
several materials following the Fukushima Daiichi Nuclear Power 
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Table 1 

Transport ratios calculated for several nuclides to the samples of rubble and paint obtained around and inside the reactor buildings. 

Sampling location Sample Number of sample 3 H 

14 C 60 Co 90 Sr 

Unit#1 surroundings rubble 5 0.042 (5) 1 < 290 (1) 3 3.5 (2) 0.0046 (5) 

1st floor rubble 5 0.036 (5) 260 (5) < 0.92 (4) 3 0.0046 (5) 

1st floor paint decontaminated 2 < 0.4 (0) 2 < 2 ×10 3 (0) 2 < 300 (0) 2 0.0030 (1) 

Unit#2 5th floor paint 1 0.066 (1) 23 (1) 74 (1) 0.026 (1) 

1st floor paint decontaminated 1 0.050 (1) < 100 (0) 2 < 20 (0) 2 0.014 (1) 

Unit#3 surroundings rubble 5 0.011 (5) < 33 (4) 3 2.3 (4) 0.0 0 012 (5) 

1st floor rubble 4 0.014 (4) < 17 (2) 3 2.3 (3) 0.0012 (4) 

Unit#4 surroundings rubble 5 27 (5) < 2.2 ×10 5 (4) 3 < 550 (1) 3 < 0.0013 (2) 3 

fuel pool gravel, pebble 2 5.2 × 10 7 (2) 

1 Number of detection, when the number is smaller than the number of samples, the nuclide was not detected for the rest of samples. 
2 No concentration data owing to the detection limits. The T value was calculated using the value of detection limit. 
3 Sample(s) of ‘not detected’ had lower T value(s) than the samples detected. 

Fig. 2. The transport ratio of 90 Sr to the accumulated water under the buildings, 

including those of units #1 through #3, just after the occurrence of the accident. 
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Fig. 3. Transport ratio of selected nuclides to the samples of rubble on the first 

floor of the reactor buildings of units #1 and #3 and floor paint of the 5th floor 

(operating floor) of the reactor building of unit #2. 
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rom the 5th floor (obtained a few years after the occurrence of

he accident), were analyzed. The transport ratios calculated from

he reported data are shown in Fig. 3 . In the case of plural sam-

les obtained, for the rubble from units #1 and #3, the arithmetic

ean was plotted. The decreasing order of T values is C ∼Co, Cs,

c, H, Sr, Ln (Eu) ∼An (Pu, Am, Cm). The values for 154 Eu, 238 Pu,
39 + 240 Pu, 241 Am, and 

244 Cm were similar for each unit; therefore,

t is suggested that the contamination behavior of TRU and lan-

hanides was similar. The T value of 241 Am was corrected for de-

ay of 241 Pu and was observed to be close to that of 244 Cm. Conse-

uently, it was suggested that T value was dependent on the unit,

ith values for unit #2 greater than those for units #1 and #3 (ex-

ept for 14 C). 

The reactor buildings of units #1, #3, and #4 experienced hy-

rogen explosions due to fuel damage; therefore, rubble was scat-

ered around the buildings. The T values of 3 H, 14 C, 60 Co, and 

90 Sr

o the rubble are compared in Table 1 . Irrespective of the type

f material (rubble or paint) and location of the sampling (inside

r outside) the T value of each nuclide and unit was often simi-

ar. This suggests that the nuclide composition was similar in each

nit; radioactive nuclides presumably contained within particles
Please cite this article as: Y. Koma et al., Radioactive contamination of 

Station accident, Nuclear Materials and Energy (2016), http://dx.doi.org
ere dispersed across the reactor building, maintaining their com-

osition. 

The 90 Sr concentration of paint on the first floor of units #1 and

2 after decontamination with strippable coating was obtained. It

as found that the T values were similar for each unit. Regarding

nit #2, the T values of TRU for the paint of the first and fifth

oors was different because TRU was not detected on the first floor

nd the dispersion process near the reactor would be important for

on-volatile TRU elements. 

Concerning unit #4, T values of 3 H, 14 C, and 

60 Co were greater

han those for units #1 through #3. The T value of 90 Sr was similar
several materials following the Fukushima Daiichi Nuclear Power 

/10.1016/j.nme.2016.08.015 
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Fig. 4. Correlation between 3 H and 14 C transport ratios to the samples obtained 

inside and outside reactor buildings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Time dependence of the transport ratios of Sr and TRU nuclides to the soil 

sampled at the site of the NPS. The sampling point was in a WNW direction from 

the stack of units #1 and #2. 

Fig. 6. Transport ratios for selected nuclides to the soil sampled at the three points 

in the NPS site in 2011. Points 1 through 3 were in the WNW, W, and SSW direc- 

tions, respectively. 
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to the other units; therefore, the dispersion process of the nuclides

was different to that for 137 Cs–90 Sr. Since 60 Co was detected in the

gravel and pebble sampled from the spent fuel pool, the high T Co 

was a result of adsorption of activation products contained in the

cooling water. This implies that a source term other than the dam-

aged fuel should be assumed to investigate contamination behav-

ior. 

Concerning 3 H and 

14 C contamination, the correlation between

T values is shown in Fig. 4 . The wide range of values, especially

for unit #4, shows that transport of 3 H and 

14 C was dependent on
137 Cs, and a different process of dispersion can be suggested. When

the accident occurred, the reactor of unit #4 had no fuel and the

contamination was owing to influx from unit #3. It is suggested

that contamination of unit #4 was a result of a separate influx of
3 H–14 C and 

137 Cs–90 Sr, and also from a source term related to 60 Co

within unit #4. 

3.3. Soil 

When isotopic effects are neglected, the T value should be iden-

tical for isotopes of the same element and similar for elements

that are chemically similar. The T values of Sr and TRU to the soil

at sampling point 1 are plotted versus the date of sampling in

Fig. 5 [17] . T values of the strontium isotopes ( 89 Sr and 

90 Sr) and

the TRU nuclides ( 238 Pu, 239 + 240 Pu, 241 Am, and 

243 + 244 Cm) were

approximately 0.001 and 2 × 10 –5 , respectively. Strontium shows a

slightly decreasing tendency; suggesting that it have diffused into

the soil while cesium was retained in the surface layer. 

The T values for various nuclides to the soil are shown in Fig.

6 [17] . The values for some elements such as I, Sr, and TRU var-

ied across the sampling points, suggesting a dependency on direc-

tion from the reactor buildings of unit #1 through #4, and their

magnitude followed the order I > Te ∼Cs > Ag > Sb > Mo > Ru

> Ba > Sr > Nb > Pu ∼Am ∼Cm. Non-volatile Sr and TRU showed

low T values. T Sr values for sampling points 1 through 3 are simi-

lar to those for the rubble sampled at reactor buildings #1 and #3

(shown in Fig. 3 ) and are smaller than those for the accumulated

water at steady state. Concerning the relation between the alkaline

earth elements Sr and Ba, T was comparable or greater than T .
Ba Sr 

Please cite this article as: Y. Koma et al., Radioactive contamination of 

Station accident, Nuclear Materials and Energy (2016), http://dx.doi.org
his contrasts with the case of accumulated water in units #2 and

3. 

Dependency on distance from the source term should be con-

idered owing to the similarity in T Sr to the soil and rubble sam-

led inside and outside the reactor buildings. Sr concentration

n the soil surrounding the Fukushima Daiichi NPS was reported

18] and concentration values were taken from [19,20] to calcu-

ate T values, as shown in Fig. 7 (where the data was plotted ir-
several materials following the Fukushima Daiichi Nuclear Power 
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Fig. 7. Distance dependence of 90 Sr transport ratio to the soil sampled in the area 

surrounding Fukushima Daiichi NPS. The data were plotted regardless of the direc- 

tion from the NPS. 

Fig. 8. Distance dependence of 90 Sr transport ratio to the soil and air filters ob- 

tained in Ukraine, Belarus, Russia, and Sweden after the Chernobyl nuclear power 

plant accident [21–23] . 
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Fig. 9. Concentration ratios of 3 H, 90 Sr, and 137 Cs for vegetation, including fallen 

leaf and topsoil–humus to those of leaf–branch. Samples were taken across the site 

and designated as combination of symbols for an arbitrary sectioned area A to T 

and serial number. 
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a  
espective of direction from the NPS because dependency on di-

ection was not apparent). The values were mostly in the range

0 −2 to 10 −4 , although a few values exceeded 0.01, and the geo-

etric mean was 0.0015. Because Sr concentration decreased with

istance from the NPS and detection of Sr became difficult, T val-

es could not be calculated at distances of 70 km and above. 

In the Chernobyl nuclear power plant accident, the contamina-

ion spread wider than at Fukushima. The T values of Sr to the soil

f Ukraine and other selected countries are plotted (irrespective of

irection) in Fig. 8 [21–23] . T Sr decreased to approximate 50 km

rom the plant and shows a constant value of 0.020 (geometric

ean) even beyond 10 0 0 km. This suggests that if radionuclides

eleased from damaged fuel generate particles with a long suspen-

ion time in air, they will be transported long distances without

 change in radionuclide composition. At Chernobyl, T Sr was one

rder of magnitude greater than at Fukushima owing to the differ-

nce of the source term and the fuel damage process. 

Plutonium concentrations in the area surrounding Fukushima

aiichi NPS are so low that the composition of Pu isotopes is

ffected by the fallout from weapons testing and the Chernobyl

ccident. Since the contribution of the fallout is significant for
39 + 240 Pu, 238 Pu is important for investigating Pu behavior. The

 value of 238 Pu was obtained within a distance of approximately

0 km as approximately 10 −5 [20] . At a distance of 40 km, the con-

entration ratio of 238 Pu to 239 + 240 Pu was low and the effect of the

allout was recognizable ( Table 2 ). 
Please cite this article as: Y. Koma et al., Radioactive contamination of 

Station accident, Nuclear Materials and Energy (2016), http://dx.doi.org
.4. Vegetation 

Living trees sampled two years after the accident were analyzed

nd the results were reported [13] . The behavior of radionuclides

n vegetation should be investigated on consideration with trans-

ort of radionuclides within an individual vegetative body. Regard-

ng the concentrations of 3 H, 90 Sr, and 

137 Cs, the concentration ra-

io of fallen leaf and topsoil–humus to leaf–branch is shown in Fig.

 . Many samples exhibited large [ 137 Cs] ratios for fallen leaves and

opsoil–humus. The ratios were scattered, suggesting different dis-

ributions for individual samples. The concentration ratios for 90 Sr

ere generally lower than those of 137 Cs. The ratio of sample K1

as particularly small. As the [ 90 Sr] of the leaf–branch was sig-

ificantly high, it is likely that 90 Sr had been taken up prior to

ampling. The ratio for 3 H was near unity, indicating that its dis-

ribution in the living material was rather uniform. The extent of

ransport from the leaf–branch to fallen leaf and topsoil followed

he order 137 Cs > 

90 Sr > 

3 H, and it is considered that the transport

rocesses inside the living body were different for the different nu-

lides. 

The T values of 3 H and 

14 C correlate as shown in Fig. 10 , and

hey are independent of Cs transport (similar to the rubble data

hown in Fig. 4 ). As the nuclides were detected in samples ob-

ained 2 years after the accident, it is evident that they were taken

p and became fixed within the living material. 

. Conclusions 

For contaminated materials generated at the site of the

ukushima Daiichi NPS accident, the behavior of radioactive nu-

lides was investigated using the “transport ratio.” Radionuclides

re continuously transported into the accumulated water under
several materials following the Fukushima Daiichi Nuclear Power 

/10.1016/j.nme.2016.08.015 
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Table 2 

The concentrations of plutonium nuclides contained in the soil sample in the neighborhood of the Fukushima Daiichi NPS ad their transport ratio. Concentrations were 

referred from [20] . 

Latitude Longitude Distance Concentration (Bq/m 

2 ) Concentration ratio Transport ratio 

(km) 238 Pu 239 + 240 Pu 238 Pu/ 239 + 240 Pu 238 Pu 239 + 240 Pu 

37.4613 141.0099 4.9 0.57 < 0.48 > 1.2 4.7 × 10 −6 < 9.8 × 10 −6 

37.4261 140.9739 5.2 0.55 0.66 0.83 3.9 × 10 −6 1.2 × 10 −5 

37.5605 140.8238 24 2.3 1.8 1.3 1.9 × 10 −5 3.8 × 10 −5 

37.5961 140.7541 31 4.0 1.8 2.2 2.4 × 10 −5 2.7 × 10 −5 

37.6640 140.7210 39 0.77 0.60 1.3 4.1 × 10 −5 8.0 × 10 −5 

37.7225 140.6881 45 0.82 2.5 0.33 5.2 × 10 −5 3.9 × 10 −4 

Fig. 10. Correlation between 3 H and 14 C transport ratios to the samples of vegeta- 

tion (leaf–branch, fallen leaf, and topsoil–humus). 
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the reactor buildings. In this process, Sr transport is equivalent to

that of Cs, whereas TRU transport is significantly low. In contrast,

just after the fuel damage, Sr transport was low and the process

might have been different from that of Cs. Transport to the rub-

ble (generated by the hydrogen explosions) and the paint inside

the buildings was low for Sr and TRU when compared with Cs.

The nuclide composition of contaminants was different among the

reactor units. The transport of 3 H and 

14 C did not correlate with
137 Cs, suggesting that their transport processes might be different.

Transport to the soil at the NPS site was dependent on the direc-

tion from the reactor buildings; each damaged reactor exhibited

a different release process, contributing to a complex distribution

of contamination. Transport of Sr was not dependent on distance

from the reactor building. Pu from the accident was detected in

the surrounding area. Concerning vegetation, the initial distribu-

tion for an individual vegetative body often changed with time. Cs

and Sr were transported from leaf–branch to fallen leaf and then

to topsoil–humus. In contrast, transport of 3 H and 

14 C was rela-

tively low, and the transport process was not dependent on 

137 Cs

(similar to the case for rubble). Se, Te, and I are volatile and water-

soluble, meaning that they were dispersed widely, and their state

of stabilization was dependent on the material. The transport ratio

defined in this paper is useful for predicting the behavior of ele-

ments for which there is no analytical data via the use of data for

nuclides of relevant elements. 
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