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Let Fn be a free group of rank n generated by x1, . . . , xn . In
this paper we discuss three algorithmic problems related to
automorphisms of F2.
A word u = u(x1, . . . , xn) of Fn is called positive if no negative
exponents of xi occur in u. A word u in Fn is called potentially
positive if φ(u) is positive for some automorphism φ of Fn . We
prove that there is an algorithm to decide whether or not a given
word in F2 is potentially positive, which gives an affirmative
solution to problem F34a in [G. Baumslag, A.G. Myasnikov,
V. Shpilrain, Open problems in combinatorial group theory,
second ed., in: Contemp. Math., vol. 296, 2002, pp. 1–38, online
version: http://www.grouptheory.info] for the case of F2.
Two elements u and v in Fn are said to be boundedly translation
equivalent if the ratio of the cyclic lengths of φ(u) and φ(v) is
bounded away from 0 and from ∞ for every automorphism φ

of Fn . We provide an algorithm to determine whether or not two
given elements of F2 are boundedly translation equivalent, thus
answering question F38c in the online version of [G. Baumslag,
A.G. Myasnikov, V. Shpilrain, Open problems in combinatorial
group theory, second ed., in: Contemp. Math., vol. 296, 2002, pp. 1–
38, online version: http://www.grouptheory.info] for the case of F2.
We also provide an algorithm to decide whether or not a given
finitely generated subgroup of F2 is the fixed point group of some
automorphism of F2, which settles problem F1b in [G. Baumslag,
A.G. Myasnikov, V. Shpilrain, Open problems in combinatorial
group theory, second ed., in: Contemp. Math., vol. 296, 2002, pp. 1–
38, online version: http://www.grouptheory.info] in the affirmative
for the case of F2.
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1. Introduction

Let Fn be the free group of rank n � 2 with basis Σ . In particular, if n = 2, we let Σ = {a,b},
namely, F2 is the free group with basis {a,b}. A word v in Fn is called cyclically reduced if all its
cyclic permutations are reduced. A cyclic word is defined to be the set of all cyclic permutations of a
cyclically reduced word. By [v] we denote the cyclic word associated with a word v . Then by ‖v‖ we
denote the length of the cyclic word [v] associated with v , that is, the number of cyclic permutations
of a cyclically reduced word which is conjugate to v . The length ‖v‖ is called the cyclic length of v .
For two automorphisms φ and ψ of Fn , by writing φ ≡ ψ we mean the equality of φ and ψ over all
cyclic words in Fn , that is, φ(w) = ψ(w) for every cyclic word w in Fn .

Recall that a Whitehead automorphism α of Fn is defined to be an automorphism of one of the
following two types (cf. [8]):

(W1) α permutes elements in Σ±1.
(W2) α is defined by a letter x ∈ Σ±1 and a set S ⊂ Σ±1 \ {x, x−1} in such a way that if c ∈ Σ±1

then (a) α(c) = cx provided c ∈ S and c−1 /∈ S; (b) α(c) = x−1cx provided both c, c−1 ∈ S; (c)
α(c) = c provided both c, c−1 /∈ S .

If α is of type (W2), we write α = (S, x). Note that in the expression of α = (S, x) it is conventional
to include the defining letter x in the defining set S , but for the sake of brevity of notation we will
omit a from S as defined above.

Throughout the present paper, we let

σ = ({a},b
)

and τ = ({b},a
)

be Whitehead automorphisms of type (W2) of F2. Then σ and τ are automorphisms of F2 defined by

σ :

{
a �→ ab,

b �→ b
and τ :

{a �→ a,

b �→ ba.

Recently the author [8] proved that every automorphism of F2 can represented in one of two partic-
ular types over all cyclic words of F2 as follows:

Lemma 1.1. (Lemma 2.3 in [7].) For every automorphism φ of F2 , φ can be represented as φ ≡ βφ′ , where β

is a Whitehead automorphism of F2 of type (W1) and φ′ is a chain of one of the forms

(C1) φ′ ≡ τmkσ lk · · ·τm1σ l1 ,

(C2) φ′ ≡ τ−mkσ−lk · · ·τ−m1σ−l1

with k ∈ N and both li , mi � 0 for every i = 1, . . . ,k.

With the notation of Lemma 1.1, we define the length of an automorphism φ of F2 as
∑k

i=1(mi + li),
which is denoted by |φ|. Then obviously |φ| = |φ′|.

In the present paper, with the help of Lemma 1.1, we resolve three algorithmic problems re-
lated to automorphisms of F2. Indeed, the description of automorphisms φ of F2 in the statement
of Lemma 1.1 provides us with a very useful computational tool that facilitates inductive arguments
on |φ| in the proofs of various statements.

The first problem we deal with is about potential positivity of elements in a free group the notion
of which was first introduced by Khan [6].

Definition 1.2. Let Fn be generated by x1, . . . , xn . A word u = u(x1, . . . , xn) of Fn is called positive if
no negative exponents of xi occur in u. A word u in Fn is called potentially positive if φ(u) is positive
for some automorphism φ of Fn .
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It was shown by Khan [6] and independently by Meakin and Weil [9] that the Hanna Neumann
conjecture is satisfied if one of the subgroups is generated by positive elements.

In Section 2, we shall describe an algorithm to decide whether or not a given word in F2 is
potentially positive, which gives an affirmative solution to problem F34a in [1] for the case of F2.
This problem of detecting potential positive words of F2 was previously settled by Goldstein [4] using
different methods.

The second problem we discuss here is related to the notion of bounded translation equivalence
which is one of generalizations of the notion of translation equivalence, due to Kapovich, Levitt,
Schupp and Shpilrain [5].

Definition 1.3. Two elements u and v in Fn are called translation equivalent in Fn if ‖φ(u)‖ = ‖φ(v)‖
for every automorphism φ of Fn .

Several different sources of translation equivalence in free groups were provided by Kapovich,
Levitt, Schupp and Shpilrain [5] and the author [7]. In another paper of the author [8], it was proved
that there is an algorithm to decide whether or not two given elements u and v of F2 are transla-
tion equivalent. Generalizing the notion of translation equivalence, bounded translation equivalence is
defined as follows:

Definition 1.4. Two elements u and v in Fn are said to be boundedly translation equivalent in Fn if
there is C > 0 such that

1

C
� ‖φ(u)‖

‖φ(v)‖ � C

for every automorphism φ of F2.

Clearly every pair of translation equivalent elements in Fn are boundedly translation equivalent
in Fn , but not vice versa. As one of specific examples of bounded translation equivalence, we mention
that two elements a and a[a,b] are boundedly translation equivalent in F2. Indeed, if u = a and
v = a[a,b], then we have, in view of Lemma 1.1, that∥∥φ(v)

∥∥ = ∥∥φ(u)
∥∥ + 4

for every automorphism φ of F2, because [a,b] is invariant under the action of σ±1 or τ±1 and there
can be no cancellation between φ′(a) and [a,b] nor between [a,b] and φ′(a) for every chain φ′ of the
form (C1) or (C2). Hence

1

5
� ‖φ(u)‖

‖φ(v)‖ � 1

for every automorphism φ of F2.
In Section 3, developing further the technique used in [8], we shall demonstrate that there is an al-

gorithm to determine whether or not two given elements of F2 are boundedly translation equivalent,
thus affirmatively answering question F38c in the online version of [1] for the case of F2.

Our last problem is concerned with the notion of fixed point groups of automorphisms of free
groups.

Definition 1.5. A subgroup H of Fn is called the fixed point group of an automorphism φ of Fn if H
is precisely the set of the elements of Fn which are fixed by φ.

Due to Bestvina and Handel [2], a subgroup of rank bigger than n cannot possibly be the fixed
point group of an automorphism of Fn . Recently Martino and Ventura [10] provided an explicit de-
scription for the fixed point groups of automorphisms of Fn , generalizing the maximal rank case
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studied by Collins and Turner [3]. However, this description is not a complete characterization of all
fixed point groups of automorphisms of Fn . On the other hand, Maslakova [11] proved that, given an
automorphism φ of Fn , it is possible to effectively find a finite set of generators of the fixed point
group of φ.

In Section 4, we shall present an algorithm to decide whether or not a given finitely generated
subgroup of F2 is the fixed point group of some automorphism of F2, which settles problem F1b
in [1] in the affirmative for the case of F2.

2. Potential positivity in F2

Recall that F2 denotes the free group with basis Σ = {a,b}, and that σ and τ denote Whitehead
automorphisms

σ = ({a},b
)
, τ = ({b},a

)
of F2 of type (W2). We also recall from [8] the definition of trivial or proper cancellation. For a cyclic
word w in F2 and a Whitehead automorphism, say σ , of F2, a subword of the form abra−1 (r 
= 0),
if any, in w is invariant in passing from w to σ(w), although there occurs cancellation in σ(abra−1)

(note that σ(abra−1) = ab · br · b−1a−1 = abra−1). Such cancellation is called trivial cancellation. And
cancellation which is not trivial cancellation is called proper cancellation. For example, a subword
ab−ra (r � 1), if any, in w is transformed to ab−r+1ab by applying σ , and thus the cancellation
occurring in σ(ab−ra) is proper cancellation.

The following lemma from [8] will play a fundamental role throughout the present paper.

Lemma 2.1. (Lemma 2.4 in [8].) Let u be a cyclic word in F2 , and let ψ be a chain of type (C1) (or (C2)). If ψ

contains at least ‖u‖ factors of σ (or σ−1), then there cannot occur proper cancellation in passing from ψ(u)

to σψ(u) (or ψ(u) to σ−1ψ(u)). Also if ψ contains at least ‖u‖ factors of τ (or τ−1), then there cannot occur
proper cancellation in passing from ψ(u) to τψ(u) (or ψ(u) to τ−1ψ(u)).

The main result of this section is

Theorem 2.2. Let u be an element in F2 , and let Ω be the set of all chains of type (C1) or (C2) of length less
than or equal to 2‖u‖+3. Suppose that the cyclic word [φ(u)] is positive for some automorphism φ of F2 . Then
there exists ψ ∈ Ω and a Whitehead automorphism β of F2 of type (W1) such that the cyclic word [βψ(u)] is
positive (which is obviously equivalent to saying that there exists c ∈ F2 such that πcβψ(u) is positive, where
πc is the inner automorphism of F2 induced by c).

Once this theorem is proved, an algorithm to decide whether or not a given word in F2 is poten-
tially positive is naturally derived as follows.

Algorithm 2.3. Let u be an element in F2, and let Ω be defined as in the statement of Theorem 2.2.
Clearly Ω is a finite set. Check if there is ψ ∈ Ω and a Whitehead automorphism β of F2 of type (W1)
for which the cyclic word [βψ(u)] is positive. If so, conclude that u is potentially positive; otherwise
conclude that u is not potentially positive.

Proof of Theorem 2.2. By Lemma 1.1, φ can be expressed as

φ ≡ βφ′,

where β is a Whitehead automorphism of F2 of type (W1) and φ′ is a chain of type (C1) or (C2). By
the hypothesis of the theorem,

[
φ(u)

] = [
βφ′(u)

]
is positive. (1)
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If |φ′| � 2‖u‖ + 3, then there is nothing to prove. So suppose that |φ′| > 2‖u‖ + 3. We proceed
with the proof by induction on |φ′|. Assume that φ′ is a chain of type (C1) which ends in τ (the
other cases are analogous). Write

φ′ = τφ1,

where φ1 is a chain of type (C1). Since |φ1| � 2‖u‖ + 3, φ1 must contain at least ‖u‖ + 2 factors of σ
or τ . We consider two cases separately.

Case 1. σ occurs at least ‖u‖ + 2 times in φ1.

Write

φ1 = τmt σ �t · · ·τm1σ �1 ,

where all mi, �i > 0 but �1 and mt may be zero.

Case 1.1. mt � 1.

In this case, put

φ1 = τmt φ2,

where φ2 is a chain of type (C1). By Lemma 2.1, no proper cancellation can occur in passing from
[σ �t−1 · · ·τm1σ �1 (u)] to [φ2(u)], and hence the cyclic word [φ2(u)] does not contain a subword of the
form a2 or a−2. From this fact and the assumption mt � 1, we can observe that no proper cancella-
tion occurs in passing from [φ1(u)] to [τφ1(u)] = [φ′(u)]. This implies from (1) that the cyclic word
[βφ1(u)] is positive, and thus induction completes the case.

Case 1.2. mt = 0.

In this case, we may put

φ1 = σφ3,

where φ3 is a chain of type (C1). Again by Lemma 2.1, no proper cancellation can occur in pass-
ing from [φ3(u)] to [σφ3(u)] = [φ1(u)]. Additionally, the proof of Theorem 1.2 of [8] shows that
proper cancellation occurs in passing from [φ3(u)] to [τφ3(u)] exactly in the same place where proper
cancellation occurs in passing from [φ1(u)] to [τφ1(u)] = [φ′(u)]. Therefore, by (1), the cyclic word
[βτφ3(u)] is positive. Since |τφ3| = |φ′| − 1, we are done by induction.

Case 2. τ occurs at least ‖u‖ + 2 times in φ1.

In this case, also by Lemma 2.1, no proper cancellation can occur in passing from [φ1(u)] to
[τφ1(u)] = [φ′(u)]. It then follows from (1) that the cyclic word [βφ1(u)] is positive; hence the re-
quired result follows by induction. �
3. Bounded translation equivalence in F2

We begin this section by fixing notation. Following [5], if w is a cyclic word in F2 and x, y ∈
{a,b}±1, we use n(w; x, y) to denote the total number of occurrences of the subwords xy and y−1x−1

in w . Then clearly n(w; x, y) = n(w; y−1, x−1). Similarly we denote by n(w; x) the total number of
occurrences of x and x−1 in w . Again clearly n(w; x) = n(w; x−1).
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In this section, we shall prove that there is an algorithm to determine bounded translation equiva-
lence in F2. Let u ∈ F2. We first establish four preliminary lemmas which demonstrate the difference
between ‖σψ(u)‖ or ‖τψ(u)‖ and ‖ψ(u)‖, and which describe the situation when this difference
becomes zero, in the case where ψ is a chain of type (C1) that contains a number of factors of σ . We
remark that similar statements to the lemmas also hold if σ and τ are interchanged with each other,
or (C1) is replaced by (C2) and σ and τ are replaced by σ−1 and τ−1, respectively.

Lemma 3.1. Let u ∈ F2 . Suppose that ψ is a chain of type (C1) which contains at least ‖u‖ + 2 factors of σ .
We may write ψ = τmσψ1 , where m � 0 and ψ1 is a chain of type (C1). Then

(i)
∥∥σψ(u)

∥∥ − ∥∥ψ(u)
∥∥ = ∥∥στmψ1(u)

∥∥ − ∥∥τmψ1(u)
∥∥ + m

(∥∥σψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥);
(ii)

∥∥τψ(u)
∥∥ − ∥∥ψ(u)

∥∥ = ∥∥ττmψ1(u)
∥∥ − ∥∥τmψ1(u)

∥∥ + ∥∥σψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥.

Proof. By the proof of Case 1 of Theorem 1.2 in [8], we see that

n
([

τ iσψ1(u)
];b,a−1) = n

([
τ iψ1(u)

];b,a−1) (2)

for every i � 0, because ψ1 contains at least ‖u‖ + 1 factors of σ . In particular,

n
([

ψ(u)
];b,a−1) = n

([
τmψ1(u)

];b,a−1), (3)

for ψ = τmσψ1. Since only a or a−1 can possibly cancel or newly occur in the process of applying τ ,
the number of b and b−1 remains unchanged if τ is applied. Thus

n
([

τ iσψ1(u)
];b

) = n
([

σψ1(u)
];b

);
n
([

τ iψ1(u)
];b

) = n
([

ψ1(u)
];b

)
(4)

for every i � 0. Also since only b or b−1 can possibly cancel or newly occur in the process of applying
σ , we get

n
([

σψ1(u)
];b

) = n
([

ψ1(u)
];b

) + ∥∥σψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥.

By (4), this equality can be rewritten as

n
([

τ iσψ1(u)
];b

) = n
([

τ iψ1(u)
];b

) + ∥∥σψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥ (5)

for every i � 0. In particular,

n
([

ψ(u)
];b

) = n
([

τmψ1(u)
];b

) + ∥∥σψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥, (6)

for ψ = τmσψ1.
Equality (5) together with (2) yields that

n
([

τ iσψ1(u)
];b

) − n
([

τ iσψ1(u)
];b,a−1)

= n
([

τ iψ1(u)
];b

) − n
([

τ iψ1(u)
];b,a−1) + ∥∥σψ1(u)

∥∥ − ∥∥ψ1(u)
∥∥ (7)

for every i � 0. Here, since
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∥∥τ i+1σψ1(u)
∥∥ − ∥∥τ iσψ1(u)

∥∥ = n
([

τ iσψ1(u)
];b

) − 2n
([

τ iσψ1(u)
];b,a−1);∥∥τ i+1ψ1(u)

∥∥ − ∥∥τ iψ1(u)
∥∥ = n

([
τ iψ1(u)

];b
) − 2n

([
τ iψ1(u)

];b,a−1),
equality (7) can be rephrased as

∥∥τ i+1σψ1(u)
∥∥ − ∥∥τ iσψ1(u)

∥∥ = ∥∥τ i+1ψ1(u)
∥∥ − ∥∥τ iψ1(u)

∥∥ + ∥∥σψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥
for every i � 0. By summing up both sides of these equalities changing i from 0 to m − 1, we have

∥∥τmσψ1(u)
∥∥ − ∥∥σψ1(u)

∥∥ = ∥∥τmψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥ + m
(∥∥σψ1(u)

∥∥ − ∥∥ψ1(u)
∥∥)

,

so that

∥∥τmσψ1(u)
∥∥ − ∥∥τmψ1(u)

∥∥ = (m + 1)
(∥∥σψ1(u)

∥∥ − ∥∥ψ1(u)
∥∥)

. (8)

Since ψ = τmσψ1, equality (8) can be rephrased as

∥∥ψ(u)
∥∥ − ∥∥τmψ1(u)

∥∥ = (m + 1)
(∥∥σψ1(u)

∥∥ − ∥∥ψ1(u)
∥∥)

. (9)

Clearly

n
([

ψ(u)
];a

) = ∥∥ψ(u)
∥∥ − n

([
ψ(u)

];b
);

n
([

τmψ1(u)
];a

) = ∥∥τmψ1(u)
∥∥ − n

([
τmψ1(u)

];b
)
.

These equalities together with (6) and (9) yield that

n
([

ψ(u)
];a

) = n
([

τmψ1(u)
];a

) + m
(∥∥σψ1(u)

∥∥ − ∥∥ψ1(u)
∥∥)

. (10)

It then follows from

∥∥σψ(u)
∥∥ − ∥∥ψ(u)

∥∥ = n
([

ψ(u)
];a

) − 2n
([

ψ(u)
];a,b−1);∥∥στmψ1(u)

∥∥ − ∥∥τmψ1(u)
∥∥ = n

([
τmψ1(u)

];a
) − 2n

([
τmψ1(u)

];a,b−1)
together with (3) and (10) that

∥∥σψ(u)
∥∥ − ∥∥ψ(u)

∥∥ = ∥∥στmψ1(u)
∥∥ − ∥∥τmψ1(u)

∥∥ + m
(∥∥σψ1(u)

∥∥ − ∥∥ψ1(u)
∥∥)

,

thus proving the first assertion of the lemma.
On the other hand, we deduce from

∥∥τψ(u)
∥∥ − ∥∥ψ(u)

∥∥ = n
([

ψ(u)
];b

) − 2n
([

ψ(u)
];b,a−1);∥∥ττmψ1(u)

∥∥ − ∥∥τmψ1(u)
∥∥ = n

([
τmψ1(u)

];b
) − 2n

([
τmψ1(u)

];b,a−1)
together with (3) and (6) that

∥∥τψ(u)
∥∥ − ∥∥ψ(u)

∥∥ = ∥∥ττmψ1(u)
∥∥ − ∥∥τmψ1(u)

∥∥ + ∥∥σψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥,

which proves the second assertion of the lemma. �
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Lemma 3.2. Let u ∈ F2 . Suppose that ψ is a chain of type (C1) which contains at least ‖u‖ factors of σ . Then

(i)
∥∥σψ(u)

∥∥ − ∥∥ψ(u)
∥∥ � 0;

(ii)
∥∥τψ(u)

∥∥ − ∥∥ψ(u)
∥∥ � 0.

Proof. Clearly

∥∥σψ(u)
∥∥ − ∥∥ψ(u)

∥∥ = n
([

ψ(u)
];a

) − 2n
([

ψ(u)
];a,b−1)

= n
([

ψ(u)
];a,a

) + n
([

ψ(u)
];a,b

) − n
([

ψ(u)
];a,b−1). (11)

Since ψ contains at least ‖u‖ factors of σ , by Lemma 2.1, there cannot occur proper cancellation
in passing from [ψ(u)] to [σψ(u)]. Hence every subword of [ψ(u)] of the form ab−1 or ba−1 is
necessarily part of a subword of the form ab−ra−1 or abra−1 (r > 0), respectively. This implies that

n
([

ψ(u)
];a,b

)
� n

([
ψ(u)

];a,b−1),
so that, from (11),

∥∥σψ(u)
∥∥ − ∥∥ψ(u)

∥∥ � n
([

ψ(u)
];a,a

)
� 0,

thus proving (i).
On the other hand, clearly

∥∥τψ(u)
∥∥ − ∥∥ψ(u)

∥∥ = n
([

ψ(u)
];b

) − 2n
([

ψ(u)
];b,a−1)

= n
([

ψ(u)
];b,b

) + n
([

ψ(u)
];b,a

) − n
([

ψ(u)
];b,a−1). (12)

As above, every subword of [ψ(u)] of the form ab−1 or ba−1 is necessarily part of a subword of the
form ab−ra−1 or abra−1 (r > 0), respectively. Observe that a subword of [ψ(u)] of the form ab±ra−1

is actually part of either a subword of the form basb±ra−1 or a subword of the form a−1b−tasb±ra−1

(s, t > 0). This implies that

n
([

ψ(u)
];b,a

)
� n

([
ψ(u)

];b,a−1), (13)

so that, from (12),

∥∥τψ(u)
∥∥ − ∥∥ψ(u)

∥∥ � n
([

ψ(u)
];b,b

)
� 0, (14)

thus proving (ii). �
Lemma 3.3. Let u ∈ F2 . Suppose that ψ is a chain of type (C1) which contains at least ‖u‖ + 1 factors of σ .
Then

(i) if ‖σψ(u)‖ = ‖ψ(u)‖, then ‖σ i+1ψ(u)‖ = ‖σ iψ(u)‖ for every i � 0;
(ii) if ‖σ j+1ψ(u)‖ = ‖σ jψ(u)‖ for some j � 0, then ‖σψ(u)‖ = ‖ψ(u)‖.

Proof. For (i), assume that ‖σψ(u)‖ = ‖ψ(u)‖. We shall prove ‖σ i+1ψ(u)‖ = ‖σ iψ(u)‖ by induction
on i � 0. The case where i = 0 is clear. So let i � 1. By Lemma 3.1(i) with m = 0, we have

∥∥σ i+1ψ(u)
∥∥ − ∥∥σ iψ(u)

∥∥ = ∥∥σ iψ(u)
∥∥ − ∥∥σ i−1ψ(u)

∥∥.
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It follows from the induction hypothesis that

∥∥σ i+1ψ(u)
∥∥ = ∥∥σ iψ(u)

∥∥,

so proving (i).
For (ii), assume that ‖σ j+1ψ(u)‖ = ‖σ jψ(u)‖ for some j � 0. We use induction on j � 0. If j = 0,

then there is nothing to prove. So let j � 1. It follows from Lemma 3.1(i) with m = 0 that

0 = ∥∥σ j+1ψ(u)
∥∥ − ∥∥σ jψ(u)

∥∥ = ∥∥σ jψ(u)
∥∥ − ∥∥σ j−1ψ(u)

∥∥,

so that

∥∥σ jψ(u)
∥∥ = ∥∥σ j−1ψ(u)

∥∥.

Then by the induction hypothesis, we get the required result. �
Lemma 3.4. Let u ∈ F2 , and let ψ = σψ1 , where ψ1 is a chain of type (C1) which contains at least ‖u‖ + 1
factors of σ . Suppose that ‖τψ(u)‖ = ‖ψ(u)‖. Then ‖σ i+1ψ1(u)‖ = ‖σ iψ1(u)‖ for every i � 0.

Proof. By Lemma 3.1(ii) with m = 0, we have

0 = ∥∥τψ(u)
∥∥ − ∥∥ψ(u)

∥∥ = ∥∥τψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥ + ∥∥σψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥.

Here, by Lemma 3.2(ii), ‖τψ1(u)‖ − ‖ψ1(u)‖ � 0. Also by Lemma 3.2(i), ‖σψ1(u)‖ − ‖ψ1(u)‖ � 0.
Hence we must have

∥∥τψ1(u)
∥∥ = ∥∥ψ1(u)

∥∥ and
∥∥σψ1(u)

∥∥ = ∥∥ψ1(u)
∥∥.

The second equality ‖σψ1(u)‖ = ‖ψ1(u)‖ yields from Lemma 3.3(i) that

∥∥σ i+1ψ1(u)
∥∥ = ∥∥σ iψ1(u)

∥∥
for every i � 0, thus proving the assertion. �

For the proof of the main result of the present section, we need the following two technical corol-
laries of Lemmas 3.1–3.4. We remark that similar statements to the corollaries also hold if σ and τ
are interchanged with each other, or (C1) is replaced by (C2) and σ and τ are replaced by σ−1 and
τ−1, respectively.

Corollary 3.5. Let u, v ∈ F2 with ‖u‖ � ‖v‖, and let ψ be a chain of type (C1) with |ψ | � 2‖u‖ + 3. Put
k = ‖u‖ + 1. Suppose that u and v have the property that

∥∥σ k+1ψ ′(u)
∥∥ = ∥∥σ kψ ′(u)

∥∥ if and only if
∥∥σ k+1ψ ′(v)

∥∥ = ∥∥σ kψ ′(v)
∥∥;∥∥τ k+1ψ ′(u)

∥∥ = ∥∥τ kψ ′(u)
∥∥ if and only if

∥∥τ k+1ψ ′(v)
∥∥ = ∥∥τ kψ ′(v)

∥∥,

for every chain ψ ′ of type (C1) with |ψ ′| < |ψ |. Then we have

(i)
∥∥σ k+1ψ(u)

∥∥ = ∥∥σ kψ(u)
∥∥ if and only if

∥∥σ k+1ψ(v)
∥∥ = ∥∥σ kψ(v)

∥∥;
(ii)

∥∥τ k+1ψ(u)
∥∥ = ∥∥τ kψ(u)

∥∥ if and only if
∥∥τ k+1ψ(v)

∥∥ = ∥∥τ kψ(v)
∥∥.
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Proof. Suppose that ψ ends in τ (the case where ψ ends in σ is analogous). Since |ψ | � 2‖u‖ + 3,
either σ or τ occurs at least ‖u‖ + 2 times in ψ . We consider two cases separately.

Case 1. σ occurs at least ‖u‖ + 2 times in ψ .

First we shall prove (i). Suppose that ‖σ k+1ψ(u)‖ = ‖σ kψ(u)‖. By Lemma 3.3(ii), we have

∥∥σψ(u)
∥∥ = ∥∥ψ(u)

∥∥.

Write

ψ = τ �σψ1,

where � � 1 and ψ1 is a chain of type (C1). Clearly ψ1 contains at least ‖u‖ + 1 factors of σ . By
Lemma 3.1(i), we have

0 = ∥∥σψ(u)
∥∥ − ∥∥ψ(u)

∥∥ = ∥∥στ�ψ1(u)
∥∥ − ∥∥τ �ψ1(u)

∥∥ + �
(∥∥σψ1(u)

∥∥ − ∥∥ψ1(u)
∥∥)

.

Here, since ‖στ�ψ1(u)‖ − ‖τ �ψ1(u)‖ � 0 and ‖σψ1(u)‖ − ‖ψ1(u)‖ � 0 by Lemma 3.2(i), the only
possibility is that

∥∥στ�ψ1(u)
∥∥ = ∥∥τ �ψ1(u)

∥∥ and
∥∥σψ1(u)

∥∥ = ∥∥ψ1(u)
∥∥.

These equalities together with Lemma 3.3(i) yield that

∥∥σ k+1τ �ψ1(u)
∥∥ = ∥∥σ kτ �ψ1(u)

∥∥ and
∥∥σ k+1ψ1(u)

∥∥ = ∥∥σ kψ1(u)
∥∥.

Since |τ �ψ1| < |ψ | and |ψ1| < |ψ |, by the hypothesis of the corollary, we get

∥∥σ k+1τ �ψ1(v)
∥∥ = ∥∥σ kτ �ψ1(v)

∥∥ and
∥∥σ k+1ψ1(v)

∥∥ = ∥∥σ kψ1(v)
∥∥.

Again by Lemma 3.3(ii), we have

∥∥στ�ψ1(v)
∥∥ = ∥∥τ �ψ1(v)

∥∥ and
∥∥σψ1(v)

∥∥ = ∥∥ψ1(v)
∥∥.

Therefore, by Lemma 3.1(i),

∥∥σψ(v)
∥∥ − ∥∥ψ(v)

∥∥ = ∥∥στ�ψ1(v)
∥∥ − ∥∥τ �ψ1(v)

∥∥ + �
(∥∥σψ1(v)

∥∥ − ∥∥ψ1(v)
∥∥)

= 0,

namely, ‖σψ(v)‖ = ‖ψ(v)‖. Then the desired equality ‖σ k+1ψ(v)‖ = ‖σ kψ(v)‖ follows from
Lemma 3.3(i).

Conversely, if ‖σ k+1ψ(v)‖ = ‖σ kψ(v)‖, we can deduce, in the same way as above, that
‖σ k+1ψ(u)‖ = ‖σ kψ(u)‖.

Next we shall prove (ii). Assume that ‖τ k+1ψ(u)‖ = ‖τ kψ(u)‖. Apply Lemma 3.1(ii) to get

0 = ∥∥τ k+1ψ(u)
∥∥ − ∥∥τ kψ(u)

∥∥ = ∥∥τ k+1τ �ψ1(u)
∥∥ − ∥∥τ kτ �ψ1(u)

∥∥ + ∥∥σψ1(u)
∥∥ − ∥∥ψ1(u)

∥∥. (15)

Here, since ‖τ k+1τ �ψ1(u)‖ − ‖τ kτ �ψ1(u)‖ � 0 by Lemma 3.2(ii), and since ‖σψ1(u)‖ − ‖ψ1(u)‖ � 0
by Lemma 3.2(i), we must have

∥∥τ k+1τ �ψ1(u)
∥∥ = ∥∥τ kτ �ψ1(u)

∥∥ and
∥∥σψ1(u)

∥∥ = ∥∥ψ1(u)
∥∥. (16)
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Since |τ �ψ1| < |ψ |, by the hypothesis of the corollary, the first equality of (16) implies that

∥∥τ k+1τ �ψ1(v)
∥∥ = ∥∥τ kτ �ψ1(v)

∥∥.

Also, from the second equality of (16), arguing as above, we deduce that

∥∥σψ1(v)
∥∥ = ∥∥ψ1(v)

∥∥.

Therefore, by Lemma 3.1(ii),

∥∥τ k+1ψ(v)
∥∥ − ∥∥τ kψ(v)

∥∥ = ∥∥τ k+1τ �ψ1(v)
∥∥ − ∥∥τ kτ �ψ1(v)

∥∥ + ∥∥σψ1(v)
∥∥ − ∥∥ψ1(v)

∥∥
= 0,

that is, ‖τ k+1ψ(v)‖ = ‖τ kψ(v)‖, as required.
It is clear that the converse is also true.

Case 2. τ occurs at least ‖u‖ + 2 times in ψ .

Since ψ is assumed to end in τ , we may write

ψ = τψ2,

where ψ2 is a chain of type (C1) that contains at least ‖u‖ + 1 factors of τ .
First we shall prove (i). Suppose that ‖σ k+1ψ(u)‖ = ‖σ kψ(u)‖. By Lemma 3.1(ii) with σ ,τ inter-

changed, we have

0 = ∥∥σ k+1ψ(u)
∥∥ − ∥∥σ kψ(u)

∥∥ = ∥∥σ k+1ψ2(u)
∥∥ − ∥∥σ kψ2(u)

∥∥ + ∥∥τψ2(u)
∥∥ − ∥∥ψ2(u)

∥∥.

This is a similar situation to (15) with σ ,τ interchanged. So arguing as in Case 1, we get the desired
equality ‖σ k+1ψ(v)‖ = ‖σ kψ(v)‖. Clearly the converse also holds.

Next we shall prove (ii). Suppose that ‖τ k+1ψ(u)‖ = ‖τ kψ(u)‖. By Lemma 3.1(i) with σ ,τ inter-
changed and m = 0, we have

0 = ∥∥τ k+1ψ(u)
∥∥ − ∥∥τ kψ(u)

∥∥ = ∥∥τ kψ(u)
∥∥ − ∥∥τ k−1ψ(u)

∥∥.

So

∥∥τ kψ(u)
∥∥ = ∥∥τ k−1ψ(u)

∥∥.

This equality can be rephrased as

∥∥τ k+1ψ2(u)
∥∥ = ∥∥τ kψ2(u)

∥∥,

because ψ = τψ2. Since |ψ2| < |ψ |, by the hypothesis of the corollary,

∥∥τ k+1ψ2(v)
∥∥ = ∥∥τ kψ2(v)

∥∥,

that is,

∥∥τ kψ(v)
∥∥ = ∥∥τ k−1ψ(v)

∥∥.
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Thus, by Lemma 3.1(i) with σ ,τ interchanged and m = 0, we obtain

∥∥τ k+1ψ(v)
∥∥ − ∥∥τ kψ(v)

∥∥ = ∥∥τ kψ(v)
∥∥ − ∥∥τ k−1ψ(v)

∥∥ = 0,

namely, ‖τ k+1ψ(v)‖ = ‖τ kψ(v)‖, as required. Obviously the converse is also true. �
Corollary 3.6. Let u, v ∈ F2 with ‖u‖ � ‖v‖, and let ψ be a chain of type (C1). Put k = ‖u‖ + 1. Suppose that
u and v have the property that

∥∥σ k+1ψ ′(u)
∥∥ = ∥∥σ kψ ′(u)

∥∥ if and only if
∥∥σ k+1ψ ′(v)

∥∥ = ∥∥σ kψ ′(v)
∥∥;∥∥τ k+1ψ ′(u)

∥∥ = ∥∥τ kψ ′(u)
∥∥ if and only if

∥∥τ k+1ψ ′(v)
∥∥ = ∥∥τ kψ ′(v)

∥∥,

for every chain ψ ′ of type (C1) with |ψ ′| � |ψ |. Then we have

(i) if ψ contains at least ‖u‖ + 1 factors of σ , then

∥∥σψ(u)
∥∥ = ∥∥ψ(u)

∥∥ if and only if
∥∥σψ(v)

∥∥ = ∥∥ψ(v)
∥∥;

(ii) if ‖τψ(u)‖ = ‖ψ(u)‖ or ‖τψ(v)‖ = ‖ψ(v)‖, and ψ = σψ1 , where ψ1 is a chain of type (C1) which
contains at least ‖u‖ + 1 factors of σ , then

∥∥σψ1(u)
∥∥ = ∥∥ψ1(u)

∥∥ and
∥∥σψ1(v)

∥∥ = ∥∥ψ1(v)
∥∥;

(iii) if ψ contains at least ‖u‖ + 2 factors of σ and ends in τ , then

∥∥τψ(u)
∥∥ = ∥∥ψ(u)

∥∥ if and only if
∥∥τψ(v)

∥∥ = ∥∥ψ(v)
∥∥.

Proof. For (i), let ψ contain at least ‖u‖ + 1 factors of σ , and suppose that ‖σψ(u)‖ = ‖ψ(u)‖.
By Lemma 3.3(i), we have ‖σ k+1ψ(u)‖ = ‖σ kψ(u)‖. Then by the hypothesis of the corollary,
‖σ k+1ψ(v)‖ = ‖σ kψ(v)‖. Finally by Lemma 3.3(ii), we get ‖σψ(v)‖ = ‖ψ(v)‖. The converse also
holds.

For (ii), let ψ = σψ1, where ψ1 is a chain of type (C1) containing at least ‖u‖ + 1 factors of σ ,
and suppose that ‖τψ(u)‖ = ‖ψ(u)‖. By Lemma 3.4, we have ‖σψ1(u)‖ = ‖ψ1(u)‖. Then, by (i) of
the corollary, ‖σψ1(v)‖ = ‖ψ1(v)‖. The converse is proved similarly.

For (iii), let ψ contain at least ‖u‖ + 2 factors of σ , and let ψ end in τ . Assume that ‖τψ(u)‖ =
‖ψ(u)‖. Write

ψ = τ �σψ2,

where � � 1 and ψ2 is a chain of type (C1). By Lemma 3.1(ii), we have

0 = ∥∥τψ(u)
∥∥ − ∥∥ψ(u)

∥∥ = ∥∥ττ �ψ2(u)
∥∥ − ∥∥τ �ψ2(u)

∥∥ + ∥∥σψ2(u)
∥∥ − ∥∥ψ2(u)

∥∥.

Here, since ‖ττ �ψ2(u)‖ − ‖τ �ψ2(u)‖ � 0 by Lemma 3.2(ii) and ‖σψ2(u)‖ − ‖ψ2(u)‖ � 0 by
Lemma 3.2(i), we must have

∥∥ττ �ψ2(u)
∥∥ = ∥∥τ �ψ2(u)

∥∥ and
∥∥σψ2(u)

∥∥ = ∥∥ψ2(u)
∥∥.

Since ‖σψ2(u)‖ = ‖ψ2(u)‖, by (i) of the corollary,

∥∥σψ2(v)
∥∥ = ∥∥ψ2(v)

∥∥.
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Also, the following claim shows that ‖ττ �ψ2(v)‖ = ‖τ �ψ2(v)‖. Then by Lemma 3.1(ii), we have
‖τψ(v)‖ = ‖ψ(v)‖, as required.

Claim. ‖ττ �ψ2(v)‖ = ‖τ �ψ2(v)‖.

Proof. Since ‖τψ(u)‖ = ‖ψ(u)‖, in view of (12), (13) and (14) in the proof of Lemma 3.2, we must
have

n
([

ψ(u)
];b,a

) = n
([

ψ(u)
];b,a−1) and n

([
ψ(u)

];b,b
) = 0. (17)

Since the chain ψ2 contains at least ‖u‖+1 factors of σ , by Lemma 2.1, no proper cancellation occurs
in passing from [ψ2(u)] to [σψ2(u)]. This yields that

a2 or a−2 cannot occur in
[
σψ2(u)

]
as a subword. (18)

From this, we see that, since � � 1,

no proper cancellation can occur in passing from
[
ψ(u)

]
to

[
τψ(u)

]
. (19)

In view of (17), (18) and (19), the cyclic word [ψ(u)] must have the form

[
ψ(u)

] = [
aεba−εb−1 · · ·aεba−εb−1],

where either ε = 1 or ε = −1. Then, by applying σ−1τ−� to [ψ(u)], we deduce that

[
ψ2(u)

] = [
ψ(u)

] = [
aεba−εb−1 · · ·aεba−εb−1].

It then follows that

[
τ iψ2(u)

] = [
ψ2(u)

]
for every i � 0, so that

∥∥τ i+1ψ2(u)
∥∥ = ∥∥τ iψ2(u)

∥∥ (20)

for every i � 0. In particular,

∥∥τ k+1ψ2(u)
∥∥ = ∥∥τ kψ2(u)

∥∥.

So by the hypothesis of the corollary,

∥∥τ k+1ψ2(v)
∥∥ = ∥∥τ kψ2(v)

∥∥. (21)

Then in the same way as obtaining (17), we get

n
([

τ kψ2(v)
];b,a

) = n
([

τ kψ2(v)
];b,a−1) and n

([
τ kψ2(v)

];b,b
) = 0. (22)

Since the chain τ kψ2 contains at least ‖v‖+1 factors of τ , by Lemma 2.1, no proper cancellation may
occur in passing from [τ kψ2(v)] to [τ k+1ψ2(v)]. This together with (22) yields that

[
τ kψ2(v)

] = [
as1 bat1 b−1 · · ·asr batr b−1],
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where every s j, t j is a nonzero integer. Then, by applying τ−k to [τ kψ2(v)], we deduce that

[
ψ2(v)

] = [
as1 bat1 b−1 · · ·asr batr b−1].

Thus it follows that

[
τ iψ2(v)

] = [
ψ2(v)

]
for every i � 0, so that

∥∥τ i+1ψ2(v)
∥∥ = ∥∥τ iψ2(v)

∥∥
for every i � 0. In particular, ‖ττ �ψ2(v)‖ = ‖τ �ψ2(v)‖, as required. �

The proof of the corollary is now completed. �
For a Whitehead automorphism β of F2, a chain ψ of Whitehead automorphisms of F2 and an

element w in F2, we let ‖β : ψ : w‖ denote the maximum of 1 and ‖βψ(w)‖ − ‖ψ(w)‖, that is,

‖β : ψ : w‖ := max
{

1,
∥∥βψ(w)

∥∥ − ∥∥ψ(w)
∥∥}

.

Now we are ready to establish the main result of the present section as follows.

Theorem 3.7. Let u, v ∈ F2 with ‖u‖ � ‖v‖, and let Ω be the set of all chains of type (C1) or (C2) of length
less than or equal to 2‖u‖ + 5. Let Ω1 be the subset of Ω consisting of all chains of type (C1), and let Ω2 be
the subset of Ω consisting of all chains of type (C2). Put k = ‖u‖ + 1. Suppose that u and v have the property
that

∥∥σ k+1ψ1(u)
∥∥ = ∥∥σ kψ1(u)

∥∥ if and only if
∥∥σ k+1ψ1(v)

∥∥ = ∥∥σ kψ1(v)
∥∥;∥∥τ k+1ψ1(u)

∥∥ = ∥∥τ kψ1(u)
∥∥ if and only if

∥∥τ k+1ψ1(v)
∥∥ = ∥∥τ kψ1(v)

∥∥,

for every ψ1 ∈ Ω1 , and that

∥∥σ−k−1ψ2(u)
∥∥ = ∥∥σ−kψ2(u)

∥∥ if and only if
∥∥σ−k−1ψ2(v)

∥∥ = ∥∥σ−kψ2(v)
∥∥;∥∥τ−k−1ψ2(u)

∥∥ = ∥∥τ−kψ2(u)
∥∥ if and only if

∥∥τ−k−1ψ2(v)
∥∥ = ∥∥τ−kψ2(v)

∥∥,

for every ψ2 ∈ Ω2 . Then u and v are boundedly translation equivalent in F2 .
More specifically,

min Δ � ‖φ(u)‖
‖φ(v)‖ � max Δ

for every automorphism φ of F2 , where

Δ :=
{‖ψ(u)‖

‖ψ(v)‖ ,
‖α : ψ1 : u‖
‖α : ψ1 : v‖ ,

‖α−1 : ψ2 : u‖
‖α−1 : ψ2 : v‖

∣∣∣ ψ ∈ Ω,ψi ∈ Ωi,α = σ or τ

}
.

(Obviously, Δ is a finite set consisting of positive real numbers.)
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Proof. Let φ be an automorphism of F2. By Lemma 1.1, φ can be represented as

φ ≡ βφ′,

where β is a Whitehead automorphism of F2 of type (W1) and φ′ is of type either (C1) or (C2). We
proceed with the proof of the theorem by induction on |φ′|. Letting φ′ be a chain of type (C1) with
|φ′| > 2‖u‖ + 5 (the case for (C2) is similar), assume that

∥∥σ k+1ψ(u)
∥∥ = ∥∥σ kψ(u)

∥∥ if and only if
∥∥σ k+1ψ(v)

∥∥ = ∥∥σ kψ(v)
∥∥;∥∥τ k+1ψ(u)

∥∥ = ∥∥τ kψ(u)
∥∥ if and only if

∥∥τ k+1ψ(v)
∥∥ = ∥∥τ kψ(v)

∥∥,

and that

min Δ � ‖ψ(u)‖
‖ψ(v)‖ ,

‖σ : ψ : u‖
‖σ : ψ : v‖ ,

‖τ : ψ : u‖
‖τ : ψ : v‖ � max Δ,

for every chain ψ of type (C1) with |ψ | < |φ′|.
By Corollary 3.5, it is easy to get

∥∥σ k+1φ′(u)
∥∥ = ∥∥σ kφ′(u)

∥∥ if and only if
∥∥σ k+1φ′(v)

∥∥ = ∥∥σ kφ′(v)
∥∥;∥∥τ k+1φ′(u)

∥∥ = ∥∥τ kφ′(u)
∥∥ if and only if

∥∥τ k+1φ′(v)
∥∥ = ∥∥τ kφ′(v)

∥∥.

In the following Claims A, B and C, we shall prove that

minΔ � ‖φ′(u)‖
‖φ′(v)‖ ,

‖σ : φ′ : u‖
‖σ : φ′ : v‖ ,

‖τ : φ′ : u‖
‖τ : φ′ : v‖ � max Δ,

which is clearly equivalent to showing that

min Δ � ‖φ(u)‖
‖φ(v)‖ ,

‖σ : φ : u‖
‖σ : φ : v‖ ,

‖τ : φ : u‖
‖τ : φ : v‖ � max Δ.

Suppose that φ′ ends in τ (the case where φ′ ends in σ is analogous).

Claim A.

min Δ � ‖φ′(u)‖
‖φ′(v)‖ � maxΔ.

Proof. Since φ′ ends in τ , we may write

φ′ = τφ1,

where φ1 is a chain of type (C1). Then obviously

∥∥φ′(u)
∥∥ = ∥∥τφ1(u)

∥∥ − ∥∥φ1(u)
∥∥ + ∥∥φ1(u)

∥∥;∥∥φ′(v)
∥∥ = ∥∥τφ1(v)

∥∥ − ∥∥φ1(v)
∥∥ + ∥∥φ1(v)

∥∥. (23)

If both ‖τφ1(u)‖ 
= ‖φ1(u)‖ and ‖τφ1(v)‖ 
= ‖φ1(v)‖, then equalities (23) can be rephrased as
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∥∥φ′(u)
∥∥ = ‖τ : φ1 : u‖ + ∥∥φ1(u)

∥∥;∥∥φ′(v)
∥∥ = ‖τ : φ1 : v‖ + ∥∥φ1(v)

∥∥. (24)

Since

min Δ � ‖φ1(u)‖
‖φ1(v)‖ ,

‖τ : φ1 : u‖
‖τ : φ1 : v‖ � max Δ

by the induction hypothesis, we obtain

min Δ � ‖φ′(u)‖
‖φ′(v)‖ � max Δ,

as required.
So assume that

∥∥τφ1(u)
∥∥ = ∥∥φ1(u)

∥∥ or
∥∥τφ1(v)

∥∥ = ∥∥φ1(v)
∥∥. (25)

Clearly the chain φ1 has length |φ1| = |φ′|− 1 � 2‖u‖+ 5. Hence either σ or τ occurs at least ‖u‖+ 3
times in φ1. We consider two cases accordingly.

Case A.1. σ occurs at least ‖u‖ + 3 times in φ1.

Since φ1 is a chain of type (C1), φ1 ends in either σ or τ .

Case A.1.1. φ1 ends in σ .

Write

φ1 = σφ2,

where φ2 is a chain of type (C1). In view of Corollary 3.6(ii), our assumption (25) yields that

∥∥σφ2(u)
∥∥ = ∥∥φ2(u)

∥∥ and
∥∥σφ2(v)

∥∥ = ∥∥φ2(v)
∥∥. (26)

This together with Lemma 3.1(ii) implies that

∥∥τφ1(u)
∥∥ − ∥∥φ1(u)

∥∥ = ∥∥τφ2(u)
∥∥ − ∥∥φ2(u)

∥∥;∥∥τφ1(v)
∥∥ − ∥∥φ1(v)

∥∥ = ∥∥τφ2(v)
∥∥ − ∥∥φ2(v)

∥∥. (27)

Since φ1 = σφ2, we obtain from (26) that ‖φ1(u)‖ = ‖φ2(u)‖ and ‖φ1(v)‖ = ‖φ2(v)‖, so that, from
(27),

∥∥τφ1(u)
∥∥ = ∥∥τφ2(u)

∥∥;∥∥τφ1(v)
∥∥ = ∥∥τφ2(v)

∥∥. (28)

Since φ′ = τφ1, (28) implies that

‖φ′(u)‖
′ = ‖τφ2(u)‖

,
‖φ (v)‖ ‖τφ2(v)‖
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and thus, by the induction hypothesis,

min Δ � ‖φ′(u)‖
‖φ′(v)‖ � max Δ,

as desired.

Case A.1.2. φ1 ends in τ .

In view of Corollary 3.6(iii), our assumption (25) yields that both ‖τφ1(u)‖ = ‖φ1(u)‖ and
‖τφ1(v)‖ = ‖φ1(v)‖. We then have from (23) that

‖φ′(u)‖
‖φ′(v)‖ = ‖φ1(u)‖

‖φ1(v)‖ ,

so that, by the induction hypothesis,

min Δ � ‖φ′(u)‖
‖φ′(v)‖ � max Δ,

as required.

Case A.2. τ occurs at least ‖u‖ + 3 times in φ1.

In view of Corollary 3.6(i) with τ in place of σ , we have from (25) both ‖τφ1(u)‖ = ‖φ1(u)‖ and
‖τφ1(v)‖ = ‖φ1(v)‖. It then follows from (23) that

‖φ′(u)‖
‖φ′(v)‖ = ‖φ1(u)‖

‖φ1(v)‖ ,

so that, by the induction hypothesis,

min Δ � ‖φ′(u)‖
‖φ′(v)‖ � max Δ,

as desired. �
Claim B.

min Δ � ‖σ : φ′ : u‖
‖σ : φ′ : v‖ � maxΔ.

Proof. As in the proof of Claim A, writing

φ′ = τφ1,

where φ1 is a chain of type (C1), we consider two cases separately.

Case B.1. σ occurs at least ‖u‖ + 3 times in φ1.

In this case, write

φ1 = τm−1σφ2,



184 D. Lee / Journal of Algebra 321 (2009) 167–193
where m � 1 and φ2 is a chain of type (C1). Since φ′ = τφ1,

φ′ = τmσφ2.

Then by Lemma 3.1(i), we have

∥∥σφ′(u)
∥∥ − ∥∥φ′(u)

∥∥ = ∥∥στmφ2(u)
∥∥ − ∥∥τmφ2(u)

∥∥ + m
(∥∥σφ2(u)

∥∥ − ∥∥φ2(u)
∥∥);∥∥σφ′(v)

∥∥ − ∥∥φ′(v)
∥∥ = ∥∥στmφ2(v)

∥∥ − ∥∥τmφ2(v)
∥∥ + m

(∥∥σφ2(v)
∥∥ − ∥∥φ2(v)

∥∥)
. (29)

Here, since φ2 is a chain of type (C1) which contains at least ‖u‖ + 2 factors of σ , Corollary 3.6(i)
yields that ‖στmφ2(u)‖ = ‖τmφ2(u)‖ if and only if ‖στmφ2(v)‖ = ‖τmφ2(v)‖. So if ‖στmφ2(u)‖ =
‖τmφ2(u)‖ or ‖στmφ2(v)‖ = ‖τmφ2(v)‖, then we get from (29) that

∥∥σφ′(u)
∥∥ − ∥∥φ′(u)

∥∥ = m
(∥∥σφ2(u)

∥∥ − ∥∥φ2(u)
∥∥);∥∥σφ′(v)

∥∥ − ∥∥φ′(v)
∥∥ = m

(∥∥σφ2(v)
∥∥ − ∥∥φ2(v)

∥∥)
.

This gives us

‖σ : φ′ : u‖
‖σ : φ′ : v‖ = ‖σ : φ2 : u‖

‖σ : φ2 : v‖ ,

and hence the desired inequalities

minΔ � ‖σ : φ′ : u‖
‖σ : φ′ : v‖ � max Δ

follow by the induction hypothesis.
Now let us assume that

∥∥στmφ2(u)
∥∥ 
= ∥∥τmφ2(u)

∥∥ and
∥∥στmφ2(v)

∥∥ 
= ∥∥τmφ2(v)
∥∥.

Again by Corollary 3.6(i), we have ‖σφ2(u)‖ = ‖φ2(u)‖ if and only if ‖σφ2(v)‖ = ‖φ2(v)‖. Hence if
‖σφ2(u)‖ = ‖φ2(u)‖ or ‖σφ2(v)‖ = ‖φ2(v)‖, then, from (29),

∥∥σφ′(u)
∥∥ − ∥∥φ′(u)

∥∥ = ∥∥στmφ2(u)
∥∥ − ∥∥τmφ2(u)

∥∥;∥∥σφ′(v)
∥∥ − ∥∥φ′(v)

∥∥ = ∥∥στmφ2(v)
∥∥ − ∥∥τmφ2(v)

∥∥.

This yields

‖σ : φ′ : u‖
‖σ : φ′ : v‖ = ‖σ : τmφ2 : u‖

‖σ : τmφ2 : v‖ ,

which gives us

minΔ � ‖σ : φ′ : u‖
‖σ : φ′ : v‖ � max Δ

by the induction hypothesis.
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So let us further assume that

∥∥σφ2(u)
∥∥ 
= ∥∥φ2(u)

∥∥ and
∥∥σφ2(v)

∥∥ 
= ∥∥φ2(v)
∥∥.

It then follows from (29) that

∥∥σφ′(u)
∥∥ − ∥∥φ′(u)

∥∥ = ∥∥σ : τmφ2 : u
∥∥ + m‖σ : φ2 : u‖;∥∥σφ′(v)

∥∥ − ∥∥φ′(v)
∥∥ = ∥∥σ : τmφ2 : v

∥∥ + m‖σ : φ2 : v‖. (30)

Since

min Δ � ‖σ : τmφ2 : u‖
‖σ : τmφ2 : v‖ ,

‖σ : φ2 : u‖
‖σ : φ2 : v‖ � max Δ

by the induction hypothesis, we have from (30) that

minΔ � ‖σ : φ′ : u‖
‖σ : φ′ : v‖ � max Δ,

as required.

Case B.2. τ occurs at least ‖u‖ + 3 times in φ1.

In this case, it follows from Lemma 3.1(ii) with σ ,τ interchanged and m = 0 that

∥∥σφ′(u)
∥∥ − ∥∥φ′(u)

∥∥ = ∥∥σφ1(u)
∥∥ − ∥∥φ1(u)

∥∥ + ∥∥τφ1(u)
∥∥ − ∥∥φ1(u)

∥∥;∥∥σφ′(v)
∥∥ − ∥∥φ′(v)

∥∥ = ∥∥σφ1(v)
∥∥ − ∥∥φ1(v)

∥∥ + ∥∥τφ1(v)
∥∥ − ∥∥φ1(v)

∥∥. (31)

Here, by Corollary 3.6(i) with τ in place of σ , we have ‖τφ1(u)‖ = ‖φ1(u)‖ if and only if ‖τφ1(v)‖ =
‖φ1(v)‖. Hence if ‖τφ1(u)‖ = ‖φ1(u)‖ or ‖τφ1(v)‖ = ‖φ1(v)‖, then, by (31),

∥∥σφ′(u)
∥∥ − ∥∥φ′(u)

∥∥ = ∥∥σφ1(u)
∥∥ − ∥∥φ1(u)

∥∥;∥∥σφ′(v)
∥∥ − ∥∥φ′(v)

∥∥ = ∥∥σφ1(v)
∥∥ − ∥∥φ1(v)

∥∥,

and thus

‖σ : φ′ : u‖ = ‖σ : φ1 : u‖;
‖σ : φ′ : v‖ = ‖σ : φ1 : v‖.

Then by the induction hypothesis,

minΔ � ‖σ : φ′ : u‖
‖σ : φ′ : v‖ � max Δ,

as desired.
Now assume that

∥∥τφ1(u)
∥∥ 
= ∥∥φ1(u)

∥∥ and
∥∥τφ1(v)

∥∥ 
= ∥∥φ1(v)
∥∥.
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We shall show that ‖σφ1(u)‖ = ‖φ1(u)‖ if and only if ‖σφ1(v)‖ = ‖φ1(v)‖. Let ‖σφ1(u)‖ = ‖φ1(u)‖.
If φ1 ends in σ , then, by Corollary 3.6(iii) with σ , τ interchanged, we have ‖σφ1(v)‖ = ‖φ1(v)‖.
On the other hand, if φ1 ends in τ , then, by Corollary 3.6(ii) with σ , τ interchanged, we get
‖τφ2(u)‖ = ‖φ2(u)‖, where φ1 = τφ2. But then from Lemma 3.3(i) with σ , τ interchanged, it
follows that ‖τ 2φ2(u)‖ = ‖τφ2(u)‖, namely, ‖τφ1(u)‖ = ‖φ1(u)‖, which contradicts our assump-
tion ‖τφ1(u)‖ 
= ‖φ1(u)‖. Therefore, we must have ‖σφ1(v)‖ = ‖φ1(v)‖. Conversely, if ‖σφ1(v)‖ =
‖φ1(v)‖, then, for a similar reason, it must follow that ‖σφ1(u)‖ = ‖φ1(u)‖.

Thus if ‖σφ1(u)‖ = ‖φ1(u)‖ or ‖σφ1(v)‖ = ‖φ1(v)‖, then, from (31),

∥∥σφ′(u)
∥∥ − ∥∥φ′(u)

∥∥ = ∥∥τφ1(u)
∥∥ − ∥∥φ1(u)

∥∥;∥∥σφ′(v)
∥∥ − ∥∥φ′(v)

∥∥ = ∥∥τφ1(v)
∥∥ − ∥∥φ1(v)

∥∥,

and so

‖σ : φ′ : u‖ = ‖τ : φ1 : u‖;
‖σ : φ′ : v‖ = ‖τ : φ1 : v‖.

Then by the induction hypothesis,

minΔ � ‖σ : φ′ : u‖
‖σ : φ′ : v‖ � max Δ,

as required.
So assume further that

∥∥σφ1(u)
∥∥ 
= ∥∥φ1(u)

∥∥ and
∥∥σφ1(v)

∥∥ 
= ∥∥φ1(v)
∥∥.

It follows from (31) that

∥∥σφ′(u)
∥∥ − ∥∥φ′(u)

∥∥ = ‖σ : φ1 : u‖ + ‖τ : φ1 : u‖;∥∥σφ′(v)
∥∥ − ∥∥φ′(v)

∥∥ = ‖σ : φ1 : v‖ + ‖τ : φ1 : v‖. (32)

Since

min Δ � ‖τ : φ1 : u‖
‖τ : φ1 : v‖ ,

‖σ : φ1 : u‖
‖σ : φ1 : v‖ � max Δ

by the induction hypothesis, we obtain from (32) that

min Δ � ‖σ : φ′ : u‖
‖σ : φ′ : v‖ � max Δ,

as desired. �
Claim C.

minΔ � ‖τ : φ′ : u‖
′ � max Δ.
‖τ : φ : v‖
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Proof. As in the proofs of Claims A and B, writing

φ′ = τφ1,

where φ1 is a chain of type (C1), we consider two cases separately.

Case C.1. σ occurs at least ‖u‖ + 3 times in φ1.

As in Case B.1, write

φ1 = τm−1σφ2,

where m � 1 and φ2 is a chain of type (C1). Since φ′ = τφ1,

φ′ = τmσφ2.

It then follows from Lemma 3.1(ii) that

∥∥τφ′(u)
∥∥ − ∥∥φ′(u)

∥∥ = ∥∥ττmφ2(u)
∥∥ − ∥∥τmφ2(u)

∥∥ + ∥∥σφ2(u)
∥∥ − ∥∥φ2(u)

∥∥;∥∥τφ′(v)
∥∥ − ∥∥φ′(v)

∥∥ = ∥∥ττmφ2(v)
∥∥ − ∥∥τmφ2(v)

∥∥ + ∥∥σφ2(v)
∥∥ − ∥∥φ2(v)

∥∥. (33)

By Corollary 3.6(i), we have ‖σφ2(u)‖ = ‖φ2(u)‖ if and only if ‖σφ2(v)‖ = ‖φ2(v)‖. Also by Corol-
lary 3.6(iii), we get ‖ττmφ2(u)‖ = ‖τmφ2(u)‖ if and only if ‖ττmφ2(v)‖ = ‖τmφ2(v)‖. Hence we can
apply a similar argument as in Cases B.1 and B.2 to obtain the desired inequalities

min Δ � ‖τ : φ′ : u‖
‖τ : φ′ : v‖ � maxΔ.

Case C.2. τ occurs at least ‖u‖ + 3 times in φ1.

By Lemma 3.1(i) with σ , τ interchanged and m = 0, we have

∥∥τφ′(u)
∥∥ − ∥∥φ′(u)

∥∥ = ∥∥τφ1(u)
∥∥ − ∥∥φ1(u)

∥∥;∥∥τφ′(v)
∥∥ − ∥∥φ′(v)

∥∥ = ∥∥τφ1(v)
∥∥ − ∥∥φ1(v)

∥∥.

It then follows that

‖τ : φ′ : u‖ = ‖τ : φ1 : u‖;
‖τ : φ′ : v‖ = ‖τ : φ1 : v‖,

so that

min Δ � ‖τ : φ′ : u‖
‖τ : φ′ : v‖ � maxΔ

by the induction hypothesis. This completes the proof of Claim C. �
Now the theorem is completely proved. �
The following theorem is the converse of Theorem 3.7.
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Theorem 3.8. Let u, v ∈ F2 with ‖u‖ � ‖v‖, and Ω,Ω1 and Ω2 be defined as in the statement of Theorem 3.7.
Put k = ‖u‖ + 1. Suppose that u and v are boundedly translation equivalent in F2 . Then

∥∥σ k+1ψ1(u)
∥∥ = ∥∥σ kψ1(u)

∥∥ if and only if
∥∥σ k+1ψ1(v)

∥∥ = ∥∥σ kψ1(v)
∥∥;∥∥τ k+1ψ1(u)

∥∥ = ∥∥τ kψ1(u)
∥∥ if and only if

∥∥τ k+1ψ1(v)
∥∥ = ∥∥τ kψ1(v)

∥∥,

for every ψ1 ∈ Ω1 , and

∥∥σ−k−1ψ2(u)
∥∥ = ∥∥σ−kψ2(u)

∥∥ if and only if
∥∥σ−k−1ψ2(v)

∥∥ = ∥∥σ−kψ2(v)
∥∥;∥∥τ−k−1ψ2(u)

∥∥ = ∥∥τ−kψ2(u)
∥∥ if and only if

∥∥τ−k−1ψ2(v)
∥∥ = ∥∥τ−kψ2(v)

∥∥,

for every ψ2 ∈ Ω2 .

Proof. Suppose on the contrary that

∥∥σ k+1ψ1(u)
∥∥ = ∥∥σ kψ1(u)

∥∥ but
∥∥σ k+1ψ1(v)

∥∥ 
= ∥∥σ kψ1(v)
∥∥ (34)

for some ψ1 ∈ Ω1. (The treatment of the other cases is similar.) Put

K = ∥∥σ k+1ψ1(v)
∥∥ − ∥∥σ kψ1(v)

∥∥.

By Lemma 3.2(i) and the second inequality of (34), we have K � 1. By repeatedly applying
Lemma 3.1(i), we deduce that

∥∥σ i+1ψ1(u)
∥∥ = ∥∥σ kψ1(u)

∥∥ for every i � k;∥∥σ i+1ψ1(v)
∥∥ = ∥∥σ kψ1(v)

∥∥ + K (i + 1 − k) for every i � k.

Hence

‖σ i+1ψ1(u)‖
‖σ i+1ψ1(v)‖ = ‖σ kψ1(u)‖

‖σ kψ1(v)‖ + K (i + 1 − k)

for every i � k, and thus

lim
i→∞

‖σ i+1ψ1(u)‖
‖σ i+1ψ1(v)‖ = 0.

This contradiction to the hypothesis that u and v are boundedly translation equivalent in F2 com-
pletes the proof. �

Consequently, in view of Theorems 3.7 and 3.8, we obtain the following algorithm to determine
bounded translation equivalence in F2.

Algorithm 3.9. Let u, v ∈ F2 with ‖u‖ � ‖v‖, and let Ω,Ω1 and Ω2 be defined as in the statement of
Theorem 3.7. Put k = ‖u‖ + 1. Check if it is true that

∥∥σ k+1ψ1(u)
∥∥ = ∥∥σ kψ1(u)

∥∥ if and only if
∥∥σ k+1ψ1(v)

∥∥ = ∥∥σ kψ1(v)
∥∥;∥∥τ k+1ψ1(u)

∥∥ = ∥∥τ kψ1(u)
∥∥ if and only if

∥∥τ k+1ψ1(v)
∥∥ = ∥∥τ kψ1(v)

∥∥,
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for each ψ1 ∈ Ω1, and if it is true that

∥∥σ−k−1ψ2(u)
∥∥ = ∥∥σ−kψ2(u)

∥∥ if and only if
∥∥σ−k−1ψ2(v)

∥∥ = ∥∥σ−kψ2(v)
∥∥;∥∥τ−k−1ψ2(u)

∥∥ = ∥∥τ−kψ2(u)
∥∥ if and only if

∥∥τ−k−1ψ2(v)
∥∥ = ∥∥τ−kψ2(v)

∥∥,

for each ψ2 ∈ Ω2. If so, conclude that u and v are boundedly translation equivalent in F2; otherwise
conclude that u and v are not boundedly translation equivalent in F2.

4. Fixed point groups of automorphisms of F2

In this section, we shall demonstrate that there is an algorithm to decide whether or not a
given finitely generated subgroup of F2 is the fixed point group of some automorphism of F2. If
H = 〈u1, . . . , uk〉 is a finitely generated subgroup of F2, then we define

|H| := max
1�i�k

|ui |.

Clearly ‖ui‖ � |ui | � |H| for every i = 1, . . . ,k.

Theorem 4.1. Let H = 〈u1, . . . , uk〉 be a finitely generated subgroup of F2 . Suppose that φ is a chain of type
(C1) with |φ| � 4|H| + 5 such that ‖φ(ui)‖ = ‖ui‖ for every i = 1, . . . ,k. Then there exists a chain ψ of type
(C1) with |ψ | < |φ| such that [ψ(ui)] = [φ(ui)] for every i = 1, . . . ,k.

Proof. Since φ is a chain of type (C1) with |φ| � 4|H| + 5, φ contains at least 2|H| + 3 factors of σ
or τ . Suppose that φ contains at least 2|H| + 3 factors of σ (the other case is similar). We may write

φ = τmt σ �t · · ·τm1σ �1φ′, (35)

where all �i,mi > 0 but �1 and mt may be zero, and φ′ is a chain of type (C1) which contains exactly
|H| + 2 factors of σ .

Suppose that there exists u j (1 � j � k) such that ‖σφ′(u j)‖ 
= ‖φ′(u j)‖. Put

K = ∥∥σφ′(u j)
∥∥ − ∥∥φ′(u j)

∥∥.

Since φ′ contains at least ‖u j‖+2 factors of σ , by Lemma 3.2(i), K � 1. Furthermore, since φ contains
at least 2|H| + 3 factors of σ and φ′ contains exactly |H| + 2 factors of σ ,

t∑
i=1

�i � |H| + 1 � ‖u j‖ + 1. (36)

From the following claim, we shall obtain a contradiction.

Claim. ‖φ(u j)‖ − ‖φ′(u j)‖ � ‖u j‖ + 1.

Proof. First assume that m1 = 0 in (35). Then φ = σ �1φ′ , and so, from (36), �1 � ‖u j‖ + 1. By repeat-
edly applying Lemma 3.1(i), we have ∥∥φ(u j)

∥∥ − ∥∥φ′(u j)
∥∥ = �1 K .

Since K � 1, it follows that ∥∥φ(u j)
∥∥ − ∥∥φ′(u j)

∥∥ � �1 � ‖u j‖ + 1,

as desired.
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Next assume that m1 > 0 in (35). In view of Lemmas 3.1 and 3.2, we can observe that

∥∥σ �1φ′(u j)
∥∥ − ∥∥φ′(u j)

∥∥ = �1 K ;∥∥τm1σ �1φ′(u j)
∥∥ − ∥∥σ �1φ′(u j)

∥∥ � m1 K ;
· · ·∥∥σ �t · · ·τm1σ �1φ′(u j)

∥∥ − ∥∥τmt−1 · · ·τm1σ �1φ′(u j)
∥∥ � �t K ;∥∥τmt σ �t · · ·τm1σ �1φ′(u j)

∥∥ − ∥∥σ �t · · ·τm1σ �1φ′(u j)
∥∥ � mt K .

Summing up all of these inequalities together with (36) yields

∥∥φ(u j)
∥∥ − ∥∥φ′(u j)

∥∥ �
t∑

i=1

(�i + mi)K

�
(

t∑
i=1

�i

)
K

�
t∑

i=1

�i

� ‖u j‖ + 1,

as required. This completes the proof of the claim. �
It then follows from the claim that

∥∥φ(u j)
∥∥ �

∥∥φ′(u j)
∥∥ + ‖u j‖ + 1 � ‖u j‖ + 1.

But this yields a contradiction to the hypothesis that ‖φ(u j)‖ = ‖u j‖. Therefore, we must have
‖σφ′(ui)‖ = ‖φ′(ui)‖ for every i = 1, . . . ,k. Then for each i = 1, . . . ,k,

0 = ∥∥σφ′(ui)
∥∥ − ∥∥φ′(ui)

∥∥ = n
([

φ′(ui)
];a

) − 2n
([

φ′(ui)
];a,b−1)

= n
([

φ′(ui)
];a,a

) + n
([

φ′(ui)
];a,b

) − n
([

φ′(ui)
];a,b−1). (37)

Here, since φ′ contains at least ‖ui‖ + 2 factors of σ , by Lemma 2.1, there cannot occur proper
cancellation in passing from [φ′(ui)] to [σφ′(ui)], and so every subword of [φ′(ui)] of the form ab−1

or ba−1 is necessarily part of a subword of the form ab−ra−1 or abra−1 (r > 0), respectively. This
implies that

n
([

φ′(ui)
];a,b

)
� n

([
φ′(ui)

];a,b−1),
so that, from (37),

n
([

φ′(ui)
];a,b

) = n
([

φ′(ui)
];a,b−1) and n

([
φ′(ui)

];a,a
) = 0. (38)

From the fact that no proper cancellation can occur in passing from [φ′(ui)] to [σφ′(ui)] together
with (38), each cyclic word [φ′(ui)] must have the form

[
φ′(ui)

] = [
bsi1 abti1 a−1 · · ·bsir abtir a−1],
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where every si j, ti j is a nonzero integer, and hence

[
σφ′(ui)

] = [
φ′(ui)

]
for every i = 1, . . . , t .

Thus letting

ψ = τmt σ �t · · ·τm1σ �1−1φ′,

we finally have

[
ψ(ui)

] = [
φ(ui)

]
for every i = 1, . . . , t . Obviously |ψ | < |φ|, and so the proof of the theorem is completed. �

We remark that Theorem 4.1 also holds if (C1) is replaced by (C2). From now on, let

δ1 = ({
a±1},b

)
, δ2 = ({

a±1},b−1), δ3 = ({
b±1},a

)
, δ4 = ({

b±1},a−1)
be Whitehead automorphisms of F2 of type (W2).

Lemma 4.2. Let α be a Whitehead automorphism of F2 of type (W2). Then α can be expressed as a composition
of σ±1 , τ±1 and δi ’s.

Proof. If α is not one of σ±1, τ±1 and δi ’s, then α must be one of ({a−1},b), ({a−1},b−1), ({b−1},a)

and ({b−1},a−1). Then the following easy identities

({
a−1},b

) = δ1σ
−1; ({

a−1},b−1) = δ2σ ;({
b−1},a

) = δ3τ
−1; ({

b−1},a−1) = δ4τ

imply the required result. �
The following two technical lemmas can be easily proved by direct calculations.

Lemma 4.3. The following identities hold:

σδ1 = δ1σ ; σδ2 = δ2σ ; σδ3 = δ1δ3σ ; σδ4 = δ4δ2σ ;
τδ1 = δ3δ1τ ; τδ2 = δ2δ4τ ; τδ3 = δ3τ ; τδ4 = δ4τ ;

σ−1δ1 = δ1σ
−1; σ−1δ2 = δ2σ

−1; σ−1δ3 = δ2δ3σ
−1; σ−1δ4 = δ4δ1σ

−1;
τ−1δ1 = δ4δ1τ

−1; τ−1δ2 = δ2δ3τ
−1; τ−1δ3 = δ3τ

−1; τ−1δ4 = δ4τ
−1.

Lemma 4.4. The following identities hold:

στ−1 = πδ1σ
−1; σ−1τ = π−1δ3σ ; τσ−1 = π−1δ3τ

−1; τ−1σ = πδ1τ ;
σπ = πδ3τ

−1; σπ−1 = π−1τ−1; σ−1π = πδ4τ ; σ−1π−1 = π−1τ ;
τπ = πσ−1; τπ−1 = π−1δ1σ

−1; τ−1π = πσ ; τ−1π−1 = π−1δ2σ ,

where π is a Whitehead automorphism of F2 of type (W1) that sends a to b and b to a−1 .
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The following corollary gives a nice description of automorphisms of F2.

Corollary 4.5. Every automorphism φ of F2 can be represented as

φ = βδφ′,

where β is a Whitehead automorphism of F2 of type (W1), δ is a composition of δi ’s, and φ′ is a chain of
type (C1) or (C2).

Proof. By Whitehead’s Theorem (cf. [12]) together with Lemmas 4.2 and 4.3, an automorphism φ of
F2 can be expressed as

φ = β ′δ′τ qt σ pt · · ·τ q1σ p1 , (39)

where β ′ is a Whitehead automorphism of F2 of type (W1), δ′ is a composition of δi ’s, and both p j, q j
are (not necessarily positive) integers for every j = 1, . . . , t . If not every p j and q j has the same sign
(including 0), apply repeatedly Lemma 4.4 to the chain on the right-hand side of (39) to obtain that
either φ = β ′π rδτmkσ lk · · ·τm1σ l1 or φ = β ′π rδτ−mkσ−lk · · ·τ−m1σ−l1 , where π is as in Lemma 4.4,
r ∈ Z, δ is a composition of δi ’s, and both l j, m j � 0 for every j = 1, . . . ,k. Putting β = β ′π r , we
obtain the required result. �

The following is the main result of this section.

Theorem 4.6. Let H = 〈u1, . . . , uk〉 be a finitely generated subgroup of F2 . Suppose that H is the fixed point
group of an automorphism φ of F2 . Let Ω1 be the set of all chains of type (C1) or (C2) of length less than or equal
to 4|H| + 4, and let Ω2 be the set of all compositions of δi ’s of length less than or equal to (24|H|+4 + 1)|H|.
Put

Ω = {
βδ′ψ ′ ∣∣ ψ ′ ∈ Ω1, δ

′ ∈ Ω2, and β is a Whitehead auto of F2 of type (W1)
}
.

Then there exists ψ ∈ Ω of which H is the fixed point group.

Proof. By Corollary 4.5, φ can be written as

φ = βδφ′,

where β, δ and φ′ are indicated as in the statement of Corollary 4.5.
Since φ(ui) = ui for every i = 1, . . . ,k, it is easy to see that

∥∥φ′(ui)
∥∥ = ‖ui‖

for every i = 1, . . . ,k. Then apply Theorem 4.1 continuously to obtain ψ ′ ∈ Ω1 such that

[
ψ ′(ui)

] = [
φ′(ui)

]
for every i = 1, . . . ,k. Since |δφ′(ui)| = |φ(ui)| = |ui | � |H| and |ψ ′(ui)| � 24|H|+4|ui | � 24|H|+4|H| for
every i = 1, . . . ,k, we must have δ′ ∈ Ω2 such that

δ′ψ ′(ui) = δφ′(ui)

for every i = 1, . . . ,k, and hence

βδ′ψ ′(ui) = βδφ′(ui) = ui
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for every i = 1, . . . ,k. Therefore, letting

ψ = βδ′ψ ′,

we finally have ψ ∈ Ω and that H is the fixed point subgroup of ψ . This completes the proof of the
theorem. �

In conclusion, we naturally derive from Theorem 4.6 the following algorithm to decide whether or
not a given finitely generated subgroup of F2 is the fixed point group of some automorphism of F2.

Algorithm 4.7. Let H = 〈u1, . . . , uk〉 be a finitely generated subgroup of F2. Let Ω1,Ω2 and Ω be
defined as in the statement of Theorem 4.6. Clearly Ω is a finite set. Check if there is ψ ∈ Ω for
which ψ(ui) = ui holds for every i = 1, . . . ,k. If so, conclude that H is the fixed point group of some
automorphism of F2; otherwise conclude that H is not the fixed point group of any automorphism
of F2.
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